Collabits Journal

' COLLABlTS Vol. 2 No. 2 May 2025 : 73-81
SECNVE-RNW.NEl [-|SSN : 1979-5254, P-ISSN : 3062-8601
https://publikasi.mercubuana.ac.id/index.php/collabits

Evaluation of the Effectiveness of Hybrid Learning Based on Linear Algebraic
Hybrid Model in the Online-Offline Lecture System in the Digital Era

Andre Meyro Ritonga'”, Nicholas Sulistio?, Guruh Pandhu Anggriawan®, Mohamad Yusuf*

1,234 Informatics Engineering, Universitas Mercu Buana, Indonesia

*Coressponden Author : 41522120024@student.mercubuana.ac.id

Abstract - Optimal class division is a crucial aspect of academic planning to ensure
the effectiveness of the learning process. The main challenges in class division lie
in the limited capacity of space, balanced distribution of students, and the
fulfillment of varied academic needs. This study proposes a Linear Programming-
based approach to optimize class division by considering various constraints, such
as the maximum capacity of the room, the number of students, and the distribution
of subjects according to curriculum needs. The developed applications are designed
to produce optimal solutions that minimize student distribution gaps and ensure
efficient classroom utilization. A case study is applied to an educational institution
to evaluate the performance of the application in real situations. The results of the
experiment show that this approach is able to improve the efficiency of classroom
allocation, reduce imbalances in the distribution of students, and optimize the use
of educational facilities. Thus, this research contributes to more effective and data-

Keywords:

Class Optimization;
Linear Programming;
Room Capacity;
Student Distribution;
Academic Planning,

Article History:
Received: 05-03-2025
Revised: 12-04-2025
Accepted: 21-05-2025

based academic management in decision-making related to class division.

Article DOI : 10.22441/collabits.v2i2.32548

1. INTRODUCTION

1.1 Background

In the world of education, class division is a
crucial aspect in academic planning that has a direct
impact on the effectiveness of the learning process.
Optimal class division not only ensures that students
get a conducive learning environment but also
supports the efficient use of educational facilities.
However, in practice, educational institutions often
face challenges in determining the allocation of
students into the classroom. Some of the common
obstacles faced include the limited number of
classrooms, varying room capacity, and the
distribution of subjects that must be adjusted to the
needs of the curriculum. One of the problems that
often occurs is the imbalance in the number of
students in a class, which can have an impact on
teaching effectiveness. Classes that are too crowded
can lead to a lack of interaction between students
and teachers, as well as lower students'
understanding of the material being taught.
Conversely, classes with too few students can lead

to inefficiencies in the use of resources, such as
classrooms and teaching staff. Therefore, a
systematic and data-driven method is needed to
optimize class division to align with academic
capacity and needs.

Linear Programming is one of the mathematical
methods that can be used to solve this problem. This
method allows the design of optimal solutions by
considering various constraints and parameters,
such as the maximum capacity, the number of
students, and the distribution of subjects according
to the curriculum structure. By implementing Linear
Programming-based optimization applications,
class division can be carried out more efficiently
and accurately, resulting in a more balanced
distribution of students and more optimal classroom
utilization.

This research aims to develop an application of class
division optimization using the Linear
Programming method with a case study on an
educational institution. The application developed
will be tested to assess its effectiveness in solving
the problem of class division in real life. It is hoped

DOI: 10.22441/collabits.v2i2.32548 | 73

https://publikasi.mercubuana.ac.id/index.php/collabits
mailto:41522120024@student.mercubuana.ac.id

Collabits Journal, Vol 2 No. 2 | May 2025

https://publikasi.mercubuana.ac.id/index.php/collabits

that the results of this research can contribute to
academic management, especially in improving the
efficiency of class division, optimizing educational
resources, and creating a more effective learning
environment for students and teaching staff.

1.2 Supporting Research
1. Linear Programming

A linear programming problem is an

optimization problem that meets the following

criteria (Winston, 2004):

a. Aim to maximize (or minimize) a linear
function of a decision variable. This
function is referred to as an objective
function.

b. The value of the decision variable must
meet certain constraints. Each constraint
must be a linear equation or inequality.

