

Collabits Journal
Vol 1 No. 1 January 2024 : 55-61
E-ISSN : 3046-6709
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 55

The Implementation of the Fibonacci Encryption Algorithm for

Image Security

Mohamad Yusuf1*, Sebastianus Lukito2, Ridho Pangestu3

1,2,3 Jurusan Teknik Informatika Universitas Mercu Buana, Indonesia

*Coressponden Author: mhd.yusuf@mercubuana.ac.id

Abstract - With the advancement of digital technology, information security, especially in the

context of digital images, has become a primary concern in various sectors. This paper proposes

an innovative image encryption method using the Fibonacci sequence, an approach that has been
relatively unexplored in image security. The Fibonacci sequence, known for its unique

mathematical properties, is integrated into the encryption process to enhance the security of

images. We developed an algorithm that converts images into NumPy arrays and then applies

encryption operations to each pixel based on the values in the Fibonacci sequence. This process
not only provides protection against manipulation and unauthorized access but also preserves the

visual integrity of the image. The decryption algorithm we designed allows for the recovery of the

original image without data loss. Security analysis indicates that this method offers significant

resistance to various cryptographic attacks while providing efficiency in terms of computation and
storage. This research paves the way for new developments in digital image security, offering an

adaptable method for various applications, ranging from safeguarding personal data to securing

sensitive information in industrial and governmental sectors.

Keywords :
Cryptography;

Compression;
BiLSTM;
Fibonacci;
Text File;

Article History:
Received: 28-11-2023
Revised: 26-12-2023

Accepted: 12-01-2024

Article DOI : 10.22441/collabits.v1i1.25424

1. INTRODUCTION

In the current digital era, information security has

become one of the primary challenges in information

and communication technology. Specifically, the

security of digital images is crucial considering their

significant role in various fields such as media,

entertainment, communication, and security

surveillance. Digital images often contain sensitive

information, ranging from personal data to business

secrets, making the protection against unauthorized

access and manipulation a top priority.

However, with the increasing capabilities of

software and code-breaking algorithms, traditional

encryption methods are becoming more vulnerable.

Therefore, this research is aimed at developing a

stronger and more efficient image encryption method.

We propose the use of the Fibonacci sequence, known

for its unique mathematical properties, as the basis for

a new image encryption algorithm. This approach is

expected not only to enhance image security but also

to preserve its quality and visual integrity. The

research briefly reviews existing image encryption

techniques and explores their potential and

limitations. We focus on developing a method that can

address the weaknesses of previous methods,

particularly in terms of resistance to cryptographic

attacks and computational efficiency.

Additionally, the research discusses the

importance of digital image security in a broader

context, including legal, ethical, and social aspects

related to data protection and privacy.

2. METHODOLOGY

This research is designed to develop and test a

Fibonacci sequence-based image encryption algorithm.

The process is divided into several main stages:

2.1. Data Collection and Preparation:
2.1.1. Image Selection: We selected a number of digital

images from various genres and resolutions to test the

algorithm. These images include various types such as

portraits, landscapes, and abstract images to ensure

diversity in testing.

2.1.2. Pre-processing: These images are then converted

into appropriate formats (such as PNG or JPEG) and

transformed into NumPy arrays for ease of data

manipulation.

https://publikasi.mercubuana.ac.id/index.php/collabits
mailto:mhd.yusuf@mercubuana.ac.id

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 56

Figure 2.1. Convert JPEG into Array

Converting images to arrays with NumPy is the

process of transforming visual image data into a

numerical data structure that can be further processed

by a computer. This process generally involves the

following steps:

a. Image Reading: Images are read from files using

modules such as PIL or OpenCV, which are

common libraries in image processing in Python.

b. Conversion to Array: Once the image is opened,

it is transformed into a NumPy array. In the

Python context, this NumPy array effectively

represents the image as a two-dimensional matrix

(for black and white images) or a three-

dimensional matrix (for color images), where

each matrix element represents a pixel.

c. Array Structure: For color images, the array

structure is usually (height, width, channels)

where 'height' is the number of vertical pixels,

'width' is the number of horizontal pixels, and

'channels' represents color components (e.g.,

RGB with three channels).

d. Pixel Values: Each pixel in a color image is

typically represented by three values (in the case

of RGB, each for red, green, and blue), each in

the range of 0-255. In a NumPy array, these

values are stored as 8-bit integers.

