

Collabits Journal
Vol. 2 No. 2 May 2025 : 73-81

E-ISSN : 1979-5254, P-ISSN : 3062-8601

https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 73

Evaluation of the Effectiveness of Hybrid Learning Based on Linear Algebraic

Hybrid Model in the Online-Offline Lecture System in the Digital Era

Andre Meyro Ritonga1*, Nicholas Sulistio2, Guruh Pandhu Anggriawan3, Mohamad Yusuf4

1,2,3,4 Informatics Engineering, Universitas Mercu Buana, Indonesia

*Coressponden Author : 41522120024@student.mercubuana.ac.id

Abstract - Optimal class division is a crucial aspect of academic planning to ensure

the effectiveness of the learning process. The main challenges in class division lie

in the limited capacity of space, balanced distribution of students, and the

fulfillment of varied academic needs. This study proposes a Linear Programming-

based approach to optimize class division by considering various constraints, such

as the maximum capacity of the room, the number of students, and the distribution

of subjects according to curriculum needs. The developed applications are designed

to produce optimal solutions that minimize student distribution gaps and ensure

efficient classroom utilization. A case study is applied to an educational institution

to evaluate the performance of the application in real situations. The results of the

experiment show that this approach is able to improve the efficiency of classroom

allocation, reduce imbalances in the distribution of students, and optimize the use

of educational facilities. Thus, this research contributes to more effective and data-

based academic management in decision-making related to class division.

Keywords:

Class Optimization;

Linear Programming;

Room Capacity;

Student Distribution;

Academic Planning;

Article History:
Received: 05-03-2025

Revised: 12-04-2025

Accepted: 21-05-2025

Article DOI : 10.22441/collabits.v2i2.32548

1. INTRODUCTION

 1.1 Background

In the world of education, class division is a

crucial aspect in academic planning that has a direct

impact on the effectiveness of the learning process.

Optimal class division not only ensures that students

get a conducive learning environment but also

supports the efficient use of educational facilities.

However, in practice, educational institutions often

face challenges in determining the allocation of

students into the classroom. Some of the common

obstacles faced include the limited number of

classrooms, varying room capacity, and the

distribution of subjects that must be adjusted to the

needs of the curriculum. One of the problems that

often occurs is the imbalance in the number of

students in a class, which can have an impact on

teaching effectiveness. Classes that are too crowded

can lead to a lack of interaction between students

and teachers, as well as lower students'

understanding of the material being taught.

Conversely, classes with too few students can lead

to inefficiencies in the use of resources, such as

classrooms and teaching staff. Therefore, a

systematic and data-driven method is needed to

optimize class division to align with academic

capacity and needs.

Linear Programming is one of the mathematical

methods that can be used to solve this problem. This

method allows the design of optimal solutions by

considering various constraints and parameters,

such as the maximum capacity, the number of

students, and the distribution of subjects according

to the curriculum structure. By implementing Linear

Programming-based optimization applications,

class division can be carried out more efficiently

and accurately, resulting in a more balanced

distribution of students and more optimal classroom

utilization.

This research aims to develop an application of class

division optimization using the Linear

Programming method with a case study on an

educational institution. The application developed

will be tested to assess its effectiveness in solving

the problem of class division in real life. It is hoped

https://publikasi.mercubuana.ac.id/index.php/collabits
mailto:41522120024@student.mercubuana.ac.id

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 74

that the results of this research can contribute to

academic management, especially in improving the

efficiency of class division, optimizing educational

resources, and creating a more effective learning

environment for students and teaching staff.

1.2 Supporting Research

1. Linear Programming

A linear programming problem is an

optimization problem that meets the following

criteria (Winston, 2004):

a. Aim to maximize (or minimize) a linear

function of a decision variable. This

function is referred to as an objective

function.

b. The value of the decision variable must

meet certain constraints. Each constraint

must be a linear equation or inequality.