1.3 Purpose
This study aims to develop and implement an
application of class division optimization based on
space capacity and academic needs using the Linear
Programming method. With this application, it is
hoped that the process of allocating students into the
classroom can be carried out more efficiently,
balanced, and in accordance with curriculum needs,
thereby supporting the creation of an optimal learning
environment.
The purpose of this research is as a
next:
1. Analyze problems in class division
Identify factors that affect imbalances in the
distribution of students into classes, such as room
capacity, number of students, and subject needs.
1. Develop an optimization application based
Pemrograman Linier
Designing mathematical formulations that can be
used to optimally determine the allocation of
students into the classroom by taking into
account various constraints and parameters.
3. Testing the effectiveness of the App in real-world
case studies
Implementing a class division optimization
application in an educational institution to
evaluate its level of efficiency and accuracy in
distributing students.
4. Improve the efficiency of classroom use and
academic resources
Ensuring that classroom capacity can be used

optimally and supporting a more effective
distribution of teaching staff.
5. Provide data-driven recommendations for

academic management
Provide solutions that can be implemented by

educational institutions in future classroom
division planning, so that decision-making
can be done in a more structured manner and
based on quantitative analysis.

Through this research, it is hoped that a more
efficient class division system can be created, so
that the teaching and learning process can run more
effectively, by utilizing educational resources
optimally.

2. METODOLOGI

2.1 Method

o Type of Research Data: Primary Data is
the type of data used in this study, the data
obtained, namely Courses, Number of
Students, Lecturers, and Classrooms.

e Research Object: Making Schedule for
Class Division, and Lecturers at Mercu
Buana University

e Research Location: Mercu Buana

University

2.2 Research Stages

¥

Optimization Application Design

Data Collection

)

Algorithm Implementation
)

Test Results, and Evaluation
)

Conclusion

2.3 Research Steps

1. Decision Variables

The code defines two decision variables :
e Variabel Biner X1 g, ¢

_(L
xmk,d,r,s,t - 0
)

DOI: 10.22441/collabits.v2i2.32548 | 74

Collabits Journal, Vol 2 No. 2 | May 2025

https://publikasi.mercubuana.ac.id/index.php/collabits

L] 1if the course is taught by lecturer d in room r in session s at time t 0 if not

Variabel Integer y,,x 4 st

Yy mkd,r,st —
number of students attending the MK course
inroomr at session s at t hourt

2. Objective Function (Minimization)
Although there is no explicit objective function, the
application has the primary purpose of minimizing the
number of constraint violations, which implicitly
minimizes the number of classes that are scheduled
inefficiently.

min 0
(PuLP requires objective function, but in this case only
limitations are the main focus.)

3. Constraints
(a) Distribution of class sizes according to the number
of students
Each course must have a sufficient number of classes to
accommodate all of its students. If the number of
students jml mhsjml\ mhsjml_mhs more than 25 per
class, then more than one class must be created :
jml_mhs
Xmkdrst = ~ 25
dr,s,t

(b) Students must be divided into available classes
The total number of students scheduled must be equal
to the number of students enrolled in:

Ymkdrst — Jj ml_mhs
drs,t
(c) Maximum capacity limit per class
Each class must not have more than 25 students:
Ymkdr,s,t <25- Xmk,dr,st
(d) The distribution of students is even if there is more
than one class
If there is more than one class for a single course, the
number of students in each class should not differ too
much:
jml_mhs

I
total_kelas ~™kamst

y mk,d,r,s,t =

(e) One room can only be used for one course at a time
In a specific session and one hour, a room must not have
more than one class:

Xmkdrst <1,Vr,s,t
mk,d
(f) Maximum of 3 concurrent classes in one session
At any one time, there should only be a maximum of 3
classes that take place at the same time:

Xmkdrst < 3,Vs,t
mkdr
(g) Lecturers are only allowed to teach one class per
session

Each lecturer can only teach one class in one session:
Z xmk,d,r,s,t < 1' Vd: s

mk,r,t

Conclusion
This code creates a Lecture Schedule Optimization
Application based on Linear Programming with:
e Decision variables to determine class

schedules and number of students.

o Implicit objective function that ensures that
boundaries are not violated.

e Restrictions to ensure there is no excessive
room, lecturers, or student capacity.

2.4 Constraints
1. Computational Complexity
e Scalability: With so many decision variables

and constraints, this application can be very
large and complex to complete, especially if the
number of courses, lecturers, rooms, sessions,
and hours increases.

e Completion Time: Application Solving with
optimization solvers can take a long time if the
number of variables and constraints is large.

