Collabits Journal

CDLLA|3|T5 Vol. 2 No. 2 May 2025 : 123-132

SENVE-R\W.NME [-|SSN : 1979-5254, P-ISSN : 3062-8601
https://publikasi.mercubuana.ac.id/index.php/collabits

Design And Construction of a Web-Based Crowdfunding
Application Using the Laravel Framework

Foezi Arisandi SJ'"
[l Computer Science, University of Politeknik Sukabumi, Indonesia

*Coressponden Author: foeziarisandi@polteksmi.ac.id

Abstract - This research uses RAD analysis research method, diagram design using UML,
system coding using PHP programming language and Mysql database. This research produces a
web-based ordering system that is connected to a database so that order data can be stored
properly. This research aims to design and build a web-based crowdfunding application to address
inefficiencies in conventional ordering and donation systems, particularly in industrial
environments. The study highlights the increasing importance of digital fundraising and the role
of crowdfunding as an effective platform for connecting fund-seekers with potential donors.
Using the Laravel framework and MySQL database, the system was developed to improve
transparency, accessibility, and transaction management. The research applies to the Waterfall
development method and includes structured interviews and observation as part of the
requirement-gathering process. The result is a functional, secure, and scalable web application
that enables users to create, manage, and donate to campaigns with real-time tracking and
integrated payment systems. This system enhances organizational outreach and improves the

Keywords :
Crowdfunding;
Laravel;

Fundraising;

Donation System,
Web-based Application;

Article History:
Received: 06-04-2025
Revised: 12-05-2025
Accepted: 18-05-2025

efficiency of donation and fund distribution processes.

Article DOI : 10.22441/collabits.v2i2.35925

1. INTRODUCTION

In the digital age, the advancement of information
technology has significantly transformed how
individuals and communities interact, collaborate, and
solve problems. From education and government to
creative industries and social initiatives, digital
platforms now serve as powerful tools for engagement
and innovation. One such area that has seen rapid growth
is crowdfunding a collaborative model where people
pool their resources to support causes, products, or
projects they believe in.

Crowdfunding platforms bridge the gap between
creators and supporters by offering a transparent,
accessible, and scalable environment for fundraising.
However, despite the widespread use of global
crowdfunding services, there remains a growing need
for customized, locally relevant web-based solutions
particularly those designed to support community-based
projects, student initiatives, social movements, and
startups with unique needs and cultural contexts.

To address this need, this research focuses on the
design and development of a web-based crowdfunding
application using the Laravel framework. Laravel, a
modern PHP framework known for its elegant syntax
and robust features, provides a flexible foundation for
building secure and scalable web applications. By

utilizing Laravel, the system aims to simplify the process
of campaign creation, user contribution, progress
tracking, and administrative oversight while ensuring a
seamless user experience.

This journal explores the technical and conceptual
steps involved in building a crowdfunding platform from
the ground up. It discusses the system architecture,
development workflow, and core features implemented to
support real-time fundraising, campaign verification, and
user interaction. Through this project, the study
highlights how web technologies can be leveraged not
just for commercial gain, but also for fostering social
impact and collective action in the digital space.

2. THEORETICAL FOUNDATION
2.1 General Theory
2.1.1 Definition of Crowdfunding

A According to Belleflamme, Lambert, and
Schwienbacher (2014), “Crowdfunding involves an
open call, mostly through the internet, for the provision
of financial resources either in the form of donation or in
exchange for some form of reward and/or voting rights to
support initiatives for specific purposes.”

According to Mollick (2014), “Crowdfunding is the

DOI: 10.22441/collabits.v2i2.35925 | 123

https://publikasi.mercubuana.ac.id/index.php/collabits
mailto:foeziarisandi@polteksmi.ac.id

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

effort by entrepreneurial individuals and groups—
cultural, social, and for-profit—to fund their ventures by
drawing on relatively small contributions from a
relatively large number of individuals using the internet,
without standard financial intermediaries.”

According to Ordanini et al. (2011),
“Crowdfunding is a collective effort by people who
network and pool their resources to support efforts
initiated by other people or organizations. This is usually
done via the internet.”

According to Gerber and Hui (2013),
“Crowdfunding enables individuals to support others’
creative work through online platforms. It builds
community and trust among participants while allowing
creators to receive not only financial support but also
feedback, attention, and validation.”