1.3 Purpose

This study aims to develop and implement an

application of class division optimization based on

space capacity and academic needs using the Linear

Programming method. With this application, it is

hoped that the process of allocating students into the

classroom can be carried out more efficiently,

balanced, and in accordance with curriculum needs,

thereby supporting the creation of an optimal learning

environment.

The purpose of this research is as a

next:

1. Analyze problems in class division

Identify factors that affect imbalances in the

distribution of students into classes, such as room

capacity, number of students, and subject needs.

1. Develop an optimization application based

Pemrograman Linier

Designing mathematical formulations that can be

used to optimally determine the allocation of

students into the classroom by taking into

account various constraints and parameters.

3. Testing the effectiveness of the App in real-world

case studies

Implementing a class division optimization

application in an educational institution to

evaluate its level of efficiency and accuracy in

distributing students.

4. Improve the efficiency of classroom use and

academic resources

Ensuring that classroom capacity can be used

optimally and supporting a more effective

distribution of teaching staff.

5. Provide data-driven recommendations for

academic management

Provide solutions that can be implemented by

educational institutions in future classroom

division planning, so that decision-making

can be done in a more structured manner and

based on quantitative analysis.

Through this research, it is hoped that a more

efficient class division system can be created, so

that the teaching and learning process can run more

effectively, by utilizing educational resources

optimally.

2. METODOLOGI

2.1 Method

• Type of Research Data: Primary Data is

the type of data used in this study, the data

obtained, namely Courses, Number of

Students, Lecturers, and Classrooms.

• Research Object: Making Schedule for

Class Division, and Lecturers at Mercu

Buana University

• Research Location: Mercu Buana

University

2.2 Research Stages

Begin
↓

Problem Identification
↓

Literature study
↓

Optimization Application Design
↓

Data Collection
↓

Algorithm Implementation
↓

Test Results, and Evaluation
↓

Conclusion

2.3 Research Steps

1. Decision Variables

The code defines two decision variables :

• Variabel Biner 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕

 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕 = {
𝟏,
𝟎,

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 75

• 𝟏 𝒊𝒇 𝒕𝒉𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒊𝒔 𝒕𝒂𝒖𝒈𝒉𝒕 𝒃𝒚 𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒓 𝒅 𝒊𝒏 𝒓𝒐𝒐𝒎 𝒓 𝒊𝒏 𝒔𝒆𝒔𝒔𝒊𝒐𝒏 𝒔 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕 𝟎 𝒊𝒇 𝒏𝒐𝒕

Variabel Integer 𝒚𝒎𝒌,𝒅,𝒓,𝒔,𝒕

 𝒚𝒎𝒌,𝒅,𝒓,𝒔,𝒕 =
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒖𝒅𝒆𝒏𝒕𝒔 𝒂𝒕𝒕𝒆𝒏𝒅𝒊𝒏𝒈 𝒕𝒉𝒆 𝑴𝑲 𝒄𝒐𝒖𝒓𝒔𝒆

 𝒊𝒏 𝒓𝒐𝒐𝒎 𝒓 𝒂𝒕 𝒔𝒆𝒔𝒔𝒊𝒐𝒏 𝒔 𝒂𝒕 𝒕 𝒉𝒐𝒖𝒓𝒕

2. Objective Function (Minimization)

Although there is no explicit objective function, the

application has the primary purpose of minimizing the

number of constraint violations, which implicitly

minimizes the number of classes that are scheduled

inefficiently.

min 0

(PuLP requires objective function, but in this case only

limitations are the main focus.)

