
 

Collabits Journal 
Vol. 1 No. 3 September 2024 : 198-207 

E-ISSN : 3046-6709, P-ISSN : 3062-8601 
https://publikasi.mercubuana.ac.id/index.php/collabits

 
 

DOI: 10.22441/collabits.v1i3.27300 198 
 

Neural Network Classification to Determine the Likelihood of Diabetes Using 

Python Programming Language 

 
Rafif Syari Hidayah1, Yudha Andika Istanto2* 

1,2 Informatics Engineering Study Program, Universitas Mercu Buana 

*Coressponden Author:  yudhaandikaistanto@gmail.com   

 

Abstract - Diabetes is a global health problem that affects millions of people worldwide. Predicting 

a person's risk of developing diabetes can be an important first step in disease prevention and 

management. In this study, we propose the development of a predictive model for diabetes using 
Neural Network (NN) technique with implementation using Python. The data used in this study 

consists of clinical information that includes factors such as pregnancy, glucose, blood pressure, skin 

thickness, insulin, BMI, diabetes pedigree function, and age. The model development process 

involves data pre-processing, selection of relevant features, model training, and performance 
evaluation using appropriate metrics. The experimental results show that the developed NN model 

has a good ability in predicting diabetes risk. The main contribution of this research is the use of NN 

techniques and Python coding in the development of predictive models for diabetes, which can 

provide useful guidance for medical practitioners in supporting disease prevention and management 
efforts. Future studies can extend this research by considering additional factors and improving the 

accuracy of the model by using more complex approaches. 
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1. INTRODUCTION 

Diabetes is a chronic disease that is becoming 

a global health problem with a growing 

prevalence. According to reports from the World 

Health Organization (WHO), the number of 

people with diabetes worldwide has soared in 

recent decades, and is expected to continue to rise 

in the foreseeable future. The disease not only 

impacts the quality of life of afflicted individuals, 

but also poses a huge economic burden to the 

global health system. With serious complications 

such as heart disease, kidney failure, and visual 

impairment, diabetes is one of the leading causes 

of morbidity and mortality in many countries. 

Early identification of individuals at high risk 

of developing diabetes is a critical step in the 

prevention and management of this disease. 

Accurate predictions can enable early 

intervention, 

  

lifestyle changes, and better medical 

management, all of which contribute to reducing 

the prevalence and impact of diabetes. In this 

context, the development of effective and reliable 

predictive models is crucial. 

Technological advances in the field of 

artificial intelligence (AI), particularly Neural 

Network (NN) techniques, have opened up new 

opportunities in medical data analysis and 

predictive model development. Neural networks, 

with their ability to capture and model complex 

non-linear relationships in data, have shown 

promising results in various medical 

applications, including disease prediction. This 

technique enables large-scale data processing 

and analysis with high precision, which is 

particularly beneficial in addressing the 

challenges associated with diabetes prediction. 

Python, as the dominant programming 

language in the field of data science and machine 

learning, offers a rich ecosystem with various 

libraries and tools that support the development 

of Neural Network models. Libraries such as 

TensorFlow, Keras, and PyTorch provide 

powerful and flexible frameworks for building, 

training, and optimizing NN models. In addition, 

Python has a large and active user community, 

which provides abundant support and resources 
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for developers and researchers. 

This study aims to develop a predictive 

model for diabetes using a Neural Network 

implemented with Python. The data used in this 

study includes comprehensive clinical 

information, including risk factors such as age, 

gender, body mass index (BMI), blood pressure, 

blood glucose levels, and family history of 

diabetes. The model development stages include 

data pre-processing to ensure data quality and 

consistency, selection of relevant features to 

optimize model performance, model training 

using the NN algorithm, and model performance 

evaluation using appropriate metrics such as 

accuracy, sensitivity, specificity, and Area Under 

the Curve (AUC). 