2. Student Imbalance
e Class-splitting students: While there is a limit

to dividing students evenly if there is more than
one class, in practice it can be difficult to
completely evenly distribute the number of
students per class.

e Classes are not full: If the number of students
for a course is not multiples of 25, then the last
class may have a much smaller number of
students than the other classes.

3. Resource Limitations
e Space Limitations: If there is not enough

room, the App may have difficulty finding a
workable solution.

¢ Limited Number of Lecturers: If there are not
enough lecturers available to meet the needs of
the course teaching, then scheduling may
become impossible or result in suboptimal
solutions.

DOI: 10.22441/collabits.v2i2.32548 | 75

Collabits Journal, Vol 2 No. 2 | May 2025

https://publikasi.mercubuana.ac.id/index.php/collabits

Limited Number of Sessions and Hours: The
app can only work within the available time
capacity,
accommodate all classes.

which may not be enough to

4. Schedule Conflicts

Lecturers Teaching More Than One Class:
While there is a restriction that a lecturer can
only teach one class in a single session, if a
lecturer teaches many courses, scheduling can
become more difficult.

Concurrent Classes: If there are many courses
with a large number of students, the maximum
limit of 3 concurrent classes in one session can
be an obstacle.

5. Low Flexibility

Not Considering Lecturer and Student
Preferences: This
consider the wishes of lecturers or students

application does not

regarding certain schedules, which can lead to
dissatisfaction.

Does Not Take Into Consideration Class
Sustainability: This app does not consider
whether the same class can be scheduled in a
slot time is close together, so it can happen that
the same class has a scattered schedule far in a
week.

6. Limitations in Objective Functions

Not Maximizing Efficiency: Objective
functions don't really pursue optimal time
efficiency or utilization,

minimizing boundary violations.

resource only

No Priority Weight: If any constraint is more
important than the other, the App does not have
a mechanism to give greater weight to a
particular constraint.

2.5 Data Collection

Table 1.1 - Classroom Data
CLASS NAME
CLASS A1l
CLASS A22
CLASS A33
CLASS A44
CLASS A55

Table 1.2 — Lecturer Data

Lecturer MATSPEND ADDITIONAL
Name MATKUL
Aji Subroto RPL Alg Lanjut R2
M.lskandar PBO Data Structure
Lawoly
Joko Tingkir Alg Lanjut R2 PBO
Heru Sabar Machine RPL
Learning
Rivaldo Deep Learning RPL
Pakpahan
Ferdy 0s Deep Learning
Firmansyah
M.Firly Pem Lanjut R1 ()
Tubagus
Ratna Data Structure Web 1
Handoko
Hesti Web 1 ()
Purwadinata
Vania Pem Lanjut R1 Data Structure
Yeastin
Monika Web 1 Data Structure
Anisa
Ayu Astuti Pemrograman Pem Lanjut R1
Lanjut
Putri Maya RPL Alg Lanjut R2
Anwar Alg Lanjut R2 PBO
Iskandar

Table 1.3 — Total Student Data

Courses Number of
Students
PBO 28
RPL 43
Alg Lanjut R2 11
Machine Learning 10
Deep Learning 29
0S 50
Advanced 15
Programming
Data Structure 43
Web 1 41
Pem Lanjut R1 42

2.6 Results of the Discussion

Code

import pulp

import pandas as pd
DOI: 10.22441/collabits.v2i2.32548 | 76

Collabits Journal, Vol 2 No. 2 | May 2025

https://publikasi.mercubuana.ac.id/index.php/collabits

import streamlit as st
import seaborn as sns
import matplotlib.pyplot as plt

st.title("Optimasi Jadwal Kuliah™")

uploaded_file = st.file_uploader("Upload
file Excel", type=["x1lsx"])
if uploaded_file:
x1ls = pd.ExcelFile(uploaded_file)
df_kelas = xls.parse("kelas")
df_dosen = xls.parse("dosen")
df_totalmahasiswa
xls.parse("totalmahasiswa")

st.write("Data Dosen:")
st.dataframe(df_dosen)
st.write("Total Mahasiswa per Mata
Kuliah:")
st.dataframe(df_totalmahasiswa)

model =
pulp.LpProblem("Optimasi_Jadwal_Kuliah",
pulp.LpMinimize)

sesi_waktu = {"Pagi": range(7, 13,
2), "Sore": range(14, 20, 2)}
ruangan = df_kelas["NAMA
KELAS"].dropna().tolist()

dosen_mk = {}
for _, row in df_dosen.iterrows():
mk_utama =
row["MATKULUTAMA"].split(", ") if
pd.notna(row["MATKULUTAMA"]) else []
mk_tambahan =
row["MATKULTAMBAHAN"].split(", ") if
pd.notna(row["MATKULTAMBAHAN"]) else []
dosen_mk[row["Nama Dosen"]] =
mk_utama + mk_tambahan