Based on the above definitions, crowdfunding can be
defined as an online-based fundraising method that
enables individuals, groups, or organizations to collect
small financial contributions from a large number of
people—commonly known as "the crowd." These
contributions can be donations, investments, loans, or
exchanges for rewards or products, and are often
facilitated through dedicated online platforms such as
Kickstarter, =~ GoFundMe, Indiegogo, or local
equivalents.

Crowdfunding not only serves as an alternative
financing tool, especially for startups and creative
projects, but also creates engagement between creators
and supporters by offering a sense of participation,
community, and transparency. The success of
crowdfunding campaigns is often driven by the power
of networks, social media, trust, and storytelling.

2.1.2 Types of Crowdfunding

According to the European Commission (2015),
crowdfunding can generally be categorized into four
main types, based on the nature of return expected by
contributors. Each type reflects different motivations
and funding structures:

a. Donation-Based Crowdfunding

In this type, contributors donate money to a project
or cause without expecting any material return. The
motivation is typically altruistic, such as supporting
social, humanitarian, or charitable causes.
According to Belleflamme et al. (2014), donation-
based crowdfunding is often used by nonprofits,
individuals in need, or social campaigns.

Example: A campaign to raise money for disaster
relief or medical treatment via platforms like Kitabisa or
GoFundMe.

b. Reward-Based Crowdfunding

Contributors provide financial support in exchange
for a non-financial reward, often a product, service, or
exclusive content.
As stated by Mollick (2014), this type is commonly

used in creative industries like film, games, and tech
startups where early supporters receive prototypes or
merchandise. The reward is often symbolic or tied to the
project’s outcome.

Example: Kickstarter campaigns offering early
access to a new gadget or name credits in a film.

c. Equity-Based Crowdfunding

In equity-based crowdfunding, contributors become
investors by acquiring shares or ownership stakes in the
company or project. They may receive dividends or
capital gains if the project becomes profitable.
According to Ahlers et al. (2015), this model is suitable
for startups and SMEs looking for seed capital, and
requires regulatory oversight in most countries due to its
investment nature.

Example: Investing in a tech startup through
platforms like Seedrs or EquityNet.

d. Lending-Based Crowdfunding (Peer-to-Peer
Lending)

Also known as P2P lending, this model allows
contributors to lend money to individuals or businesses
with the expectation of repayment, often with interest.
According to Agrawal, Catalini, and Goldfarb (2015),
this type is similar to traditional loans but conducted via
digital platforms that match borrowers and lenders
without intermediaries like banks.

Example: A small business borrowing capital via
platforms like Kiva or Funding Societies.

Each type is suitable for different kinds of projects—
social, creative, entreprencurial, or commercial—and
involves varying degrees of risk, regulation, and
engagement. Understanding these types is essential for
designing a campaign strategy that matches the goals and
audience.

2.1.3 Crowdfunding Platform

Crowdfunding platforms act as digital intermediaries
that connect fundraisers with potential backers, enabling
transparent and secure financial transactions. According
to Ordanini et al. (2011), these platforms provide the
structure and tools that facilitate interaction between
fund-seekers and funders. Agrawal, Catalini, and
Goldfarb (2015) further emphasize that platform features
such as visibility, ease of use, and credibility significantly
influence the success of crowdfunding campaigns.

2.1.4 Success Factors in Crowdfunding

The success of a crowdfunding campaign is
influenced by multiple interrelated factors. According to
Mollick (2014), key elements include the quality and
clarity of the project presentation, the credibility and
background of the initiator, the ability to gain early
contributions (early traction), and the effective use of
personal networks and social media for promotion. These
aspects help build trust and increase visibility, which are
crucial in attracting potential backers. Furthermore,
Belleflamme, Lambert, and Schwienbacher (2014) add

DOI: 10.22441/collabits.v2i2.35925 | 124

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

that the size of the supporting crowd, the design and
attractiveness of offered incentives, and the overall
reputation of the crowdfunding platform significantly
impact campaign performance. Therefore, a successful
crowdfunding strategy must integrate strong
communication, social outreach, and strategic planning
to maximize engagement and funding potential.

2.1.5 Definition of Fundraising

According to Sargeant and Jay (2014), “Fundraising
is the process of soliciting and gathering voluntary
contributions of money or other resources, by requesting
donations from individuals, businesses, charitable
foundations, or governmental agencies.”

