PEMBUATAN PARTIKEL SELULOSA MENGGUNAKAN LARUTAN ALKALIN

Edy Hermawan

Abstract


Selulosa adalah biopolimer terbanyak jumlahnya di alam dan memiliki arti yang sangat penting untuk industri serat dan kertas. Partikel selulosa dicirikan memiliki tingkat kekristalan yang tinggi dan mempunyai ukuran dari beberapa ratus nanometer (nm) sampai 100 mikrometer (μm). Partikel selulosa ini banyak digunakan dalam bentuk murninya sebagai filler pada industri makanan untuk menambah konsistensi dan tekstur makanan. Tujuan utama penelitian ini dapat dibagi menjadi dua. Pertama adalah untuk mempelajari pembuatan larutan selulosa dengan menggunakan larutan selulosa-sodium hidroksida. Kedua, mempelajari proses pembuatan partikel nano dengan metode sol-gel dengan menggunakan larutan selulosa-sodium hidroksida yang dipersiapkan sebelumnya. Bahan kimia yang dipakai untuk pembuatan larutan garam adalah Sodium hidroksida (NaOH), sodium klorida (NaCl), sodium sulfat (NaSO4), seng klorida (ZnCl), seng sulfat (ZnSO4), amonium klorida (NH4Cl), amonium sulfat ((NH4)2SO4). Pertama menentukan tingkat kelarutan pulp, pembuatan larutan basa-selulosa, proses ultrasonication dan dialysis, analisis SEM dan Flow Cytometry. Hasil eksperimen didapatkan enzyme-treated pulp menghasilkan tingkat kelarutan yang lebih tinggi dibandingkan dengan untreated pulp,ukuran partikel selulosa terkecil dihasilkan dari proses koagulasi di larutan NaCl yaitu sekitar 300 nm, dan perlakuan ultrasonication cukup efektif untuk menghasilkan ukuran dan jumlah partikel berukuran nanometer. Metode ini bisa menjadi metode alternatif yang ramah lingkungan untuk menghasilkan produk selulosa. Proses koagulasi yang diikuti dengan perlakuan ultrasonication menghasilkan ukuran rata-rata partikel 200 nm dan jumlah rata-rata partikel sekitar 25,000.

Full Text:

PDF

References


P. H. Hermans, “Physics and chemistry of cellulose fibers,” Amsterdam,

Y. N. Kuo and J. Hong, "Investigation of solubility of microcrystalline cellulose in aqueous NaOH," Polym. Adv. Technol., vol. 16, pp. 425-427, 2005.

N. Artzi, "Why nanocomposites are in?A glimpse into polymer based nanocomposites," Reviews in Chemical Engineering, vol. 21, pp. 307-345, 2005.

X. M. Dong, J. Revol and D. G. Gray, "Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose," Cellulose, vol. 5, pp. 19-32, 03/01. 1998.

A. Isogai and R.H. Atalla,"Dissolution of cellulose in aqueous NaOH solutions," Cellulose, vol. 5, pp. 309-319, 1998.

Y. Kuo and J. Hong, "Investigation of solubility of microcrystalline cellulose in aqueous NaOH," Polym. Adv. Technol., vol. 16, pp. 425-428, 2005.

J. G. Cook, "Handbook of textile fibers.I. Natural fibers," in ,5th ed.Anonymous 993, pp. 10-30.

E. Heuser, The Chemistry of Cellulose. ,3rd ed. New York: Wiley, 1947, pp. 1-40.

S. A. Rydholm, Pulping Process. John Wiley & Sons, 1965, pp. 100-118.

J. W. Ellis and J. Bath, J. Am. Chem. Soc., vol. 62, pp. 2859, 1940.

H. Hatakeyama, T. Hatakeyama and K. Nakamura, "Relationship Between Hydrogen Bonding and Water in Cellulose," Journal of Applied Polymer Science, pp. 979- 992, 1982.

O. Ant-Wuorinen, "The effect on cellulose of swelling solutions of alkaline or neutral character," Tiedotus / Valtion Teknillinen Tutkimuslaitos 60, pp. 30, 1964.

D. Klemm, B. Philipp, T. Heinze and W. Wagenknecht, "Comprehensive cellulose chemistry," in, vol. 1, Anonymous New York: Wiley-VCH, 1998, pp. 10-60.