X = pulp.LpVariable.dicts("Jadwal",
[(mk, d, r, s, t)
for mk in df_totalmahasiswa["Mata
Kuliah"]
for d in df_dosen["Nama Dosen"]
if mk in dosen_mk.get(d, [])
for r in ruangan
for s in sesi_waktu.keys()
for t in sesi_waktu[s]],
cat=pulp.LpBinary)

pulp.LpVariable.dicts("Mahasiswa", [(mk,
d, r, s, t)
for mk in df_totalmahasiswa["Mata
Kuliah"]
for d in df_dosen["Nama Dosen"]
if mk in dosen_mk.get(d, [])
for r in ruangan
for s in sesi_waktu.keys()
for t in sesi_waktu[s]],
lowBound=0, cat=pulp.LpInteger)

for mk , jml_mhs in
zip(df_totalmahasiswa["Mata Kuliah"],
df_totalmahasiswa["Jumlah Mahasiswa"]):
total_kelas = -(-jml_mhs // 25)
model += pulp.lpSum(x[mk, d, r,
s, t] for d in df_dosen["Nama Dosen"] if
mk in dosen_mk.get(d, [])

for r in
ruangan

for s in
sesi_waktu.keys()

for t in

sesi_waktu[s]) == total_kelas

model += pulp.lpSum(y[mk, d, r,
s, t] for d in df_dosen["Nama Dosen"] if
mk in dosen_mk.get(d, [])

for r in
ruangan

for s in
sesi_waktu.keys()

for t in

sesi_waktu[s]) == jml_mhs

for d in df_dosen["Nama Dosen"]:
if mk in dosen_mk.get(d, []):
for r in ruangan:
for s in
sesi_waktu.keys():
for t in
sesi_waktu[s]:
model += y[mk,
d, r, s, t] <= 25 * x[mk, d, r, s, t]

if total_kelas
> 1:
model +=
y[mk, d, r, s, t] »>= (jml_mhs //
total_kelas) * x[mk, d, r, s, t]

for r in ruangan:
for s in sesi_waktu.keys():

DOI: 10.22441/collabits.v2i2.32548 | 77

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

for t in sesi_waktu[s]:
model += pulp.lpSum(x[mk,

d, r, S, t] for mk in
df_totalmahasiswa["Mata Kuliah"]
for
d in df_dosen["Nama Dosen"] if mk in
dosen_mk.get(d, [])
if

(mk, d, r, s, t) in x) <=1

for s in sesi_waktu.keys():
for t in sesi_waktu[s]:
model += pulp.lpSum(x[mk, d,

r, S, t] for mk in
df_totalmahasiswa["Mata Kuliah"]

for d in
df_dosen["Nama Dosen"] if mk in
dosen_mk.get(d, [])

for r in

ruangan if (mk, d, r, s, t) in x) <= 3

for d in df_dosen["Nama Dosen"]:
for s in sesi_waktu.keys():
model += pulp.lpSum(x[mk, d,
r, s, t] for mk
df_totalmahasiswa["Mata Kuliah"]
for r in
ruangan
in

x)

for t
sesi_waktu[s] if (mk, d, r, s, t) in
<=1

model.solve()
schedule = []

for mk, d, r, s, t in x.keys():
if x[mk, d, r, s, t].value()

1:
schedule.append([mk, d, r,

("}
-

t])

heatmap_df = pd.DataFrame(schedule,
columns=["Mata Kuliah", "Dosen",
"Ruangan", "Sesi", "Jam"])

fig, ax = plt.subplots(figsize=(10,
6))

pivot =
heatmap_df.pivot_table(index="Ruangan",
columns="3Jam", aggfunc="size",
fill_value=0)

sns.heatmap(pivot, annot=True,
cmap="coolwarm"”, linewidths=0.5, ax=ax)

st.pyplot(fig)
st.write("Berikut adalah hasil
optimasi jadwal kuliah:")
heatmap_df =
heatmap_df.reset_index(drop=True)
heatmap_df.index = range(1,

len(heatmap_df) + 1)
st.dataframe(heatmap_df)