According to Tempel, Seiler, and Burlingame
(2016), “Fundraising involves both strategic planning
and interpersonal skills to build relationships with
donors and secure necessary resources.”

Fundraising is a strategic and relational effort to
support an organization's mission. It requires planned
communication, donor cultivation, and the ability to
build trust and shared commitment with supporters.

2.1.6 Digital Transformation in Fundraising

Digital transformation has significantly reshaped the
landscape of fundraising. As noted by Saxton and Wang
(2014), the rise of the internet and social media has
enabled organizations to reach wider audiences more
quickly and engage them through personalized appeals.
This transformation allows fundraising efforts to be
more dynamic and interactive, fostering deeper
connections with potential donors.

Similarly, Manchanda and Muralidharan (2020)
emphasize the impact of digital tools such as
crowdfunding, which have disrupted traditional
fundraising models. These tools have not only made it
easier for individuals and organizations to seek funds,
but also empowered donors to support causes in a more
direct and transparent way.

The digital era has enhanced fundraising by making
it more efficient, accessible, and far-reaching, with
crowdfunding platforms enabling broader participation
and aligning with modern communication trends.

2.1.7 Observation in Crowdfunding Campaigns

According to Zhang and Liu (2012), “Observation in
crowdfunding includes monitoring campaign
performance, donor behavior, and funding trends in real-
time to adjust strategies.”

According to Lehner (2013), “Analyzing behavioral
patterns and feedback during campaigns allows creators
to optimize content, rewards, and marketing efforts for
better outcomes.”

Observation in crowdfunding is a crucial process to
analyze donor behavior, campaign trends, and platform
dynamics, allowing strategic adjustments for improved
fundraising performance.

22 Specialized Theory
2.2.1 PHP

PHP (Hypertext Preprocessor) is a widely-used
open-source scripting language designed specifically
for web development and can be embedded into
HTML. It is executed on the server side, generating
dynamic content before it is sent to the client’s
browser.

According to Welling and Thomson (2017), PHP
allows developers to create interactive and data-
driven websites efficiently. It supports various
databases, including MySQL, PostgreSQL, and
SQLite, and integrates well with modern frameworks
such as Laravel.

PHP is known for its flexibility, simplicity, and
active community support. Its syntax is easy to learn,
making it a popular choice for beginners and
professionals alike. Over the years, PHP has evolved
with the release of modern features such as object-
oriented programming, improved security
mechanisms, and better performance optimizations
(Lerdorf, 2007; Suraski & Gutmans, 2020).

2.2.2 MySQL Database

MySQL is a widely used open-source relational
database management system (RDBMS) that relies
on Structured Query Language (SQL) to manage data.
It is particularly popular in web application
development due to its performance, reliability, and
ease of integration with backend frameworks like
Laravel. MySQL supports fundamental database
operations such as data insertion, retrieval,
updating, and deletion, and allows developers to
design normalized schemas for efficient data
management.

In a relational database such as MySQL, data is
organized into tables (also known as relations)
where each table consists of rows (records) and
columns (attributes). This tabular structure supports
complex queries, relationships between entities, and
ensures data integrity through constraints such as
primary keys and foreign keys.

As stated by Elmasri and Navathe (2016),
relational databases provide a formal structure for
organizing and manipulating data, which improves
scalability, consistency, and ease of access to large
datasets.

Laravel supports MySQL natively, allowing
seamless database integration through the .env
configuration file. Laravel’s Eloquent ORM
(Object-Relational Mapping) allows developers to
interact with MySQL databases using PHP syntax
rather than writing raw SQL queries, thus improving
developer productivity and code readability.
Laravel also includes migration tools, which make it

DOI: 10.22441/collabits.v2i2.35925 | 125

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

easy to version, modify, and share the database
schema across development teams.

2.2.3 Laravel Framework

Laravel is a modern, open-source PHP web
application framework designed to make common
development tasks such as routing, authentication,
and caching more streamlined and elegant. It follows
the Model-View-Controller (MVC) architectural
pattern, which separates application logic from
presentation, making the codebase more manageable
and scalable.

According to Stauffer (2019), Laravel provides a
robust set of tools and resources for building modern
PHP applications, including Eloquent ORM, Blade
templating engine, middleware, and artisan
command-line tool. The framework emphasizes
code readability and developer productivity, which
contributes to its popularity in building scalable and
secure web applications.

