

Collabits Journal
Vol. 1 No. 3 September 2024 : 198-207

E-ISSN : 3046-6709, P-ISSN : 3062-8601
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 198

Neural Network Classification to Determine the Likelihood of Diabetes Using

Python Programming Language

Rafif Syari Hidayah1, Yudha Andika Istanto2*

1,2 Informatics Engineering Study Program, Universitas Mercu Buana

*Coressponden Author: yudhaandikaistanto@gmail.com

Abstract - Diabetes is a global health problem that affects millions of people worldwide. Predicting

a person's risk of developing diabetes can be an important first step in disease prevention and

management. In this study, we propose the development of a predictive model for diabetes using
Neural Network (NN) technique with implementation using Python. The data used in this study

consists of clinical information that includes factors such as pregnancy, glucose, blood pressure, skin

thickness, insulin, BMI, diabetes pedigree function, and age. The model development process

involves data pre-processing, selection of relevant features, model training, and performance
evaluation using appropriate metrics. The experimental results show that the developed NN model

has a good ability in predicting diabetes risk. The main contribution of this research is the use of NN

techniques and Python coding in the development of predictive models for diabetes, which can

provide useful guidance for medical practitioners in supporting disease prevention and management
efforts. Future studies can extend this research by considering additional factors and improving the

accuracy of the model by using more complex approaches.

Keywords :
Diabetes;

Prediction;
Neural Network;

Python Coding;

Predictive Model;

Model development;
Data pre-processing;

Performance

Evaluation;

Disease Prevention;
Disease Management;

Article History:
Received: 12-06-2024

Revised: 19-07-2024

Accepted: 28-08-2024

Article DOI : 10.22441/collabits.v1i3.27300

1. INTRODUCTION

Diabetes is a chronic disease that is becoming

a global health problem with a growing

prevalence. According to reports from the World

Health Organization (WHO), the number of

people with diabetes worldwide has soared in

recent decades, and is expected to continue to rise

in the foreseeable future. The disease not only

impacts the quality of life of afflicted individuals,

but also poses a huge economic burden to the

global health system. With serious complications

such as heart disease, kidney failure, and visual

impairment, diabetes is one of the leading causes

of morbidity and mortality in many countries.

Early identification of individuals at high risk

of developing diabetes is a critical step in the

prevention and management of this disease.

Accurate predictions can enable early

intervention,

lifestyle changes, and better medical

management, all of which contribute to reducing

the prevalence and impact of diabetes. In this

context, the development of effective and reliable

predictive models is crucial.

Technological advances in the field of

artificial intelligence (AI), particularly Neural

Network (NN) techniques, have opened up new

opportunities in medical data analysis and

predictive model development. Neural networks,

with their ability to capture and model complex

non-linear relationships in data, have shown

promising results in various medical

applications, including disease prediction. This

technique enables large-scale data processing

and analysis with high precision, which is

particularly beneficial in addressing the

challenges associated with diabetes prediction.

Python, as the dominant programming

language in the field of data science and machine

learning, offers a rich ecosystem with various

libraries and tools that support the development

of Neural Network models. Libraries such as

TensorFlow, Keras, and PyTorch provide

powerful and flexible frameworks for building,

training, and optimizing NN models. In addition,

Python has a large and active user community,

which provides abundant support and resources

https://publikasi.mercubuana.ac.id/index.php/collabits
mailto:yudhaandikaistanto@gmail.com

Collabits Journal, Vol 1 No. 12 | 12 2024

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 199

for developers and researchers.

This study aims to develop a predictive

model for diabetes using a Neural Network

implemented with Python. The data used in this

study includes comprehensive clinical

information, including risk factors such as age,

gender, body mass index (BMI), blood pressure,

blood glucose levels, and family history of

diabetes. The model development stages include

data pre-processing to ensure data quality and

consistency, selection of relevant features to

optimize model performance, model training

using the NN algorithm, and model performance

evaluation using appropriate metrics such as

accuracy, sensitivity, specificity, and Area Under

the Curve (AUC).