Test and Evaluation Results

Optimasi Jadwal Kuliah

Upload file Excel

@ Drag and drop file here

Browse files
Limit 200MB per file s XLSX

Figure 1.0 - Early UI of Lecture Schedule
Optimization Application

{uliah

Upicad fom m cd

Figure 1.1 - Upload Lecturer, Class, and Student
Course Data

DOI: 10.22441/collabits.v2i2.32548 | 78

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

Optimasi Jadwal Kuliah

Upload file Excel

@ ng and dro Browse files gkir KELAS A22

MB
Anwar Iskandar KELAS A22

[AuNilaixisx 3.7k

RPL Aji Subroto KELAS A33

Data Dosen:

RPL Heru Sabar KELAS A55

Aji Subroto AlgLanjut R2

Alg Lanjut R2 Aji Subroto KELAS A1l

M.iskandar Lawoly Struktur Data

2 Joko Tingkir AlgLanjut R2) Machine Learning Heru Sabar KELAS A22

3 HeruSabar Machine Learning 5 7
Deep Learning Rivaldo Pakpahan KELAS A1l

4 RivaldoPakpahan Deeplearning RPL

5 FerdyFirmansyah Sistem Operasi Deep Learning

Deep Learning Rivaldo Pakpahan KELAS A33

6 MFirlyTubagus PemLlanjutRl Sistem Operasi

Sistem Operasi Ferdy Firmansyah KELAS A1l

Ratna Handoko Struktur Data Web1
8 Hesti Purwadinata Web1 Sistem Operasi Sistem Operasi Ferdy Firmansyah ~KELAS A22

9 Vania Yeastin Pem Lanjut R1 Struktur Data

Pemrograman Lanj Ayu Astuti KELAS A1l

Figure 1.2 - Successfully uploaded Lecturer Data T et oty RS

Total Mahasiswa per Mata Kuliah: Sinsker Dat MonfiaAnts FELAS A5
Web 1 Ratna Handoko KELAS A55
Mata Kuliah Jumlah Mahasiswa Web 1 Hesti Purwadinata KELAS A22
Pem Lanjut R1 M.Firly Tubagus KELAS A33
PBO 28 : b
Pem Lanjut R1 Ayu Astuti KELAS A33

RPL 43
Alg Lanjut R2 11

Machine Learning 10

Deep Learning 29

22A 2AIN

Sistem Operasi 50

Pemrograman L. 15

EEA AN

Struktur Data 43

nepnsuf

SSA 2AJI

Web 1 41

Pem Lanjut R1

IIA 2AIIN

Figure 1.3 - Course Data, and Number of Students

Successfully Uploaded Figure 1.5 - Heatmap visualization based on

Optimization results

DOI: 10.22441/collabits.v2i2.32548 | 79

Collabits Journal, Vol 2 No. 2 | May 2025

https://publikasi.mercubuana.ac.id/index.php/collabits

Figure 1.6 - Optimization Results data can be
downloaded for further use

1 .F'BO Joko Tingkir KELAS A22 Pagi 7
2 PBO Anwar Iskandar KELAS A22 Sore 14
3 RPL Aji Subroto KELAS A33 Sore 14
4 RPL Heru Sabar KELAS AS5 Pagi 7
5 AlgLlanjutR2 Aji Subroto KELAS A11 Pagi 11
6 Machine Learning Heru Sabar KELAS A22 Sore 16
7 Deep Learning Rivaldo Pakpahan KELAS A11 Sore 16
8 Deep Learning Rivaldo Pakpahan KELAS A33 Pagi 11
9 Sistem Operasi Ferdy Firmansyah KELAS A1l Sore 18
10 Sistem Operasi Ferdy Firmansyah KELAS A22 Pagi 9
11 Pemrograman Lanjut Ayu Astuti KELAS A1l Pagi 7
12 Struktur Data M.Iskandar Lawoly KELAS A11 Pagi 9
13 Struktur Data Monika Anisa KELAS A55 Sore 14
14 Web1 Ratna Handoko KELAS A55 Pagi 9
15 Web1l Hesti Purwadinata KELAS A22 Sore 18
16 Pem LanjutR1 M.Firly Tubagus KELAS A33 Sore 18
17 Pem Lanjut R1 Ayu Astuti KELAS A33 Sore 16