Laravel also includes built-in mechanisms for
database migrations, validation, session
management, and API development, making it
suitable for both monolithic and RESTful
applications. Integration with MySQL,
PostgreSQL, and other database systems is
seamless through Laravel’s database abstraction
layer.

2.2.4 Web-Based System

A web-based system is an application that
operates through a web browser using the internet or
an intranet. It allows access to system functionalities
without the need for installing software locally on
each device. According to Sommerville (2011), web-
based systems are advantageous due to their ease of
maintenance, platform independence, and
centralized data management.

In this research, the system built is web-based to
ensure accessibility, real-time interaction, and
compatibility —across multiple devices. This
architecture supports both user convenience and
system scalability.

2.2.5 JSON (JavaScript Object Notation)

JSON (JavaScript Object Notation) is a
lightweight and human-readable data-interchange
format that is widely used in modern web
applications. It is structured as key-value pairs and
supports data types such as strings, numbers, arrays,
and objects. JSON facilitates seamless
communication between frontend clients and
backend servers, especially in RESTful APIs or
AJAX-based requests.

In Laravel, JSON plays a crucial role in handling
API responses, allowing asynchronous data
transmission between the server and the client.
Laravel provides built-in functions such as

response()->json() which simplify the process of
returning data in JSON format. This enables efficient
integration with frontend JavaScript frameworks such
as Vue.js or React, and supports mobile app backends
or external system integrations (Rahman et al., 2021).

The wusage of JSON also supports the
implementation of dynamic and real-time web
applications. With tools such as Axios or Fetch API
on the client side, JSON responses from Laravel
backends are used to update page content without
reloading, improving user experience and
performance (Putra & Santoso, 2020).

2.2.6 UML (Unified Modeling Language)

Unified Modeling Language (UML) is a
standardized visual language that provides a set of
graphical notations to create abstract models of
systems. UML is particularly valuable in object-
oriented software development as it allows developers
to design and communicate the structure and behavior
of a system in a unified and understandable way
(Booch, Rumbaugh, & Jacobson, 2005).

In the context of Laravel-based development,
UML plays a critical role during the system analysis
and design phases. Laravel, being a PHP-based MVC
(Model-View-Controller) ~ framework, benefits
significantly from the use of UML diagrams to ensure
clear planning of its components.

Several UML diagrams are commonly used in
Laravel system development:

e Use Case Diagrams: Represent the interaction
between users (actors) and the system, helping to
define functional requirements and understand
user needs.

e Class Diagrams: Visualize the structure of the
application by showing classes, attributes,
methods, and the relationships among objects.
This is particularly relevant in Laravel for
modeling Eloquent ORM-based models and
relationships.

e Sequence Diagrams: Describe how objects
interact in a particular scenario of a use case,
detailing the sequence of messages exchanged
between system components.

e Activity Diagrams: Capture the dynamic aspects
of the system by modeling workflows and
business logic, which is useful in mapping
Laravel controller actions and middleware
processes.

Using UML in Laravel projects not only supports
efficient system planning and documentation but also
improves communication between technical teams
and non-technical stakeholders, ensuring shared
understanding of system requirements and
architecture (Ambler, 2004).

2.2.7 RESTful API
DOI: 10.22441/collabits.v2i2.35925 | 126

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

RESTful API (Representational State Transfer)
is an architectural style for designing networked
applications. It uses HTTP methods like GET,
POST, PUT, and DELETE for CRUD operations.
RESTful APIs are stateless and provide standard
communication between client and server.

Laravel facilitates the creation of RESTful APIs
through routes, controllers, and JSON responses.
This approach is essential for integrating the system
with other platforms or mobile applications.

2.2.8 XAMPP

XAMPP is a free and open-source cross-platform
web server solution stack package developed by Apache
Friends, consisting mainly of the Apache HTTP Server,
MariaDB (formerly MySQL), and interpreters for
scripts written in the PHP and Perl programming
languages. It is widely used for local development and
testing of web applications before deploying them to
production servers. XAMPP simplifies the setup process
for developers by bundling all necessary components in
a single installation, making it a popular tool in PHP-
based frameworks such as Laravel. With XAMPP,
developers can simulate a server environment on their
local machine, enabling them to develop and test their
applications efficiently without needing a live server
(Apache Friends, 2020).