3. Constraints

(a) Distribution of class sizes according to the number

of students

Each course must have a sufficient number of classes to

accommodate all of its students. If the number of

students jml_mhsjml_mhsjml_mhs more than 25 per

class, then more than one class must be created :

∑ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕 =
𝒋𝒎𝒍_𝒎𝒉𝒔

𝟐𝟓
𝒅,𝒓,𝒔,𝒕

(b) Students must be divided into available classes

The total number of students scheduled must be equal

to the number of students enrolled in:

∑ 𝒚𝒎𝒌,𝒅,𝒓,𝒔,𝒕 = 𝒋𝒎𝒍_𝒎𝒉𝒔

𝒅,𝒓,𝒔,𝒕

(c) Maximum capacity limit per class

Each class must not have more than 25 students:

𝒚𝒎𝒌,𝒅,𝒓,𝒔,𝒕 ≤ 𝟐𝟓 ∙ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕

(d) The distribution of students is even if there is more

than one class

If there is more than one class for a single course, the

number of students in each class should not differ too

much:

𝒚𝒎𝒌,𝒅,𝒓,𝒔,𝒕 ≥
𝒋𝒎𝒍_𝒎𝒉𝒔

𝒕𝒐𝒕𝒂𝒍_𝒌𝒆𝒍𝒂𝒔
∙ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕

(e) One room can only be used for one course at a time

In a specific session and one hour, a room must not have

more than one class:

∑ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕 ≤

𝒎𝒌,𝒅

𝟏, ∀𝒓, 𝒔, 𝒕

(f) Maximum of 3 concurrent classes in one session

At any one time, there should only be a maximum of 3

classes that take place at the same time:

∑ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕 ≤

𝒎𝒌,𝒅,𝒓

𝟑, ∀𝒔, 𝒕

(g) Lecturers are only allowed to teach one class per

session

Each lecturer can only teach one class in one session:

∑ 𝒙𝒎𝒌,𝒅,𝒓,𝒔,𝒕 ≤

𝒎𝒌,𝒓,𝒕

𝟏, ∀𝒅, 𝒔

Conclusion

This code creates a Lecture Schedule Optimization

Application based on Linear Programming with:

• Decision variables to determine class

schedules and number of students.

• Implicit objective function that ensures that

boundaries are not violated.

• Restrictions to ensure there is no excessive

room, lecturers, or student capacity.

2.4 Constraints

1. Computational Complexity

• Scalability: With so many decision variables

and constraints, this application can be very

large and complex to complete, especially if the

number of courses, lecturers, rooms, sessions,

and hours increases.

• Completion Time: Application Solving with

optimization solvers can take a long time if the

number of variables and constraints is large.

2. Student Imbalance

• Class-splitting students: While there is a limit

to dividing students evenly if there is more than

one class, in practice it can be difficult to

completely evenly distribute the number of

students per class.

• Classes are not full: If the number of students

for a course is not multiples of 25, then the last

class may have a much smaller number of

students than the other classes.

3. Resource Limitations

• Space Limitations: If there is not enough

room, the App may have difficulty finding a

workable solution.

• Limited Number of Lecturers: If there are not

enough lecturers available to meet the needs of

the course teaching, then scheduling may

become impossible or result in suboptimal

solutions.

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 76

• Limited Number of Sessions and Hours: The

app can only work within the available time

capacity, which may not be enough to

accommodate all classes.

4. Schedule Conflicts

• Lecturers Teaching More Than One Class:

While there is a restriction that a lecturer can

only teach one class in a single session, if a

lecturer teaches many courses, scheduling can

become more difficult.

• Concurrent Classes: If there are many courses

with a large number of students, the maximum

limit of 3 concurrent classes in one session can

be an obstacle.

5. Low Flexibility

• Not Considering Lecturer and Student

Preferences: This application does not

consider the wishes of lecturers or students

regarding certain schedules, which can lead to

dissatisfaction.

• Does Not Take Into Consideration Class

Sustainability: This app does not consider

whether the same class can be scheduled in a

slot time is close together, so it can happen that

the same class has a scattered schedule far in a

week.

6. Limitations in Objective Functions

• Not Maximizing Efficiency: Objective

functions don't really pursue optimal time

efficiency or resource utilization, only

minimizing boundary violations.

• No Priority Weight: If any constraint is more

important than the other, the App does not have

a mechanism to give greater weight to a

particular constraint.