This technology-based approach is expected 

to not only improve the efficiency and accuracy 

of diabetes prediction, but also inspire further 

research using other AI techniques in medical 

applications. In the future, with bigger data and 

more sophisticated algorithms, the predictive 

models developed can continue to be refined and 

adapted to meet the increasingly complex and 

dynamic needs of health management. 

 

2. METHODOLOGY 

This research aims to develop a predictive 

model for diabetes using Neural Network (NN) 

with parameter optimization through genetic 

algorithm. The optimized parameters include the 

number of units in the hidden layer (one hidden 

layer) and the learning rate (α). This method 

consists of several main stages: Exploratory Data 

Analysis (EDA), pre- processing, Neural 

Network training stage, and neural network 

model evaluation. The following are the detailed 

steps of the method used: 

2.1 Dataset 

The research data used to calcify the 

likelihood of diabetes was obtained from the 

keagle website. The data used in this study 

consists of 768 rows of data and contains 8 

relevant data attributes. The data consists of 

several possible factors such as Pregnancy, 

Glucose, Blood Pressure, Skin Thickness,  

Insulin,  BMI,  Diabetes  Pedigree Function, Age, 

with 1 attribute as the class, namely the Outcome 

attribute or diabetes outcome. 

2.2 Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) is the 

initial step in data analysis that aims to understand 

characteristics, discover patterns, identify 

anomalies, and test assumptions with the help of 

statistics and visualization tools. EDA plays an 

important role in the data science process as it 

helps in gaining deep insights into the dataset 

before proceeding to the modeling and training 

stages. 

2.3 Preprocesing data 

The data will be checked first, starting from 

checking whether there is missing data and also 

whether there is duplicated data. The data will also 

be normalized using a standard scaler 

2.4 Training data 

The training process of a classification 

model uses the available data to build a model that 

can perform classification. During the training 

process, the model will learn to find patterns or 

relationships between attributes in the data and the 

corresponding classes. After analyzing the training 

data, the model will find patterns that can be used 

to make predictions on data that has never been 

seen before. 

2.5 Evaluation 

Visualization of the model that has been 

created in the form of a neural network, which 

provides a visual description of the structure and 

decisions taken by the model. By viewing the 

model in the form of a neural network, we can 

easily understand the logic flow and decisions 

taken by the model when performing 

classification. 

 

Figure 1. Research flow 

 
 

 

3. THEORETICAL FOUNDATION 

3.1 Python 

Python is a programming language that is 

widely used in the field of data mining because 

of the many libraries that support data mining 

processing. Python has libraries such as Scikit-

learn, pytorch that offer algorithms and functions 

to build neural network models and implement 

neural network algorithms based on existing 

data. 

3.2 Pytorch 

PyTorch is a popular open-source machine 

learning framework for deep learning model 

development. Developed by Facebook's AI 
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Research lab (FAIR), PyTorch provides great 

flexibility and ease of use in building, training, 

and deploying neural network models. With 

autograd support, GPU acceleration, and a large 

community, PyTorch remains the top choice for 

researchers and practitioners in building 

innovative AI solutions. 

3.3 Neural Network 

Neural Network (NN) is an artificial 

intelligence technique that mimics the way the 

human brain works to process information. 

Neural networks consist of layers of 

interconnected neurons, where each neuron sends 

signals to other neurons through connections that 

have certain weights. The neural network training 

process involves two main stages, namely 

feedforward and backpropagation. 

3.4 Feedforward 

Feedforward is the stage where input data is 

processed through the network to produce the 

output. The steps in the feedforward process are 

as follows : 

a) Each input 𝑥1 to 𝑥𝑖 is multiplied by the 

weight of each connection and added with 

the neuron bias. Each neuron in the hidden 

layer receives signals from all neurons in 

the input layer. The total input value to 

neuron j in the hidden layer is calculated as: 

 
b) Output of neuron j in the hidden layer after 

ReLU activation function: 

 
c) The output of the hidden layer becomes the 

input to the output layer.Total input values 

to neurons 𝑘 at the output layer is calculated 

as: 

 
d) Output of the neuron 𝑘 at the output layer 

after sigmoid activation function: 