2.2.9 Authentication and Authorization

According Authentication is the process of verifying
the identity of users, while authorization determines the
permissions granted to authenticated users. Laravel
provides a built-in authentication system that supports
features such as login, registration, password reset, and
session management. Laravel also uses gate and policy
mechanisms to implement authorization, which allow
developers to define access rules for different user roles
or models. These security layers are essential to ensure
that only authorized users can access specific resources
or perform certain actions (Stauffer & Cox, 2019).
Laravel's authentication system is based on guards and
providers, making it flexible for applications requiring
role-based access control or token-based authentication
like API guards using Laravel Sanctum or Passport
(Laravel Documentation, 2025).

2.2.10 Visual Studio Code

Visual Studio Code (VS Code) is a lightweight
yet powerful source-code editor developed by
Microsoft. It supports a wide range of programming
languages and frameworks, including PHP and
Laravel. With features such as syntax highlighting,
IntelliSense, Git integration, and a vast extension
marketplace (e.g., Laravel Blade snippets, PHP
Intelephense), VS Code significantly improves
development productivity. Due to its versatility and
rich ecosystem, VS Code is widely adopted among
web developers working with Laravel applications

(Microsoft, 2021).

2.2.11 MVC
Architecture

(Model-View-Controller)

MVC is a software design pattern that separates the
application into three interconnected components: the
Model, which handles the data and business logic; the
View, which manages the user interface; and the
Controller, which processes user input and updates the
model and view accordingly. Laravel is built around the
MVC architecture, allowing developers to organize code
in a structured and maintainable way. This separation of
concerns enhances scalability, facilitates debugging, and
improves team collaboration during the development
process (Katz & Shutt, 2021).

2.2.12 Routing in Laravel

Routing is a core component of Laravel that
defines how the application responds to user requests
via specific URLs. Laravel’s routing mechanism
allows developers to map Uniform Resource Locators
(URLs) to corresponding controller actions or
anonymous functions. The routes/web.php file
handles routes for web interfaces, while
routes/api.php is used for API routes. Laravel
supports various HTTP methods such as GET, POST,
PUT, and DELETE, enabling the development of
RESTful web services (Stauffer, 2019).

With features like named routes, route grouping,
and middleware assignment, Laravel offers a clean
and expressive syntax for defining application
behavior. For instance, routes can be protected with
middleware to ensure that users are authenticated
before accessing certain pages, thereby enhancing the
security and maintainability of the application.

Routing not only simplifies the logic for request
handling but also plays a crucial role in organizing the
application structure within the MVC (Model-View-
Controller) architecture. Laravel’s routing system
enhances productivity and code clarity by effectively
separating concerns and allowing route definitions to
remain both flexible and readable (Stauffer, 2019).

2.2.13 Payment Integration

In crowdfunding platforms, payment integration is
a crucial component that ensures the transaction
between donors and campaign creators is smooth,
secure, and automated. Laravel supports various
payment gateways through third-party packages such
as Laravel Cashier, Midtrans, Xendit, or Stripe,
enabling developers to implement complex
transaction systems efficiently. These integrations
commonly utilize webhooks to handle asynchronous
payment notifications, ensuring that donation statuses
are updated in real-time. Furthermore, payment
validation mechanisms are essential to verify
successful transactions before updating the
campaign’s status and donation amount (Midtrans,

DOI: 10.22441/collabits.v2i2.35925 | 127

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

2023; Laravel Cashier Documentation, 2024).
Automating these processes reduces human error
and builds trust among users by improving the
transparency and reliability of the platform.

2.2.14 Testing and Validation

Testing and validation are essential stages in web
development to ensure that the system meets its
functional requirements and performs reliably under
various conditions. In Laravel-based applications,
developers often use PHPUnit, which is integrated
by default, for unit and feature testing. This allows
for the simulation of user interactions and system
behaviors to verify that each component, such as
donation processing or user registration, works as
intended (Laravel = Documentation, 2024).
Additionally, Postman and API testing tools are
commonly employed to validate API endpoints,
especially for payment gateways and campaign
updates (Restelli & Di Felice, 2023).

Validation is also critical in the context of data
integrity, particularly when handling user input and
financial transactions. Laravel provides built-in
validation rules that help prevent invalid data from
entering the database, which is essential for
maintaining the reliability and security of
crowdfunding operations. Continuous testing
through methods like Test-Driven Development
(TDD) improves code quality and ensures that new
changes do not break existing functionalities (Beck,
2002). Through thorough testing and validation,
developers can deliver a more robust and trustworthy
platform to end users.