• 2.5 Data Collection

 Table 1.1 - Classroom Data

CLASS NAME

CLASS A11

CLASS A22

CLASS A33

CLASS A44

CLASS A55

Table 1.2 – Lecturer Data

Table 1.3 – Total Student Data

2.6 Results of the Discussion

Code

import pulp
import pandas as pd

Lecturer
Name

MATSPEND ADDITIONAL
MATKUL

Aji Subroto RPL Alg Lanjut R2
M.Iskandar
Lawoly

PBO Data Structure

Joko Tingkir Alg Lanjut R2 PBO
Heru Sabar Machine

Learning
RPL

Rivaldo
Pakpahan

Deep Learning RPL

Ferdy
Firmansyah

OS Deep Learning

M.Firly
Tubagus

Pem Lanjut R1 OS

Ratna
Handoko

Data Structure Web 1

Hesti
Purwadinata

Web 1 OS

Vania
Yeastin

Pem Lanjut R1 Data Structure

Monika
Anisa

Web 1 Data Structure

Ayu Astuti Pemrograman
Lanjut

Pem Lanjut R1

Putri Maya RPL Alg Lanjut R2
Anwar
Iskandar

Alg Lanjut R2 PBO

Courses Number of
Students

PBO 28
RPL 43
Alg Lanjut R2 11
Machine Learning 10
Deep Learning 29
OS 50
Advanced
Programming

15

Data Structure 43
Web 1 41
Pem Lanjut R1 42

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 77

import streamlit as st
import seaborn as sns
import matplotlib.pyplot as plt

st.title("Optimasi Jadwal Kuliah")

uploaded_file = st.file_uploader("Upload
file Excel", type=["xlsx"])
if uploaded_file:
 xls = pd.ExcelFile(uploaded_file)
 df_kelas = xls.parse("kelas")
 df_dosen = xls.parse("dosen")
 df_totalmahasiswa =
xls.parse("totalmahasiswa")

 st.write("Data Dosen:")
 st.dataframe(df_dosen)
 st.write("Total Mahasiswa per Mata
Kuliah:")
 st.dataframe(df_totalmahasiswa)

 model =
pulp.LpProblem("Optimasi_Jadwal_Kuliah",
pulp.LpMinimize)

 sesi_waktu = {"Pagi": range(7, 13,
2), "Sore": range(14, 20, 2)}
 ruangan = df_kelas["NAMA
KELAS"].dropna().tolist()

 dosen_mk = {}
 for _, row in df_dosen.iterrows():
 mk_utama =
row["MATKULUTAMA"].split(", ") if
pd.notna(row["MATKULUTAMA"]) else []
 mk_tambahan =
row["MATKULTAMBAHAN"].split(", ") if
pd.notna(row["MATKULTAMBAHAN"]) else []
 dosen_mk[row["Nama Dosen"]] =
mk_utama + mk_tambahan

 x = pulp.LpVariable.dicts("Jadwal",
[(mk, d, r, s, t)
 for mk in df_totalmahasiswa["Mata
Kuliah"]
 for d in df_dosen["Nama Dosen"]
if mk in dosen_mk.get(d, [])
 for r in ruangan
 for s in sesi_waktu.keys()
 for t in sesi_waktu[s]],
cat=pulp.LpBinary)

 y =

pulp.LpVariable.dicts("Mahasiswa", [(mk,
d, r, s, t)
 for mk in df_totalmahasiswa["Mata
Kuliah"]
 for d in df_dosen["Nama Dosen"]
if mk in dosen_mk.get(d, [])
 for r in ruangan
 for s in sesi_waktu.keys()
 for t in sesi_waktu[s]],
lowBound=0, cat=pulp.LpInteger)