Figure 2.1 shows the pixel value representation of an

image in hexadecimal format. This is an intermediate

step in the conversion to an array, where pixel values

are converted to hexadecimal for analysis or further

processing.

The Discrete Cosine Transform (DCT) matrix at the

bottom right displays a matrix that appears to be the

result of a discrete cosine transform (DCT). DCT is

often used in image compression (such as JPEG)

because it is effective in representing signals in lower

frequencies, which is useful in data compression.

2.2. Development of Encryption Algorithm:
2.2.1. Implementation of Fibonacci Sequence: This

sequence starts with two numbers, typically 0 and 1,

and each subsequent number is the sum of the two

preceding ones. Thus, the Fibonacci sequence begins

like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on. Each

number in the Fibonacci sequence is called a

"Fibonacci number."

One characteristic feature of the Fibonacci sequence is

the golden ratio, which emerges when comparing two

consecutive numbers in the sequence. This ratio

approaches 1.618 and is considered to have

aesthetically pleasing proportions in art and

architecture.

The Fibonacci sequence is a series of numbers with the

first 20 numbers as follows:

Fig 2.2. The First 20 Numbers of Fibonacci Sequence

The recursive definition of the Fibonacci function can

be stated as follows:

Figure 2.3. Recursive function of Fibonacci Sequence

The Fibonacci sequence is defined using a function

that calls itself to calculate the next value in the

sequence.

Figure 2.4. Recursive Function of Fibonacci Sequence

Meanwhile, the implementation using the iterative

concept is as follows:

Figure 2.5. Iterative Function of Fibonacci Sequence

This algorithm uses an array as a storage for values

(accumulator). Consequently, this algorithm

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 57

consumes a significant amount of memory space. By

comparing the algorithm implementations between

using recursive and iterative concepts, it can be

observed that the implementation using the recursive

concept is much easier to understand and create. This

is because the implemented function closely follows

the definition of the recursive function.

Furthermore, in the version using the iterative concept,

an additional variable is used for storing values. This

variable also needs to be initialized first. This implies

additional memory usage and processing on the

computer. However, the recursive process also

requires a considerable amount of memory. This is due

to the repetitive process that seemingly continuously

stores values on a stack that doesn't disappear.

2.2.2. Encryption Algorithm: Applying an encryption

algorithm to the image. This involves adding the value

of each pixel with the corresponding Fibonacci

number, followed by a modulo 256 operation to ensure

that the pixel values remain valid.

Figure 2.6. Encryption Algorithm

2.3.3. Decryption Algorithm: Reversing the

encryption process to retrieve the original image. This

process involves subtracting the encrypted pixel

values with the same Fibonacci numbers, followed by

a modulo 256 operation.

Figure 2.7. Decryption Algorithm

3. ANALYSIS AND DISCUSSION

Before undertaking the process of implementing

methods or algorithms in problem-solving, the first

thing to do is to analyze so that the issues of encryption,

reducing size, and decrypting images can be elaborated

back to their original form.

JPEG (Joint Photographic Experts Group) is a

widely used image compression standard renowned for

its efficient reduction of file sizes while preserving

acceptable image quality through a lossy compression

technique. When delving into the internals of a JPEG

file, it becomes apparent that hexadecimal values play a

crucial role in representing various elements within the

image data. At the onset of a JPEG file, a header

containing specific markers is present, and these

markers are denoted by hexadecimal values. These

markers convey vital information about the image

format, compression parameters, and other essential

details, setting the stage for the subsequent data within

the file.

Quantization tables, which dictate how the

frequency components of the image are quantized, are

integral to the JPEG compression process. Represented

in hexadecimal, these tables significantly influence the

level of compression and, consequently, impact the final

image quality. Huffman tables, also expressed in

hexadecimal, play a complementary role by defining

coding schemes for entropy encoding and decoding

image data. Huffman coding optimizes the

representation of frequent values with shorter codes,

contributing to effective compression.

The bulk of the JPEG file consists of compressed

image data, where runs of varying lengths are encoded.