Figure 1.7 - Successfully downloaded Optimization
results

2. CONCLUSION

3.1 Conclusion

This research shows that Linear Programming
can optimize class division by ensuring a more balanced
distribution of students, efficient classroom utilization,
and avoiding schedule conflicts between classes,
lecturers, and rooms. This application helps increase
learning effectiveness by reducing the inequality in the
number of students per class and optimizing the
allocation of academic resources.
However, there are some challenges, such as
computational complexity, especially if the number of
courses, lecturers, and lecture sessions increases. This
application also does not take into account the
preferences of lecturers and students, and has the
potential to produce classes with an uneven number of
students if it does not match the maximum capacity
multiples. Limited resources, such as the number of
rooms and teaching staff, can also affect optimization
results.
Overall, this research contributes to data-driven
academic management, supporting decision-making
in a more efficient and systematic class division. In the

future, further development is needed to increase the
flexibility of the Application and reduce the complexity
of calculations so that it can be applied more widely and
optimally.

3. REFERENSI

[1] D. Wungguli and N. Nurwan, “Penerapan Model
Integer Linear Programming dalam Optimasi
Penjadwalan Perkuliahan secara Otomatis,” Jurnal
Matematika dan Aplikasinya, vol. 28, no. 1, pp. 281-
285, 2021.

[2] Z. Mahrijal, A. Sumarsa, and M. Widyastiti,
“Optimasi Penjadwalan Mata Pelajaran
Menggunakan Metode Integer Linear Programming
(Studi Kasus: SMA Al-Hikmah),” Jurnal Teknik
Informatika dan Sistem Informasi, vol. 9, no. 2, pp.
155-167, 2020.

[3] D. S. Anggraini, Syaripuddin, and Q. A’yun,
“Optimasi Penjadwalan Menggunakan
Pemrograman Linier Integer pada Masalah
Penjadwalan Perawat UPT Dinas Kesehatan
Puskesmas Jonggon Jaya,” Jurnal Sistem Informasi
dan Teknik Industri, vol. 4, no. 2, pp. 112-125, 2020.

[4] R. Fitriani, T. Santoso, and M. Wahyudi, “Optimasi
Penjadwalan Dosen Menggunakan Pemrograman
Linier di Universitas XYZ,” Jurnal Informatika dan
Riset Operasi, vol. 12, no. 1, pp. 34-45, 2020.

[5] L. Kurniawan, B. Sugiarto, and A. Pratama, “Model
Optimasi Pembagian Kelas dengan Pendekatan
Integer Linear Programming,” Jurnal Teknologi dan
Manajemen Pendidikan, vol. 15, no. 2, pp. 89-102,
2019.

[6] R. Rachmatika, “Penerapan aplikasi program linear
dengan menggunakan metode simpleks untuk
mendukung kegiatan UMKM,” Kajian Ilmiah
Informatika dan Komputer, vol. 3, no. 2, pp. 194-
202, 2022.

[71 A. T. Kusuma, R. A. Pertiwi, and D. S. Sari,
“Implementasi Algoritma Genetic Algorithm
dalam Optimasi Penjadwalan Kuliah,” Jurnal
Teknologi Informasi dan [lmu Komputer, vol. 7,
no. 3, pp. 456-467, 2021.

[8] M. I. Pratama and S. H. Putra, “Penggunaan
Simulated Annealing untuk Optimasi Jadwal
Perkuliahan,” Jurnal Rekayasa Sistem dan
Teknologi Informasi, vol. 10, no. 2, pp. 98-110,
2020.

[9] B. Wijayanto, “Optimasi Penjadwalan dengan
Metode Integer Linear Programming pada
Industri Manufaktur,” Jurnal Teknik Industri
dan Manajemen, vol. 5, no. 1, pp. 23-30, 2019.

DOI: 10.22441/collabits.v2i2.32548 | 80

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

[10]R. Hendrawan, A. P. Nugroho, and T. S. Putri, Penjadwalan Karyawan,” Jurnal Sistem Cerdas
“Penerapan Machine Learning dalam Optimasi dan Informatika, vol. 8, no. 1, pp. 67-80, 2021.

DOI: 10.22441/collabits.v2i2.32548 | 81

