Transfer Learning Implementation on Bi-LSTM with Optimizer to Improve Non-Ferrous Metal Prices Prediction
Abstract
Keywords
Full Text:
PDFReferences
G. Schuh, G. Reinhart, J. Prote, F. Sauermann, J. Horsthofer, F. Oppolzer, F., & D. Knoll. “Data mining definitions and applications for the management of production complexity,” Procedia CIRP, vol. 81, pp. 874–879. https://doi.org/10.1016/j.procir.2019.03.217.
Dedi, & A.Cherid, “Data mining data processing prospective of Indonesian migrant workers (PMI) with application of K-Means clustering and K-nearest neighbor (KNN) classification: case study of PT. SAM,” B.Sc Thesis, Mercu Buana University, Indonesia. https://repository.mercubuana.ac.id/61695/
R. Law, G. Li, D.K.C Fong & X. Han, “Tourism demand forecasting: A deep learning approach,” Annals of Tourism Research., 75, 410–423. https://doi.org/10.1016/j.annals.2019.01.014.
J.M. Stokes, K. Yang, S. Kyle, W. Jin, A. Cubillos-Ruiz, N.M. Donghia, C.R. MacNair, S. French, L.A Carfrae, Z. Bloom-Ackermann, V.M. Tran, A. Chiappino-Pepe, A.H. Badran, I.W. Andrews, E.J. Chory, G.M. Church, E.D. Brown, T.S. Jaakkola, R. Barzilay & J. C. Collins, “A deep learning approach to antibiotic discovery,” Cell, vol. 180, pp. 688 – 702, 2020. https://doi.org/10.1016/j.cell.2020.01.021
C.Xu, J. Ji & P. Liu, “The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets,” Transportation Research Part C: Emerging Technologies, vol. 95, ppl 47–60. https://doi.org/10.1016/j.trc.2018.07.013.
O.I Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A.E. Mohamed & H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, e00938. https://doi.org/10.1016/j.heliyon.2018.e00938.
D. Rosadi, D. Arisanty & D. Agustina, “Prediction of forest fire using neural networks with backpropagation learning and exreme learning machine approach using meteorological and weather index variables,” Media Statistika., vol. 14, ppl 118–124, 2022. https://doi.org/10.14710/medstat.14.2.118-124
I.T. Rahayu, N. Nurhasanah & R. Adriat, “Prediction of dengue hemorrhagic fever cases based on weather parameters using back propagation neural networks (case study in Pontianak city),” Jurnal Pendidikan Fisika Indonesia, vol. 15, pp. 114–121, 2019. https://doi.org/10.15294/jpfi.v15i2.19633.
P. Jiang, Z. Liu, X. Niu& L. Zhang, “A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting,” Energy, vol. 217, 119361. https://doi.org/10.1016/j.energy.2020.119361.
I. Kurniawan, L.S. Silaban& D. Munandar, “Implementation of convolutional neural network and multilayer perceptron in predicting air temperature in Padang,” RESTI, vol. 4, pp. 2–7, 2020. https://doi.org/10.29207/resti.v4i6.2456.
R.F. Rahmat, Dennis, O.S. Sitompul, S. Purnamawati & R. Budiarto, “Advertisement billboard detection and geotagging system with inductive transfer learning in deep convolutional neural network” Telkomnika, vol. 17, pp. 2659–2666, 2019. http://doi.org/10.12928/telkomnika.v17i5.11276.
F. Makinoshima, Y. Oishi, T. Yamazaki, T. Furumura& F. Imamura. “Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks,” Nature Communications, vol. 12, pp. 1–10, 2021. https://doi.org/10.1038/s41467-021-22348-0.
M.A. Faishol, E. Endroyono, & A. N. Irfansyah, “Predict urban air pollution in surabaya using recurrent neural network – long short term memory,” JUTI, vol. 18, no. 102, 2020. http://dx.doi.org/10.12962/j24068535.v18i2.a988.
F. Granata & F. D. Nunno, “Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks,” Agriculture and Water Management, vol. 255, 107040, 2021. https://doi.org/10.1016/j.agwat.2021.107040.