2.3 Literature Review

The literature review is a fundamental step in
scientific research to understand various concepts,
theories, and previous studies relevant to the chosen
topic. According to Nasution (2003), a literature study
is an essential part of the scientific method, aiming to
explore theoretical foundations that support the
resolution of the research problem. This process
involves examining various documents such as
academic journals, books, articles, and credible online
sources.

In the context of crowdfunding web development,
several prior studies have discussed the implementation
of web technologies, including frameworks like Laravel,
in building interactive and secure systems. Laravel, as a
modern PHP framework, offers features such as routing,
middleware, and Eloquent ORM that support
application development based on the Model-View-
Controller (MVC) architecture.

Furthermore, previous research has shown that the
success of a crowdfunding platform is significantly
influenced by user interface design, data transparency,
and accurate verification systems. Therefore, the choice
of framework and system architecture approach
becomes a crucial aspect examined within this literature
review.

By analyzing various relevant sources, the researcher
gains a comprehensive understanding of both technical
and non-technical approaches in building an effective and
trustworthy crowdfunding platform.

. METHODOLOGY AND RUNNING SYSTEM

ANALYSIS

Research Metodologies

T
Implementation
AS Testing and Validation
x
\[retewse|

Waterfall model flow

-+ Feedback loop
——— Waterfall with more
complex feedback

Figure 1. Waterfall Method

This study employs a web-based information system
development approach, integrating various supporting
methods that encompass the stages of data collection,
system design, implementation, and testing. The
methodological framework applied in this research is
outlined as follows:

1. Requirements Collecting

The requirements gathering phase plays a pivotal
role within the Waterfall development model, as it
establishes a clear foundation for the entire project
lifecycle. A thorough and structured analysis of
requirements ensures that all stakeholders share a
unified understanding of the project's scope,
objectives, and expected outcomes.

This stage focuses on collecting detailed
information regarding client needs, business goals,
and relevant technical specifications. To achieve
this, a range of effective techniques are employed to
elicit, document, and validate business
requirements:

e Interviews: Conducting individual or group
discussions with stakeholders to gain in-depth
insights into their expectations and needs.

e Surveys and Questionnaires: Distributing
structured tools designed to collect both
qualitative and quantitative data from a broad
range of participants.

e Workshops: Organizing collaborative sessions
that encourage active stakeholder engagement,
idea exchange, and refinement of
requirements.

DOI: 10.22441/collabits.v2i2.35925 | 128

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

e Document Analysis: Reviewing existing
materials such as business process
documents, technical reports, or previous
system documentation to extract relevant
information.

® Prototyping: Developing preliminary visual
models or mockups to help stakeholders
better understand system functionality and
provide early feedback.

This phase lays the groundwork for all
subsequent stages of system development, making
clarity and completeness in this process essential
for project success.

2. System Design

Types of design documents produced during
this phase include:

e High-Level Design (HLD): Provides an
overview of the system architecture,
including major components and their
interactions.

e Low-Level Design (LLD): Details the
specific functionalities, data structures, and
algorithms to be used.

e User Interface (UI) Design: Outlines the
layout, navigation, and visual elements of the
web application.

e Database Design: Specifies the database
schema, including tables, relationships, and
constraints.

3. System Design

The testing method applied in this study is
Black Box Testing, which evaluates the
system’s functional requirements without
considering the internal code structure. This
approach helps identify issues such as missing
or incorrect functions, interface problems, data
handling errors, and faults during system
initialization or termination. It ensures that the
software behaves as expected from the user’s
perspective.

Existing System Analysis

This analysis aims to examine the current
operational workflow related to crowdfunding
activities, identify existing limitations or
inefficiencies, and determine the necessary
requirements for the development of the
proposed web-based system.

Donate

<<extends=>

<sincludess |

<<inglude>>
P Donate J---------
Danate * *
Visitor <<mq}enﬂs>> <€aﬁe:\ds>>
<<|r|c|udg>>
<<|r|cluﬂe>> 1 @ @

: #dincludess

: =sincludess

Admin szincluders

3 <<menﬂs>> <=aner\ds>>

<<|ncluﬂe>>

New
' -ampaigp
M. H <=Exlsr\d§>>
Admin | ssinclude=> :
—

H
Vo o "
| el Campaign

-ﬂ Owner

Figure 1. Use Case Diagram of the Running System

The interaction between three main actors: User,
Campaign Creator, and Admin within a web-based
crowdfunding system. Users can register, log in,
validate their accounts, browse campaigns, and donate
through various payment methods like E-Wallet or
Transfer. They can also view donation reports after
contributing. Campaign Creators have their own flow,
including account registration, login, and the ability to
create new campaigns, manage them, track donations,
and initiate withdrawals. The Admin oversees
campaign distribution and manages overall system
activity. The diagram clearly separates user roles
while highlighting shared functionalities such as
registration and login.