 for mk, jml_mhs in
zip(df_totalmahasiswa["Mata Kuliah"],
df_totalmahasiswa["Jumlah Mahasiswa"]):
 total_kelas = -(-jml_mhs // 25)
 model += pulp.lpSum(x[mk, d, r,
s, t] for d in df_dosen["Nama Dosen"] if
mk in dosen_mk.get(d, [])
 for r in
ruangan
 for s in
sesi_waktu.keys()
 for t in
sesi_waktu[s]) == total_kelas

 model += pulp.lpSum(y[mk, d, r,
s, t] for d in df_dosen["Nama Dosen"] if
mk in dosen_mk.get(d, [])
 for r in
ruangan
 for s in
sesi_waktu.keys()
 for t in
sesi_waktu[s]) == jml_mhs

 for d in df_dosen["Nama Dosen"]:
 if mk in dosen_mk.get(d, []):
 for r in ruangan:
 for s in
sesi_waktu.keys():
 for t in
sesi_waktu[s]:
 model += y[mk,
d, r, s, t] <= 25 * x[mk, d, r, s, t]

 if total_kelas
> 1:
 model +=
y[mk, d, r, s, t] >= (jml_mhs //
total_kelas) * x[mk, d, r, s, t]

 for r in ruangan:
 for s in sesi_waktu.keys():

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 78

 for t in sesi_waktu[s]:
 model += pulp.lpSum(x[mk,
d, r, s, t] for mk in
df_totalmahasiswa["Mata Kuliah"]
 for
d in df_dosen["Nama Dosen"] if mk in
dosen_mk.get(d, [])
 if
(mk, d, r, s, t) in x) <= 1

 for s in sesi_waktu.keys():
 for t in sesi_waktu[s]:
 model += pulp.lpSum(x[mk, d,
r, s, t] for mk in
df_totalmahasiswa["Mata Kuliah"]
 for d in
df_dosen["Nama Dosen"] if mk in
dosen_mk.get(d, [])
 for r in
ruangan if (mk, d, r, s, t) in x) <= 3

 for d in df_dosen["Nama Dosen"]:
 for s in sesi_waktu.keys():
 model += pulp.lpSum(x[mk, d,
r, s, t] for mk in
df_totalmahasiswa["Mata Kuliah"]
 for r in
ruangan
 for t in
sesi_waktu[s] if (mk, d, r, s, t) in x)
<= 1

 model.solve()

 schedule = []
 for mk, d, r, s, t in x.keys():
 if x[mk, d, r, s, t].value() ==
1:
 schedule.append([mk, d, r, s,
t])

 heatmap_df = pd.DataFrame(schedule,
columns=["Mata Kuliah", "Dosen",
"Ruangan", "Sesi", "Jam"])

 fig, ax = plt.subplots(figsize=(10,
6))

 pivot =
heatmap_df.pivot_table(index="Ruangan",
columns="Jam", aggfunc="size",
fill_value=0)

 sns.heatmap(pivot, annot=True,
cmap="coolwarm", linewidths=0.5, ax=ax)

 st.pyplot(fig)

 st.write("Berikut adalah hasil
optimasi jadwal kuliah:")

 heatmap_df =
heatmap_df.reset_index(drop=True)

 heatmap_df.index = range(1,
len(heatmap_df) + 1)
 st.dataframe(heatmap_df)

Test and Evaluation Results

Figure 1.0 - Early UI of Lecture Schedule

Optimization Application

Figure 1.1 - Upload Lecturer, Class, and Student

Course Data

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 79

Figure 1.2 - Successfully uploaded Lecturer Data

Figure 1.3 - Course Data, and Number of Students

Successfully Uploaded

Figure 1.4 - Optimization results of uploaded data

Figure 1.5 - Heatmap visualization based on

Optimization results

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 80

Figure 1.6 - Optimization Results data can be

downloaded for further use

Figure 1.7 - Successfully downloaded Optimization

results

2. CONCLUSION

3.1 Conclusion

This research shows that Linear Programming

can optimize class division by ensuring a more balanced

distribution of students, efficient classroom utilization,

and avoiding schedule conflicts between classes,

lecturers, and rooms. This application helps increase

learning effectiveness by reducing the inequality in the

number of students per class and optimizing the

allocation of academic resources.