This technology-based approach is expected

to not only improve the efficiency and accuracy

of diabetes prediction, but also inspire further

research using other AI techniques in medical

applications. In the future, with bigger data and

more sophisticated algorithms, the predictive

models developed can continue to be refined and

adapted to meet the increasingly complex and

dynamic needs of health management.

2. METHODOLOGY

This research aims to develop a predictive

model for diabetes using Neural Network (NN)

with parameter optimization through genetic

algorithm. The optimized parameters include the

number of units in the hidden layer (one hidden

layer) and the learning rate (α). This method

consists of several main stages: Exploratory Data

Analysis (EDA), pre- processing, Neural

Network training stage, and neural network

model evaluation. The following are the detailed

steps of the method used:

2.1 Dataset

The research data used to calcify the

likelihood of diabetes was obtained from the

keagle website. The data used in this study

consists of 768 rows of data and contains 8

relevant data attributes. The data consists of

several possible factors such as Pregnancy,

Glucose, Blood Pressure, Skin Thickness,

Insulin, BMI, Diabetes Pedigree Function, Age,

with 1 attribute as the class, namely the Outcome

attribute or diabetes outcome.

2.2 Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) is the

initial step in data analysis that aims to understand

characteristics, discover patterns, identify

anomalies, and test assumptions with the help of

statistics and visualization tools. EDA plays an

important role in the data science process as it

helps in gaining deep insights into the dataset

before proceeding to the modeling and training

stages.

2.3 Preprocesing data

The data will be checked first, starting from

checking whether there is missing data and also

whether there is duplicated data. The data will also

be normalized using a standard scaler

2.4 Training data

The training process of a classification

model uses the available data to build a model that

can perform classification. During the training

process, the model will learn to find patterns or

relationships between attributes in the data and the

corresponding classes. After analyzing the training

data, the model will find patterns that can be used

to make predictions on data that has never been

seen before.

2.5 Evaluation

Visualization of the model that has been

created in the form of a neural network, which

provides a visual description of the structure and

decisions taken by the model. By viewing the

model in the form of a neural network, we can

easily understand the logic flow and decisions

taken by the model when performing

classification.

Figure 1. Research flow

3. THEORETICAL FOUNDATION

3.1 Python

Python is a programming language that is

widely used in the field of data mining because

of the many libraries that support data mining

processing. Python has libraries such as Scikit-

learn, pytorch that offer algorithms and functions

to build neural network models and implement

neural network algorithms based on existing

data.

3.2 Pytorch

PyTorch is a popular open-source machine

learning framework for deep learning model

development. Developed by Facebook's AI

Collabits Journal, Vol 1 No. 3 | September 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 200

Research lab (FAIR), PyTorch provides great

flexibility and ease of use in building, training,

and deploying neural network models. With

autograd support, GPU acceleration, and a large

community, PyTorch remains the top choice for

researchers and practitioners in building

innovative AI solutions.

3.3 Neural Network

Neural Network (NN) is an artificial

intelligence technique that mimics the way the

human brain works to process information.

Neural networks consist of layers of

interconnected neurons, where each neuron sends

signals to other neurons through connections that

have certain weights. The neural network training

process involves two main stages, namely

feedforward and backpropagation.

3.4 Feedforward

Feedforward is the stage where input data is

processed through the network to produce the

output. The steps in the feedforward process are

as follows :

a) Each input 𝑥1 to 𝑥𝑖 is multiplied by the

weight of each connection and added with

the neuron bias. Each neuron in the hidden

layer receives signals from all neurons in

the input layer. The total input value to

neuron j in the hidden layer is calculated as:

b) Output of neuron j in the hidden layer after

ReLU activation function:

c) The output of the hidden layer becomes the

input to the output layer.Total input values

to neurons 𝑘 at the output layer is calculated

as:

d) Output of the neuron 𝑘 at the output layer

after sigmoid activation function:

3.5 Backpropagation

Backpropagation is the training stage of a

neural network to minimize the output error by

updating the network weights. The steps in the

backpropagation process are as follows:

a) Error is calculated as the difference

between the generated output 𝑦𝑘 and

target value 𝑡𝑘.

b) The error in the hidden layer is

calculated by transferring the error from

the output layer

Since we are using the ReLU activation

function in the hidden layer, the

derivative is:

c) Updating the weights and biases is done

using the error gradient of the weights

and biases.