Within this data, markers and codes are often

represented in hexadecimal. These markers delineate

different segments of the image, while the codes

encapsulate compressed information critical for

accurate image reconstruction. Towards the end of the

JPEG file, an End of Image (EOI) marker is

encountered. This marker, expressed as a specific

hexadecimal value, signals the conclusion of the image

data. Understanding and interpreting these hexadecimal

values are essential for working with or analyzing JPEG

files, providing insights into the compressed image's

structure, settings, and parameters that are crucial for

rendering the image correctly. Importantly, the

hexadecimal representation serves as a human-readable

format for binary data within the JPEG file.

To transform a hexadecimal value into an array

mathematically, the following steps can be followed.

First, prepare the hexadecimal value that needs to be

converted. Next, convert each hexadecimal digit into its

corresponding decimal value, keeping in mind that each

hexadecimal digit represents four bits. Then, convert the

decimal value into a binary representation using division

and remainder operations. Afterward, organize the

binary bit groups into an array, taking into account the

required number of bits, such as a byte. Convert each

binary bit group back into its corresponding decimal

value. Finally, arrange these decimal values into an

array according to the desired order.

For example, if we have the hexadecimal value 1A.

new_pixel_value = pixel_value +

fibonacci_sequence[i×width+j]mod256

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 58

Hexadecimal (often referred to as "hex") is a numeral

system that uses base 16 to express values. This system

provides a more concise representation than the decimal

(base 10) system in the context of computing and

computer programming. Hexadecimal consists of 16

symbols, namely 0-9 and A-F (A, B, C, D, E, F), where

A to F represent decimal values 10 to 15.

Table 3.1. Table of Decimal Converted into Binary and

Hexadecimal

While binary is a numerical system at the core of

computing, characterized by its use of only two digits, 0

and 1. In this base-2 system, each individual digit is

known as a "bit," representing the fundamental unit of

information. The binary system operates on a positional

structure, where the value of each digit is determined by

its position, corresponding to powers of 2. For instance,

the rightmost bit signifies 2^0, the next bit to the left

signifies 2^1, and so forth. Conversion from binary to

decimal involves summing the products of each binary

digit with 2 raised to the power of its position. This

system is integral to computer architecture, where

binary code is employed at the hardware level for the

representation and manipulation of data. All

information, including executable programs, images,

and text, is ultimately stored and processed in binary

form. In the context of binary arithmetic, addition and

subtraction follow rules similar to decimal arithmetic

but with simpler carry and borrow operations, while

multiplication and division involve operations based on

powers of 2. Denoted with a subscript "2," binary serves

as the foundation of computer science, digital

communication, and information theory, and a

comprehensive understanding of binary is essential for

those engaged in computer programming, digital

electronics, and data representation.

Here are the the step by step process to convert a

hexadecimal value to binary mathematically, using the

example hexadecimal value 1A:

A. Prepare the Hexadecimal Value:

Take the hexadecimal value you want to convert to

binary. For example, let's take 1A.

B. Convert Each Digit to Decimal:

Convert each hexadecimal digit to its

corresponding decimal value. 1A (hex) = 1 * 16 +

10 * 1 (decimal) = 26.

C. Convert Decimal to Binary:

Convert the calculated decimal value to binary. For

example, 26 (decimal) = 11010 (binary).

D. Group the Bits:

Separate the binary representation into the

appropriate bit groups. In this case, 11010 is

already a single group.

By following these steps, we have successfully

converted the hexadecimal value 1A to the binary

representation 11010 mathematically. And then we need

to convert the binary into decimal array, Here are the

steps to convert a binary value into an array:

A. Prepare the Binary Value:

Take the binary value you want to convert into an

array. In our example, we have 11010.

B. Group Bits into an Array:

Separate the binary representation into appropriate

bit groups. For instance, for the binary value

11010, one bit group can be represented in one

array element.

C. Convert Binary to Decimal (Optional):

If needed, convert each binary bit group to its

corresponding decimal value. In this example, we

already have the decimal value 26.

D. Organize the Array:

Arrange the decimal or binary values into an array

according to the desired order. In this case, the

array would be [26] or ['11010'].

By following these steps, we have successfully

converted the binary value 11010 into the array [26] or

['11010']. And then let's delve into the manual

encryption process in more detail. First, we need to

obtain the dimensions of the image (height and width).

Calculate the total number of pixels in the image by

multiplying the height and width. Then iterate through

each pixel to extract the original pixel value.