However, there are some challenges, such as

computational complexity, especially if the number of

courses, lecturers, and lecture sessions increases. This

application also does not take into account the

preferences of lecturers and students, and has the

potential to produce classes with an uneven number of

students if it does not match the maximum capacity

multiples. Limited resources, such as the number of

rooms and teaching staff, can also affect optimization

results.

Overall, this research contributes to data-driven

academic management, supporting decision-making

in a more efficient and systematic class division. In the

future, further development is needed to increase the

flexibility of the Application and reduce the complexity

of calculations so that it can be applied more widely and

optimally.

3. REFERENSI

[1] D. Wungguli and N. Nurwan, “Penerapan Model

Integer Linear Programming dalam Optimasi

Penjadwalan Perkuliahan secara Otomatis,” Jurnal

Matematika dan Aplikasinya, vol. 28, no. 1, pp. 281-

285, 2021.

[2] Z. Mahrijal, A. Sumarsa, and M. Widyastiti,

“Optimasi Penjadwalan Mata Pelajaran

Menggunakan Metode Integer Linear Programming

(Studi Kasus: SMA Al-Hikmah),” Jurnal Teknik

Informatika dan Sistem Informasi, vol. 9, no. 2, pp.

155-167, 2020.

[3] D. S. Anggraini, Syaripuddin, and Q. A’yun,

“Optimasi Penjadwalan Menggunakan

Pemrograman Linier Integer pada Masalah

Penjadwalan Perawat UPT Dinas Kesehatan

Puskesmas Jonggon Jaya,” Jurnal Sistem Informasi

dan Teknik Industri, vol. 4, no. 2, pp. 112-125, 2020.

[4] R. Fitriani, T. Santoso, and M. Wahyudi, “Optimasi

Penjadwalan Dosen Menggunakan Pemrograman

Linier di Universitas XYZ,” Jurnal Informatika dan

Riset Operasi, vol. 12, no. 1, pp. 34-45, 2020.

[5] L. Kurniawan, B. Sugiarto, and A. Pratama, “Model

Optimasi Pembagian Kelas dengan Pendekatan

Integer Linear Programming,” Jurnal Teknologi dan

Manajemen Pendidikan, vol. 15, no. 2, pp. 89-102,

2019.

[6] R. Rachmatika, “Penerapan aplikasi program linear

dengan menggunakan metode simpleks untuk

mendukung kegiatan UMKM,” Kajian Ilmiah

Informatika dan Komputer, vol. 3, no. 2, pp. 194-

202, 2022.

[7] A. T. Kusuma, R. A. Pertiwi, and D. S. Sari,

“Implementasi Algoritma Genetic Algorithm

dalam Optimasi Penjadwalan Kuliah,” Jurnal

Teknologi Informasi dan Ilmu Komputer, vol. 7,

no. 3, pp. 456-467, 2021.

[8] M. I. Pratama and S. H. Putra, “Penggunaan

Simulated Annealing untuk Optimasi Jadwal

Perkuliahan,” Jurnal Rekayasa Sistem dan

Teknologi Informasi, vol. 10, no. 2, pp. 98-110,

2020.

[9] B. Wijayanto, “Optimasi Penjadwalan dengan

Metode Integer Linear Programming pada

Industri Manufaktur,” Jurnal Teknik Industri

dan Manajemen, vol. 5, no. 1, pp. 23-30, 2019.

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

DOI: 10.22441/collabits.v2i2.32548 81

[10] R. Hendrawan, A. P. Nugroho, and T. S. Putri,

“Penerapan Machine Learning dalam Optimasi

Penjadwalan Karyawan,” Jurnal Sistem Cerdas

dan Informatika, vol. 8, no. 1, pp. 67-80, 2021.