4. DISCUSSION

4.1 Dataset

The dataset in this study is taken from an

online source, Kaggle, which is licensed CC0:

Public Domain. The dataset consists of several

attributes, including Pregnancy, Glucose, Blood

Pressure, Skin Thickness, Insulin, BMI, Diabetes

Pedigree Function, Age.

To analyze and build the decision tree model,

Python programming language and Google Colab

development environment were used. Python is a

programming language that is often used in data

analysis and machine learning model building.

Google Colab is a development environment that

allows users to run Python code online and share

projects easily.

Using the retrieved dataset and the Python

development environment with Google Colab,

this research aims to build a model. This model

will be used to analyze and predict based on the

attributes in the dataset.

Figure 2. Dataset

Collabits Journal, Vol 1 No. 12 | 12 2024

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 201

4.2 Exploratory Data Analysis (EDA)

In the Exploratory Data Analysis (EDA)

process, the first step is to check the number of

unique values in each feature. The check results

show the following:

Pregnancies: 17 unique values

Glucose: 136 unique values

BloodPressure: 47 unique values

SkinThickness: 51 unique values Insulin: 186

unique values

BMI: 248 unique values

DiabetesPedigreeFunction: 517 unique values

Age: 52 unique values

Outcome: 2 unique values

To get an easier look at the data using

histogram, pie chart, boxplot, and scatter plot

visualizations.

Figure 3.1. Distribusi of Pregnancies

Figure 3.2. Distribusi of Glucose

Figure 3.3. Distribusi of BloodPressure

Figure 3.4. Distribusi of SkinThickness

Figure 3.5. Distribusi of Insulin

Figure 3.6. Distribusi of BMI

Figure 3.7. Distribusi of Diabetes Pedigree

Function

Collabits Journal, Vol 1 No. 3 | September 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 202

Figure 3.8. Distribusi of Age

In the distribution of the Pregnancies

variable, the skewness was found to be positive

with a value of 0.89991194, indicating a right-

skewed distribution. Glucose distribution has a

skewness close to normal distribution with a value

of about 0.17341396. The BloodPressure,

SkinThickness, and BMI distributions also

showed near-normal distribution trends with

skewness close to zero. However, in the

BloodPressure distribution, the skewness was

found to be negative with a value of around -

1.84000523, indicating a left-skewed distribution.

Whereas, in the Insulin distribution, the skewness

is positive with a value of about 2.267, and in the

Diabetes Pedigree Function distribution, the

skewness is also positive with a value of about

1.91, indicating a right-skewed distribution. The

Age distribution also has a positive skewness, but

with a slightly lower value of about -1.127,

indicating a right-skewed distribution.

Figure 4. Pie chart kelas diabetes

In the pie chart above, it is obtained that the

target variable (diabetes) consists of two classes,

namely class 0 (not affected by diabetes) of 65.1%

and class 1 (affected by diabetes) of 34.9%. The

use of boxplots allows for easier and clearer

detection of outliers. These outliers can provide

valuable insights into extreme variations in the

data, which can affect interpretation and further

analysis.

Figure 5.1. Boxplot of Pregnancies

Figure 5.2. Boxplot of Glucose

Figure 5.3. Boxplot of Blood Pressure

Figure 5.4. Boxplot of Skin Thickness

Collabits Journal, Vol 1 No. 12 | 12 2024

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 203

Figure 5.5. Boxplot of Insulin

Figure 5.6. Boxplot of BMI

Figure 5.7. Boxplot of Diabetes Pedigree

Function

Figure 5.8. Boxplot of Age

Using heatmaps, it is easy to analyze the

correlation patterns between various features.