K.E. ArunKumar, D.V. Kalaga, C.M.S. Kumar, M. Kawaji, M & T. M. Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and long short-term memory (LSTM) cells,” Chaos, Solitons & Fractals, vol. 146, 110861, 2021. https://doi.org/10.1016/j.chaos.2021.110861.
T. Ahmad, & H. Chen, “A review on machine learning forecasting growth trends and their real-time applications in different energy systems,” Sustainable Cities and Society, vol. 54, 102010, 2020. https://doi.org/10.1016/j.scs.2019.102010.
H.A. Khoshalan, J. Shakeri, I. Najmoddini & M. Asadizadeh, “Forecasting copper price by application of robust artificial intelligence techniques,” Resources Policy, vol. 73, 102239, 2021. https://doi.org/10.1016/j.resourpol.2021.102239.
N. Afrianto, D.H. Fudholi & S. Rani. « Stock price prediction using BiLSTM with public sentiment factor,” RESTI, vol. 6, ppl 41–46, 2022. doi: 10.29207/resti.v6i1.3676.
F.D. Adhinata & D. P. Rakhmadani, “Prediction of Covid-19 daily case in indonesia using long short term memory method. Teknika, vol. 10, ppl 62–67, 2021. https://doi.org/10.34148/teknika.v10i1.328.
A.W. Ramadhan, D. Adytia, D. Saepudin, S. Husrin & A. Adiwijaya, ”Forecasting of sea level time series using RNN and LSTM case study in Sunda strait,” Lontar Komputer, vol. 12, no. 130, 2021. https://doi.org/10.24843/LKJITI.2022.v13.i02
K.U. Jaseena & B. C. Kovoor, “Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks,” Energy Conversion and Management, vol. 234, 113944, 2021. https://doi.org/10.1016/j.enconman.2021.113944.
A. Koshiyama, S. Flennerhag, S.B. Blumberg, N. Firoozye& P. Treleaven, “QuantNet: transferring learning across systematic trading strategies, 2020. http://arxiv.org/abs/2004.03445.
R. Ye & Q. Dai, “A novel transfer learning framework for time series forecasting,” Knowledge-Based System, vol. 156, pp. 74–99, 2018. https://doi.org/10.1016/j.knosys.2018.05.021.
A. Mustafid, M.M. Pamuji, & S. Helmiyah,. “A comparative study of transfer learning and fine-tuning method on deep learning models for wayang dataset classification,” IJID, vol. 9, pp. 100–110, 2020. https://doi.org/10.14421/ijid.2020.09207.
Y. Gao, Y. Ruan, C. Fang & S. Yin. “Deep learning and transfer learning models of energy consumption forecasting for a building with poor information data,” Energy and Buildings, vol. 223, 110156, 2020. https://doi.org/10.1016/j.enbuild.2020.110156.
M.S. Acharya, A. Armaan& A. S. Antony, “A comparison of regression models for prediction of graduate admissions. ICCIDS 2019, pp. 1–5, 2019. https://doi.org/10.1109/ICCIDS.2019.8862140.
J. Kumar, R. Goomer & A. K. Singh. “Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters,” Procedia Computer Science, vol. 125, pp. 676–682, 2018. https://doi.org/10.1016/j.procs.2017.12.087.
B. Shao, M. Li, Y. Zhao & G. Bian, “Nickel price forecast based on the lstm neural network optimized by the improved pso algorithm,” Mathematical Problems in Engineering, 2019, Article ID 1934796. https://doi.org/10.1155/2019/1934796.
L.L. Lu, X. Ma, Y.X. Wang, & G. B. Yu, « Lead price forecasting based on ARIMA model,” Advanced Materials Research, vol. 488-489, pp. 1582-1586, 2012.
S.J. Mysen & E. M. Thornton, “Forecasting the price of aluminum using machine learning empirical comparison of machine learning and statistical methods,” 2021, Master thesis, Norwegian School of Economics. https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2985394/masterthesis.pdf?sequence=1.
DOI: http://dx.doi.org/10.22441/collabits.v1i1.25468
Refbacks
- There are currently no refbacks.
Collabits Journal
Print ISSN: 3062-8601 | |
Online ISSN: 3046-6709 |
Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
http://publikasi.mercubuana.ac.id/index.php/collabits
e-mail: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.