DOI: 10.22441/collabits.v2i2.35925 | 129

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

Owner

Admin System Donatur "
(campaign)

__

Create New Listed New
Campaign Campaign
Show Access the

Campaign Page

Read the
Information of
Campaign

Donate
Campaign
Verification Process Confirmation

& Receive Donate Payment Payment

Update Receive Notif
Confirmed Progress Contribute
l Campaign J campaign
Create Request
Receipt Withdrawal

Receipt
Confirmed

®
Figure 2. Activity Diagram of the Running System

i

This diagram illustrates the workflow between all
actors involved in a web-based crowdfunding system.
It begins with the admin creating a new campaign,
which is then listed and made visible by the system.
The campaign is shown to potential donors, who
access the crowdfunding page and read the detailed
information provided about the campaign.

Once interested, the donor proceeds to donate,
followed by a payment confirmation step. The system
processes the payment, updates the campaign
progress, and triggers a notification to the donor to
confirm that their contribution has been received.
Simultaneously, the admin verifies and receives the
donation, marks it as confirmed, and the system
generates a receipt.

Campaign creators can then request a withdrawal
of the collected funds. Once the request is approved,
the system marks the receipt as confirmed, concluding
the process. The entire workflow ensures
transparency, proper verification, and clear
communication between all parties involved.

Sequence Diagram of the Running System.

Login

Vieb Page

Figure 3. Login Sequence Diagram of the Running
System

Admin & Owner (Campaign)

‘ Web Page ‘ “Sistem ‘

Admin Owner

(Campaign)
ereateGampaign()
: PR ... H
k)
createReqs() H

PR senthofiReas) ____| }

)
crealeReceipiReqs()
———eRE e
createReceipl()

PRS- confmedl) ...
Withdrave()

O

Figure 4. Admin & Owner Sequence Diagram of the
Running System

Donatur
% ‘ Web Page ‘ Sistem ‘ ﬁ
Donatur Admin

viewCampaign)

[vewCampaign)
Donate()

[Donate)

processPayment()

. sweoessh | }
confirmDonate)

verificalionDonate()

validateDonate()
sentNolif(y

Figure 5. Donatur Sequence Diagram of the
Running System

4. RESEARCH RESULTS

Database Specification

Users

DOI: 10.22441/collabits.v2i2.35925 | 130

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

Withdrawal
Field DataType Length |Desc
id int 11|PK
ienid i 1 FK >

campaign_i int Campaigns.id
owner_id FK ->users.id
amount_reqs |[int 11
pay. stats enum(pendnf\g,

approved, rejected)
requested_at [|timestamp
approved_at [timestamp
Receipts

Receipts
Field DataType Length |Desc
id int 11|PK
donation_id int 11 P> X .
Donations.id

receipt_file varchar (nullable) 255

enum(confirmed,
status .

pending)
issued_at timestamp
PaymentTransactions

PaymentTransactions
Field DataType Length |Desc
id int 11|PK
donation_id int 11 FK> . .
Donations.id

transaction_ref [text

(enum: midtrans, xendit,
pay_gateways R

tripay, manual_transfer)
amount int 11
status (enL.Jm: per'ldmg, paid,

expired, failed, refunded)
payment_url text
paid_at timestamp
raw_response |text
created_at timestamp
updated_at timestamp

6. REFERENCES

users
Field DataType Length |Desc
id_users int 11|PK
name char 50
email char 100
password varchar 255
role enum(donor, admin, owner)
created_at timestamp
updated_at timestamp
Campaigns
campaigns

Field DataType Length [Desc
id int 11{PK
title char 50
desc varchar 255
target_ amount [int 11
deadline date
image varchar 255
status (enum: pendlr?g, active,

completed, rejected)
owner_id FK ->users.id
created_at timestamp
updated_at timestamp
Donations