 
 

3.5 Backpropagation 

Backpropagation is the training stage of a 

neural network to minimize the output error by 

updating the network weights. The steps in the 

backpropagation process are as follows: 

a) Error is calculated as the difference 

between the generated output 𝑦𝑘 and 

target value 𝑡𝑘. 

 
b) The error in the hidden layer is 

calculated by transferring the error from 

the output layer  

 
Since we are using the ReLU activation 

function in the hidden layer, the 

derivative is: 

 
c) Updating the weights and biases is done 

using the error gradient of the weights 

and biases. 

 
 

4. DISCUSSION 

4.1 Dataset 

The dataset in this study is taken from an 

online source, Kaggle, which is licensed CC0: 

Public Domain. The dataset consists of several 

attributes, including Pregnancy, Glucose, Blood 

Pressure, Skin Thickness, Insulin, BMI, Diabetes 

Pedigree Function, Age. 

To analyze and build the decision tree model, 

Python programming language and Google Colab 

development environment were used. Python is a 

programming language that is often used in data 

analysis and machine learning model building. 

Google Colab is a development environment that 

allows users to run Python code online and share 

projects easily. 

Using the retrieved dataset and the Python 

development environment with Google Colab, 

this research aims to build a model. This model 

will be used to analyze and predict based on the 

attributes in the dataset. 

 

Figure 2. Dataset 
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4.2 Exploratory Data Analysis (EDA) 

In the Exploratory Data Analysis (EDA) 

process, the first step is to check the number of 

unique values in each feature. The check results 

show the following: 

Pregnancies: 17 unique values 

Glucose: 136 unique values 

BloodPressure: 47 unique values 

SkinThickness: 51 unique values Insulin: 186 

unique values 

BMI: 248 unique values 

DiabetesPedigreeFunction: 517 unique values 

Age: 52 unique values 

Outcome: 2 unique values 

To get an easier look at the data using 

histogram, pie chart, boxplot, and scatter plot 

visualizations. 

Figure 3.1. Distribusi of Pregnancies 

 

 

Figure 3.2. Distribusi of Glucose 

 

 

Figure 3.3. Distribusi of BloodPressure 

 

 

Figure 3.4. Distribusi of SkinThickness 

 

 

Figure 3.5. Distribusi of Insulin 

 

 

Figure 3.6. Distribusi of BMI 

 

 

Figure 3.7. Distribusi of Diabetes Pedigree 

Function 
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Figure 3.8. Distribusi of Age 

 

 

In the distribution of the Pregnancies 

variable, the skewness was found to be positive 

with a value of 0.89991194, indicating a right-

skewed distribution. Glucose distribution has a 

skewness close to normal distribution with a value 

of about 0.17341396. The BloodPressure, 

SkinThickness, and BMI distributions also 

showed near-normal distribution trends with 

skewness close to zero. However, in the 

BloodPressure distribution, the skewness was 

found to be negative with a value of around -

1.84000523, indicating a left-skewed distribution. 

Whereas, in the Insulin distribution, the skewness 

is positive with a value of about 2.267, and in the 

Diabetes Pedigree Function distribution, the 

skewness is also positive with a value of about 

1.91, indicating a right-skewed distribution. The 

Age distribution also has a positive skewness, but 

with a slightly lower value of about -1.127, 

indicating a right-skewed distribution. 

 

Figure 4. Pie chart kelas diabetes 

 

 

In the pie chart above, it is obtained that the 

target variable (diabetes) consists of two classes, 

namely class 0 (not affected by diabetes) of 65.1% 

and class 1 (affected by diabetes) of 34.9%. The 

use of boxplots allows for easier and clearer 

detection of outliers. These outliers can provide 

valuable insights into extreme variations in the 

data, which can affect interpretation and further 

analysis. 