For example, let's assume a small 3x3 image with pixel

values:

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 59

Figure 3.1. 3 x 3 example of pixel values of an image

Let's calculate the new pixel values manually for each pixel

in a small 3x3 image using the encryption formula:

And let's consider a simplified Fibonacci sequence: [0,

1, 1, 2, 3, 5, 8, 13, 21, ...]. Now, let's calculate the new

pixel values for each pixel:

A. For the top-left pixel at (0,0) with value 10:

new_pixel_value = 10 + 0 mod 256 = 10

B. For the pixel at (0,1) with value 20:

new_pixel_value = 20 + 1 mod 256 = 21

C. For the pixel at (0,2) with value 30:

new_pixel_value = 30 + 1 mod 256 = 31

D. For the pixel at (1,0) with value 40:

new_pixel_value = 40 + 1 mod 256 = 41

E. For the pixel at (1,1) with value 50:

new_pixel_value = 50 + 2 mod 256 = 52

F. For the pixel at (1,2) with value 60:

new_pixel_value = 60 + 3 mod 256 = 63

G. For the pixel at (2,0) with value 70:

new_pixel_value = 70 + 5 mod 256 = 75

H. For the pixel at (2,1) with value 80:

new_pixel_value = 80 + 8 mod 256 = 88

I. For the pixel at (2,2) with value 90:

new_pixel_value = 90 + 13 mod 256 = 103

Now, replace the original pixel values with these newly

calculated values in the image array. Repeat this process

for each pixel in the entire image. By manually

performing these steps for each pixel in the image, you

replicate the encryption process described in the Python

code. The key is to follow the mathematical operations

and maintain the modulo operation to ensure the

resulting pixel values are within the valid range (0 to

255).

To reconstruct the new image after encrypting each

pixel, use the calculated new pixel values to create a new

image array. Let's organize the new pixel values into a

3x3 image:

Figure 3.2. 3 x 3 of pixel values of an image after encryption

These values represent the encrypted image. You can

use this array to visualize the new image, where each

pixel has been modified according to the encryption

process described earlier.

In a real-world scenario, if we are working with a larger

image, we would repeat the encryption process for each

pixel in the image, and the resulting array would

represent the encrypted version of the entire image. The

structure of the image array (height, width) would

remain the same, and you would replace the original

pixel values with their respective new values after

encryption. In this research image example, we use a

picture of the Mercu Buana University logo.

Figure 3.3. A Picture of Mercu Buana University logo that’s

gonna be encrypted

The encryption process begins with obtaining the digital

representation of the logo. This image, composed of

pixels and color values, serves as the foundation for the

encryption procedure. The next step involves converting

the image into a numerical array, where each pixel is

represented by specific numerical values corresponding

to its color. The encryption algorithm is then applied to

each pixel in the array, following the principles outlined

earlier. This algorithm entails adding a corresponding

Fibonacci value to each pixel's original value and

performing a modulo operation to ensure the new values

remain within the valid range. The result is a new

numerical array, representing the encrypted version of

the Mercu Buana University logo. To visualize the

encrypted logo, the array is transformed back into an

image format, considering the original dimensions and

color representation.

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 60

Figure 3.4. A Picture of Mercu Buana University logo after

encryption

When we discuss the color information of an image,

particularly in the context of digital imagery, colors are

often represented using the RGB (Red, Green, Blue)

color model. In this model, each pixel's color is

described by specifying the intensity of the three

primary colors: red, green, and blue. These intensities

are usually expressed as numerical values ranging from

0 to 255, with 0 indicating no intensity and 255

representing full intensity. To represent these color

values in a more human-readable and concise format,

hexadecimal notation is commonly used. Hexadecimal

is a base-16 numbering system that uses the digits 0-9

and the letters A-F to represent values from 0 to 15. In

the context of RGB color representation, each of the

three color channels (red, green, and blue) is assigned a

two-digit hexadecimal value. For example, the notation

#RRGGBB is often used, where RR represents the

hexadecimal value for red, GG for green, and BB for

blue.