Donations
Field DataType Length [Desc
id int 11{PK
campaign_id [int 11 FK>
paign.] Campaigns.id

donor_id int 11|FK -> users.id
amount int 11
pay_method enum(e-wallet, transfer)

enum(pending,
pay_stats . (P g

confirmed, failed)
pay_proof varchar (nullable) 255
donated_at timestamp
Notifications

Notifications

Field DataType Length |Desc
id int 11{PK
user_id int 11{FK -> users.id
message varchar 255
is_read boolean
created_at timestamp
Withdrawal

(1]

Agrawal, A., Catalini, C., & Goldfarb, A. (2015).
Crowdfunding: Geography, social networks, and
the timing of investment decisions. Journal of
Economics & Management Strategy, 24(2), 253—
274.

Alam, M., Rahman, M., & Hossain, M. (2022). An
Overview of Laravel Framework and Its
Application in Web Development. International
Journal of Computer Applications, 184(5), 15—-18.
Ambler, S. W. (2004). The Object Primer: Agile
Model-Driven Development with UML 2.0 (3rd
ed.). Cambridge University Press.

Belleflamme, P., Lambert, T., & Schwienbacher, A.
(2014). Crowdfunding: Tapping the right crowd.
Journal of Business Venturing, 29(5), 585-609.
Booch, G., Rumbaugh, J., & Jacobson, 1. (2005).
The Unified Modeling Language User Guide (2nd

DOI: 10.22441/collabits.v2i2.35925 | 131

Collabits Journal, Vol 2 No. 2 | May 2025
https://publikasi.mercubuana.ac.id/index.php/collabits

ed.). Addison-Wesley.

[6] Elmasri, R., & Navathe, S. B. (2016).
Fundamentals of Database Systems (7th ed.).
Pearson Education.

[71 European Commission. (2015). Crowdfunding:
Mapping EU markets and events study.
Publications Office of the European Union.

[8] Gerber, E. M., & Hui, J. (2013). Crowdfunding:
Why people are motivated to participate.
Innovation: Organization & Management, 15(4),
442-460.

[9] Lehner, O. M. (2013). Crowdfunding social
ventures: A model and research agenda. Venture
Capital, 15(4), 289-311.

[10] Lerdorf, R. (2007). Programming PHP. O’Reilly
Media.

[11] Manchanda, R. V., & Muralidharan, C. (2020).
Digital fundraising and its effectiveness in
nonprofit organizations. International Journal of
Management, 11(9), 60-70.

[12] Mollick, E. (2014). The dynamics of
crowdfunding: An exploratory study. Journal of
Business Venturing, 29(1), 1-16.

[13] Ordanini, A., Miceli, L., Pizzetti, M. &
Parasuraman, A. (2011). Crowd-funding:
Transforming customers into investors through
innovative service platforms. Journal of Service
Management, 22(4), 443-470.

[14] Putra, R. D., & Santoso, B. (2020).
Implementation of JSON-Based Data
Communication on Laravel and Vuegjs.
International Journal of Informatics and
Computation, 2(1), 34-40.

[15] Rahman, A., Nugroho, Y., & Wicaksono, A.
(2021). Application of RESTful API using Laravel
Framework in Web-Based Information Systems.
Journal of Information Systems, 15(2), 77-84.

[16] Sargeant, A., & Jay, E. (2014). Fundraising
Management: Analysis, Planning and Practice
(3rd ed.). Routledge.

[17] Saxton, G. D., & Wang, L. (2014). The social
network effect: The determinants of giving through
social media. Nonprofit and Voluntary Sector
Quarterly, 43(5), 850-868.

[18] Suraski, Z., & Gutmans, A. (2020). PHP Manual.
The PHP Group.

[19] Stauffer, M. (2019). Laravel: Up & Running: A
Framework for Building Modern PHP Apps (2nd
ed.). O'Reilly Media.

[20] Sommerville, I. (2011). Sofiware Engineering (9th
ed.). Pearson Education.

[21] Tempel, E. R., Seiler, T. L., & Burlingame, D. F.
(2016). Achieving Excellence in Fundraising (4th
ed.). Jossey-Bass.

[22] Welling, L., & Thomson, L. (2017). PHP and
MySQL Web Development (5th ed.).
Addison-Wesley.

[23] Zhang, J., & Liu, P. (2012). Rational herding in
microloan markets. Management Science, 58(5),
892-912.

DOI: 10.22441/collabits.v2i2.35925 | 132