Figure 5.1. Boxplot of Pregnancies 

 

 

Figure 5.2. Boxplot of Glucose 

 

 

Figure 5.3. Boxplot of Blood Pressure 

 

 

Figure 5.4. Boxplot of Skin Thickness 
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Figure 5.5. Boxplot of Insulin 

 

 

Figure 5.6. Boxplot of BMI 

 

 

Figure 5.7. Boxplot of Diabetes Pedigree 

Function 

 

 

Figure 5.8. Boxplot of Age 

 

Using heatmaps, it is easy to analyze the 

correlation patterns between various features. 

Heatmaps are an effective visual tool for 

understanding the relationships between variables 

in data. By analyzing the correlation between 

these features, we can identify relevant patterns 

and gain deeper insights into the data structure. 

Figure 6. Heatmap 

 

4.9 Data Preprocesing 

Before training the model, the data is first 

cleaned through several important steps. The first 

step is the missing data check, where any entries 

that have missing values are identified and dealt 

with. The second step is the check and removal of 

duplicate data, which ensures that each entry in 

the dataset is unique and there are no unwanted 

repetitions. 

Figure 7. Missing data 

 

 

Figure 8. Duplicate data 

 

 

After the data has been cleaned, the next step 

is to separate the data into feature variables and 

target variables. All feature variables are then 

normalized using Standard Scaler. This 

normalization process aims to rescale the data so 
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that it has a distribution with a mean of zero and a 

standard deviation of one. 

 
The normalized data will be divided into two 

parts: training data and testing data using the 

train_test_split function, then X_train, X_test, 

y_train, y_test will be converted into tensor data. 

Figure 9. Dataset splitting 

 

 
 

4.4 Data Training 

In the neural network training process, 

determining the network architecture is a crucial 

step. The network architecture used in this study 

consists of one input layer, two hidden layers, and 

one output layer. Each hidden layer uses a ReLU 

(Rectified Linear Unit) activation function, while 

the output layer uses a sigmoid activation 

function. 

The use of ReLU activation function in the 

hidden layer aims to overcome the vanishing 

gradient problem and accelerate the convergence 

of the model. The sigmoid activation function in 

the output layer is used to convert the model 

output into probabilities, which is suitable for 

binary classification problems. 

To prevent overfitting, a dropout regulation 

technique is applied. Dropout works by randomly 

removing neuron units within the network during 

each training iteration. This technique ensures that 

the network is not overly dependent on certain 

neurons, which can cause the model to overfit to 

the training data and lose generalization ability to 

new data. 

 

Figure 10. Neural network architecture 

 

 

 

Figure 11. Neural network architecture 

(python) 

 

 

The loss used for binary classification uses 

the Binary Cross Entropy (BCE) loss function. 

BCE is an appropriate choice for binary 

classification problems as it calculates the loss 

between the predicted output value and the true 

value by considering the prediction probability. 

 

Where 𝑦 is the true label and 𝑦 is the 

predicted probability. In addition, to optimize 

the model training process, the Adam 

optimizer with weight decay is used. Adam's 

optimizer is a method that combines the 

advantages of AdaGrad and RMSProp 

optimization, so it can overcome the problem 

of sparse gradients and has adaptive 

capabilities for each parameter. The use of 

weight decay helps in additional regulation to 

prevent overfitting by adding a penalty to 

large weights in the loss function. The 

learning rate used is 0.01. This learning rate 

determines the size of the parameter update 

step in each training iteration. 

Figure 12. Hyperparameter 

 

 

 

 

 

The neural network model was trained with 
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a maximum of 10,000 epochs. To monitor the 

performance of the model during training, several 

evaluation variables are used, including: 

train_losses to record loss values on training data, 

test_losses to record loss values on testing data, 

and accuracies to record model accuracy on 

testing data. The variable best_val_loss is 

initialized with an infinite value to track the best 

loss value on the test data during the training 

process. In addition, the variable 

best_model_state is used to store the best state of 

the model  obtained  during  training.  The  

patience parameter is set to 5 to implement an 

early stopping mechanism, which will stop 

training if there is no improvement in the test loss 

within 5 consecutive epochs. 