Heatmaps are an effective visual tool for

understanding the relationships between variables

in data. By analyzing the correlation between

these features, we can identify relevant patterns

and gain deeper insights into the data structure.

Figure 6. Heatmap

4.9 Data Preprocesing

Before training the model, the data is first

cleaned through several important steps. The first

step is the missing data check, where any entries

that have missing values are identified and dealt

with. The second step is the check and removal of

duplicate data, which ensures that each entry in

the dataset is unique and there are no unwanted

repetitions.

Figure 7. Missing data

Figure 8. Duplicate data

After the data has been cleaned, the next step

is to separate the data into feature variables and

target variables. All feature variables are then

normalized using Standard Scaler. This

normalization process aims to rescale the data so

Collabits Journal, Vol 1 No. 3 | September 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 204

that it has a distribution with a mean of zero and a

standard deviation of one.

The normalized data will be divided into two

parts: training data and testing data using the

train_test_split function, then X_train, X_test,

y_train, y_test will be converted into tensor data.

Figure 9. Dataset splitting

4.4 Data Training

In the neural network training process,

determining the network architecture is a crucial

step. The network architecture used in this study

consists of one input layer, two hidden layers, and

one output layer. Each hidden layer uses a ReLU

(Rectified Linear Unit) activation function, while

the output layer uses a sigmoid activation

function.

The use of ReLU activation function in the

hidden layer aims to overcome the vanishing

gradient problem and accelerate the convergence

of the model. The sigmoid activation function in

the output layer is used to convert the model

output into probabilities, which is suitable for

binary classification problems.

To prevent overfitting, a dropout regulation

technique is applied. Dropout works by randomly

removing neuron units within the network during

each training iteration. This technique ensures that

the network is not overly dependent on certain

neurons, which can cause the model to overfit to

the training data and lose generalization ability to

new data.

Figure 10. Neural network architecture

Figure 11. Neural network architecture

(python)

The loss used for binary classification uses

the Binary Cross Entropy (BCE) loss function.

BCE is an appropriate choice for binary

classification problems as it calculates the loss

between the predicted output value and the true

value by considering the prediction probability.

Where 𝑦 is the true label and 𝑦 is the

predicted probability. In addition, to optimize

the model training process, the Adam

optimizer with weight decay is used. Adam's

optimizer is a method that combines the

advantages of AdaGrad and RMSProp

optimization, so it can overcome the problem

of sparse gradients and has adaptive

capabilities for each parameter. The use of

weight decay helps in additional regulation to

prevent overfitting by adding a penalty to

large weights in the loss function. The

learning rate used is 0.01. This learning rate

determines the size of the parameter update

step in each training iteration.

Figure 12. Hyperparameter

The neural network model was trained with

Collabits Journal, Vol 1 No. 12 | 12 2024

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 205

a maximum of 10,000 epochs. To monitor the

performance of the model during training, several

evaluation variables are used, including:

train_losses to record loss values on training data,

test_losses to record loss values on testing data,

and accuracies to record model accuracy on

testing data. The variable best_val_loss is

initialized with an infinite value to track the best

loss value on the test data during the training

process. In addition, the variable

best_model_state is used to store the best state of

the model obtained during training. The

patience parameter is set to 5 to implement an

early stopping mechanism, which will stop

training if there is no improvement in the test loss

within 5 consecutive epochs.

This approach ensures that model training

can be stopped early if there is no significant

improvement in performance, thus avoiding

overfitting and efficient training time. The

implementation of this evaluation variable aims to

monitor and ensure that the resulting model has

the best performance on the testdata.

Figure 13. Training data code

4.5 Evaluation

Based on the evaluation results, the neural

network model performed quite well with an

overall accuracy of 81.17%.

Figure 14. accuracy

The model has the same precision for both

classes, which is 0.81. However, the recall for

class 1 (0.62) is lower compared to class 0 (0.92),

indicating that the model is more likely to

correctly identify class 0 than class 1.

The F1-score for class 0 (0.86) is higher than

that of class 1 (0.70), indicating that the balance

between precision and recall is better for class 0.

This may be due to the unbalanced distribution

between the two classes, with more class 0

samples than class 1 (99 vs. 55).

The macro average metric shows a precision

of 0.81, recall of 0.77, and F1-score of 0.78. The

weighted average metric gave a precision of 0.81,

recall of 0.81, and F1-score of 0.80. This shows

that the overall model performs well but needs to

be improved in classifying the class 1 samples.

Figure 15. Classification Report

From this confusion matrix, it can be seen

that the model correctly classified 91 class 0

samples (true negatives) and 34 class 1 samples

correctly (true positives). However, the model

also misclassified 8 class 0 samples as class 1

(false positives) and 21 class 1 samples as class 0

(false negatives).

Figure 16. Confusion Matrix

Collabits Journal, Vol 1 No. 3 | September 2024
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 206

The loss on the test data is almost the same

as the loss on the training data. This shows that the

model has good generalization ability. In addition,

the test loss was more stable and decreased

significantly during the training process.

The stability and consistent decrease in the

test loss indicate that the model does not

experience overfitting, which means that the

model is able to learn patterns from the training

data without losing the ability to predict unseen

data. In other words, the model's performance on

training and testing data is balanced, so the model

is expected to provide reliable predictions on new

data.

The good test loss reduction during training

indicates that the model optimization is effective,

and the model parameters are updated

significantly, improving the model performance

over time.

Figure 17. Loss

Based on the ROC curve analysis, the area

under the curve (AUC) reached a value of 0.85.

This indicates that the model has a good ability to

distinguish between positive and negative classes.

The AUC of 0.85 indicates that the model has a

high degree of accuracy in predicting the correct

class, where values close to 1 indicate perfect

model performance and values of 0.5 indicate

performance comparable to random guessing.

Figure 18. ROC Curve

5. CONCLUSION

Through the experiments and analysis

conducted, it can be observed that the neural

network model has managed to learn the data

structure well, resulting in an impressive accuracy

rate of 81.17%. The success of the model is not

only limited to its ability to recognize the target

classes, but also in distinguishing between

negative and positive classes with a high degree of

confidence, which is reflected in the ROC curve

value of 0.85. These results show that the model

has a good ability to map complex patterns in the

data and capture important information relevant to

diabetes classification.

The importance of applying several

regularization techniques, such as dropout and L2

regularization, has been proven to prevent

overfitting of the model. Thus, the model can be

relied upon to provide consistent predictions and

good generalization on data that has never been

seen before. This confirms that the right approach

in designing the neural network architecture,

including the selection of the number of layers, the

number of neurons, and the appropriate activation

function, has a significant impact in improving the

performance of the model.

Accurate prediction of diabetes risk can have

a huge impact in health management and clinical

decision-making. By using neural network

technology, we can optimize the utilization of

available medical data to provide valuable

information for medical practitioners and patients.

Collabits Journal, Vol 1 No. 12 | 12 2024

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v1i3.27300 207

REFERENCE

[1] Adam Mizza Zamani, Bilqis Amaliah, &

Abdul Munif. (2012). Implementasi

Algoritma Genetika pada Struktur

Backpropagation Neural Network untuk

Klasifikasi Kanker Payudara. Jurnal Teknik

ITS, 1, 2301-9271.

[2] Sopiatul Ulum, Rizal Fahmi Alifa, Putri

Rizkika, & Chaerur Rozikin. (2024).

Perbandingan Performa Algoritma KNN dan

SVM dalam Klasifikasi Kelayakan Air

Minum. Generation Journal, 7(2), 141.

[3] Ardea Bagas Wibisono & Achmad Fahrurozi.

(2024). Perbandingan Algoritma Klasifikasi

dalam Pengklasifikasian Data Penyakit

Jantung Koroner. Fakultas Teknologi Industri

Universitas Gunadarma, Jl. Margonda Raya

No. 100, Depok 16424, Jawa Barat.