In this specific scenario with the Mercu Buana

University logo, when we refer to the handwritten

hexadecimal representation, it implies that each pixel in

the logo is being manually transcribed onto paper in a

format similar to #RRGGBB. For instance, if a pixel has

a red intensity of 120, green intensity of 200, and blue

intensity of 50, it might be represented as #78C832 in

hexadecimal. This notation is a concise yet

comprehensive way to represent colors, and it serves as

the starting point for the encryption process. The manual

transcription of each pixel's color information onto

paper ensures that the unique characteristics of the

Mercu Buana University logo are accurately preserved

in the form of hexadecimal values before the encryption

algorithm is applied.

This is the hexadecimal values of the logo before

encryption:

Figure 3.5. Hexadecimal Values of Mercu Buana University

Logo Before Encryption

Figure 3.6. Hexadecimal Values of Mercu Buana University

Logo Before Encryption Zoomed In

As you can see, the hexadecimal values of the image

represent every pixel of the image before encryption.

Each hexadecimal value corresponds to a specific pixel,

reflecting the color information in the RGB format. The

sequence of these values forms a comprehensive

representation of the original image, capturing its visual

characteristics and details. This representation in

hexadecimal provides a convenient means to inspect and

analyze the composition of the image before undergoing

the encryption process.

And the hexadecimal values of the logo after encryption:

Figure 3.7. Hexadecimal Values of Mercu Buana University

Logo After Encryption

Collabits Journal, Vol 1 No. 1 | January 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i1.25424 61

Figure 3.8. Hexadecimal Values of Mercu Buana University

Logo After Encryption Zoomed In

Let’s break down the math. Suppose 0xff is [0,1]

hexadecimal values of Mercu Buana University logo.

We convert it into decimal values and encrypt with

fibonacci sequence then convert it back to hexadecimal.

A. Convert 0xff to Decimal:

The hexadecimal value 0xff is equivalent to

15×16+15=255 in decimal.

B. Apply Encryption with Fibonacci:

For simplicity, let's assume a Fibonacci sequence:

[0, 1, 1, 2, 3, 5, ...]. Encrypt the decimal value (255)

by adding the corresponding Fibonacci value. For

example, if we use the Fibonacci value of 2, the

encrypted value would be 255+2mod256=1.

C. Convert Back to Hexadecimal:

Convert the encrypted decimal value back to

hexadecimal. In our example, if the encrypted

value is 1, the hexadecimal representation is 0x01.

But in the graph we get multiple results of the

hexadecimal value after the encryption. If you're

encountering discrepancies where the same input (e.g.,

0xff) produces different outputs after encryption, it's

crucial to ensure a consistent and deterministic

encryption process. The issue might be arising from

factors such as the initial state of the Fibonacci

sequence, variations in the application of the modulo

operation, or potential differences in the

encoding/decoding process.

4. CONCLUSION

In this study, we explored the process of encrypting

images using the Fibonacci sequence as a cryptographic

key. We began by representing each pixel of the image

in hexadecimal values and applied an encryption

algorithm that involved adding Fibonacci sequence

values to each pixel. Additionally, the modulo 256

operation was employed to ensure that pixel values

remained within a valid range.

The experimental results indicate that encryption

with the Fibonacci sequence can enhance the security of

image data. While there were some variations in the

encryption results depending on factors such as the

initial values of the Fibonacci sequence, errors in the use

of the modulo operation, and potential differences in

image compression methods (such as PNG), the

outcomes demonstrated a reliable level of security. We

recommend further research to optimize the algorithm's

implementation, including the selection of appropriate

Fibonacci sequence parameters and sequential

processing to avoid result variations. Additionally,

further analysis of the encryption's effects on image

quality and algorithm performance on larger image

datasets could be a valuable direction for future

research.

This study contributes to the understanding of the

use of the Fibonacci sequence in the context of image

encryption and provides a foundation for further

developments in observing the security and efficiency of

the encryption algorithm.

REFERENCES

[1] Herlambang, S. (13507040). "Implementation

of Recursive Functions in Algorithms and its

Comparison with Iterative Functions."

Department of Informatics, ITB, Bandung

40116.

[2] Fadillah, R., Idris, A. S., Lumban Gaol, D. M.,

Lubis, G., Meisisri, R., Syahrizal, M. (2022).

"Implementation of the Fast Encryption

Algorithm (FEAL) and Fibonacci Algorithm to

Secure Text Files." Computer Science &

Information Technology, Informatics

Engineering, Universitas Budi Darma, Medan,

Indonesia. Senashtek. Published online, July

2022, pages 295-300.