This approach ensures that model training 

can be stopped early if there is no significant 

improvement in performance, thus avoiding 

overfitting and efficient training time. The 

implementation of this evaluation variable aims to 

monitor and ensure that the resulting model has 

the best performance on the testdata. 

Figure 13. Training data code 

 

 

 

 

4.5 Evaluation 

Based on the evaluation results, the neural 

network model performed quite well with an 

overall accuracy of 81.17%. 

Figure 14. accuracy 

 

The model has the same precision for both 

classes, which is 0.81. However, the recall for 

class 1 (0.62) is lower compared to class 0 (0.92), 

indicating that the model is more likely to 

correctly identify class 0 than class 1. 

The F1-score for class 0 (0.86) is higher than 

that of class 1 (0.70), indicating that the balance 

between precision and recall is better for class 0. 

This may be due to the unbalanced distribution 

between the two classes, with more class 0 

samples than class 1 (99 vs. 55). 

The macro average metric shows a precision 

of 0.81, recall of 0.77, and F1-score of 0.78. The 

weighted average metric gave a precision of 0.81, 

recall of 0.81, and F1-score of 0.80. This shows 

that the overall model performs well but needs to 

be improved in classifying the class 1 samples. 

 

Figure 15. Classification Report 

 
 

From this confusion matrix, it can be seen 

that the model correctly classified 91 class 0 

samples (true negatives) and 34 class 1 samples 

correctly (true positives). However, the model 

also misclassified 8 class 0 samples as class 1 

(false positives) and 21 class 1 samples as class 0 

(false negatives). 

 

 

 

 

 

 

 

 

 

Figure 16. Confusion Matrix 
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The loss on the test data is almost the same 

as the loss on the training data. This shows that the 

model has good generalization ability. In addition, 

the test loss was more stable and decreased 

significantly during the training process. 

The stability and consistent decrease in the 

test loss indicate that the model does not 

experience overfitting, which means that the 

model is able to learn patterns from the training 

data without losing the ability to predict unseen 

data. In other words, the model's performance on 

training and testing data is balanced, so the model 

is expected to provide reliable predictions on new 

data. 

The good test loss reduction during training 

indicates that the model optimization is effective, 

and the model parameters are updated 

significantly, improving the model performance 

over time. 

 

Figure 17. Loss 

 
 

Based on the ROC curve analysis, the area 

under the curve (AUC) reached a value of 0.85. 

This indicates that the model has a good ability to 

distinguish between positive and negative classes. 

The AUC of 0.85 indicates that the model has a 

high degree of accuracy in predicting the correct 

class, where values close to 1 indicate perfect 

model performance and values of 0.5 indicate 

performance comparable to random guessing. 

 

Figure 18. ROC Curve 

 
 

 

5. CONCLUSION 

Through the experiments and analysis 

conducted, it can be observed that the neural 

network model has managed to learn the data 

structure well, resulting in an impressive accuracy 

rate of 81.17%. The success of the model is not 

only limited to its ability to recognize the target 

classes, but also in distinguishing between 

negative and positive classes with a high degree of 

confidence, which is reflected in the ROC curve 

value of 0.85. These results show that the model 

has a good ability to map complex patterns in the 

data and capture important information relevant to 

diabetes classification. 

The importance of applying several 

regularization techniques, such as dropout and L2 

regularization, has been proven to prevent 

overfitting of the model. Thus, the model can be 

relied upon to provide consistent predictions and 

good generalization on data that has never been 

seen before. This confirms that the right approach 

in designing the neural network architecture, 

including the selection of the number of layers, the 

number of neurons, and the appropriate activation 

function, has a significant impact in improving the 

performance of the model. 

Accurate prediction of diabetes risk can have 

a huge impact in health management and clinical 

decision-making. By using neural network 

technology, we can optimize the utilization of 

available medical data to provide valuable 

information for medical practitioners and patients. 
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