[4] Mursyid Ardiansyah, Andi Sunyoto, & Emha

Taufiq Luthfi. (2021). Analisis Perbandingan

Akurasi Algoritma Naïve Bayes dan C4.5

untuk Klasifikasi Diabetes. Edumatic: Jurnal

Pendidikan Informatika, 5(2), 147-156.

[5] Hana, F. M. (2024). “Klasifikasi Penderita

Penyakit Diabetes Menggunakan Algoritma

Decision Tree C4.5.” Jurnal Kesehatan, 32,

123-135.

[6] Madaerdo, L., & Santoso, D. B. (2022).

Perbandingan Algoritma KNN, Decision Tree,

dan Random Forest pada Data Imbalanced

Class untuk Klasifikasi Promosi Karyawan.

(Tugas Akhir, Universitas Singaperbangsa

Karawang).

[7] Hidayah, R. S. (2024). Klasifikasi Decision

Tree Untuk Menentukan Kemungkinan

Penyakit Stroke Dengan Bahasa

Pemrograman Python. Jurnal Teknik

Informatika Universitas Mercu Buana, 1(1), 1-

10.

[8] Wahyuni, E. D., Arifiyanti, A. A., & Kustyani,

M. (2019). Exploratory Data Analysis dalam

Konteks Klasifikasi Data Mining. Dalam

Prosiding Nasional Rekayasa Teknologi

Industri dan Informasi XIV (pp. 263-269).

ISSN: 1907-5995.

[9] Prajarini, D. (2016). Perbandingan Algoritma

Klasifikasi Data Mining Untuk Prediksi

Penyakit Kulit. INFORMAL, 1(3), 137. ISSN:

2503-250X.

[10] Azhar, Y., Firdausy, A. K., & Amelia, P. J.

(2022). Perbandingan Algoritma Klasifikasi

Data Mining Untuk Prediksi Penyakit Stroke.

SINTECH JOURNAL, 5(2). ISSN: 2598-

7305, E-ISSN: 2598-9642.

[11] Darsyah, M. Y. (2014). Pengunaan Stem and

Leaf dan Boxplot untuk Analisis Data. JKPM,

1(1), 55. ISSN: 2339-2444.

[12] Sartika, D., & Sensuse, D. I. (2017).

Perbandingan Algoritma Klasifikasi Naive

Bayes, Nearest Neighbour, dan Decision Tree

pada Studi Kasus Pengambilan Keputusan

Pemilihan Pola Pakaian. Jatisi, 1(2), 151.

[13] Nasution, M. K., Saedudin, R. R., & Widartha,

V. P. (2021). Perbandingan Akurasi Algoritma

Naïve Bayes dan Algoritma XGBOOST pada

Klasifikasi Penyakit Diabetes. e-Proceeding

of Engineering, 8(5), 9765. ISSN: 2355-9365.

[14] Sinaga, S. H., Duha, A. A. M., & Banjarnahor,

J. (Tahun). Analisis prediksi deteksi stroke

dengan pendekatan EDA dan perbandingan

algoritma machine learning. Jurnal Ilmiah

Betrik, 1(2), 151-xxx. ISSN: 2339-1871.

[15] Putri, A. W. (2021). Implementasi artificial

neural network (ANN) backpropagation untuk

klasifikasi jenis penyakit pada daun tanaman

tomat. MATHunesa, 9(2). e-ISSN: 2716-

501X, p-ISSN: 2301-9115.

[16] Hadistio, R. R., Mawengkang, H., & Zarlis,

M. (2022). Perbandingan Algoritma Stokastik

Gradient Descent dan Naïve Bayes Pada

Klasifikasi Retinopati Diabetik. Jurnal Media

Informatika Budidarma, 6(1), 271-277.

[17] Sihombing, P. R., Suryadiningrat, Deden A.

S., & Yuda, Y. P. A. C. (2022). Identifikasi

Data Outlier (Pencilan) dan Kenormalan Data

Pada Data Univarlat serta Alternatif

Penyelesaiannya. Jurnal Ekonomi dan

Statistik Indonesia, 2(3), 307-316.