J. Crawshaw, W. Bras, G. R. Mant and R. E. Cameron, "Simultaneous SAXS and WAXS investigations of changes in native cellulose fiber microstructure on swelling in aqueous sodium hydroxide," J Appl Polym Sci, vol. 83, pp. 1209-1218, 2002.

T. Heinze and A. Koschella, "Solvents applied in the field of cellulose chemistry – a mini review," Polimeros: Ciencia e Tecnologia, vol. 15, pp. 84-89, 2005.

C. Woodings, Regenerated Cellulose Fibres. Cambridge: Woodhead, 2001.

Y. Wang, Y. Zhao and Y. Deng, "Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature," Carbohydrate Polymers, Volume 70, Issue 1,, Pages 8-14, 2007.

M. Inamoto, I. Miyamoto, T. Hongo, M. Iwata and K. Okajima, "Morphological formation of the regenerated cellulose membranes recovered from its cuprammonium solution using various coagulants," Polymer Journal, vol. 28, pp. 507-512, 2003.

L. Zhang, Y. Mao, J. Zhou and J. Cai, "Effects of Coagulation Conditions on the Properties of Regenerated Cellulose Films Prepared in NaOH/Urea Aqueous Solution," Ind. Eng. Chem. Res., vol. 44, pp. 522-529, 2005.

D. Ruan, L. Zhang, Y. Mao, M. Zeng and X. Li, "Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution," Journal of Membrane Science, vol. 241, pp. 265-274, 10/1. 2004.

R. Evans and P. Luner, "Coagulation of microcrystalline cellulose dispersions," Journal of Colloid and Interface Science, vol. 128, pp. 464-476, 3/15. 1989.

Zeta meter Inc. http://www.mtec.or.th/th/labs/powder/book/coagulation.pdf, "Coagulation and Floccultaion," pp. Retrieved 10.07.2007, 1993.

H. B. Weiser, Colloid Chemistry. ,1st ed.New York: Wiley, 1949, pp. 97-103.

A. Johnson, Colloid Science. ,1st ed.Fair Lawn, N.J.: Oxford University Press, 1950, pp. 202-207.

L. Rahkamo, L. Viikari, J. Buchert, T. Paakkari and T. Suorttidoi, "Enzymatic and alkaline treatments of hardwood dissolving pulp," Cellulose, vol. 5, pp. 79-88, 1998.

G. R. Armando, L. de la Torre, L. A. García-Serrano and A. Aguilar-Elguézabal, "Effect of dialysis treatment on the aggregation state of montmorillonite clay," Journal of Colloid and Interface Science, vol. 274, pp. 550-554, 2004.

R. Nyström, M. Lindén and J. B. Rosenholm, "The Influence of Na+, Ca2+, Ba2+, and La3+ on the ζ Potential and the Yield Stress of Calcite Dispersions," Journal of Colloid and Interface Science, vol. 242, pp. 259-263, 2001.

University of Maryland hompage. Department of Chemical & Biomolecular Engineering http://www.eng.umd.edu/~nsw/ench485/lab4.htm#Objectives, Cellulose degradation, retrieved 01.12.2007.

C.A. King, "Cellulose Fiber-to-Fiber and Fines-to-Fiber Interactions: Their Coagulation and Flocculation Tendencies as Affected by Electrolytes and Polymers in and Agitated Water Slurry, " Ph.D. Thesis, The Institute of Paper Chemistry, 1975, pp. 50-58.

L. Rahkamo, M. Siika-aho, M. Vehviläinen, M. Dolk, L. Viikari, P. Nousiainen and J. Buchert, "Modification of hardwood dissolving pulp with purified trichoderma reesei cellulase”, Cellulose, vol.3, pp. 153- 163, 1996.

F. Fushimi, T. Watanabe, T. Hiyoshi, Y. Yamashita and T. Osakai, "Role of interfacial potential in coagulation of cuprammonium cellulose solution, " Applied Polymer Science, vol.59, issue 1, pp. 15-21, 1995.

M. Vehviläinen and P. Nousiainen, "Improving the solubility of enzyme-treated pulp for cellulosic fibre spinning, " Akzo Nobel Surface’s Seminar: Cellulosic Man-made Fibers in the new Millenium, Sweden, 2000.

M. Vehvilainen, P. Nousiainen, H. Strusczyk and G. East,” Celsol-Biotransformation of cellulose for fibre spinning, Proc. Cellucon International Cellulose Conference, Ellis Horwood Series in Polymer Science and Technology, Wales, 1994.




DOI: http://dx.doi.org/10.22441/jtm.v6i1.1337

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats