Comparative Analysis of Performance Between KNN and C5.0 Algorithms in Lung Cancer Disease Detection
Abstract
Lung cancer is a disease characterized by the growth of abnormal cells in the lungs that can spread to other parts of the body. In practice, medical teams will usually evaluate a patient's symptoms conventionally, which is highly inefficient and time-consuming, especially if there are a large number of patients. This manual evaluation process can cause delays in diagnosis and treatment, and increase the risk of errors. Therefore, this research will discuss lung cancer detection using the K-Nearest Neighbors (KNN) algorithm and the C5.0 algorithm in order to solve the problems previously described. The use of the K-Nearest Neighbors (KNN) algorithm and the C5.0 algorithm was chosen because these two algorithms have the ability to process complex data and produce accurate models. The results of this study will show a comparison of which performance is much better used to accurately detect lung cancer based on the amount of training data available, and it can be known that the lung cancer detection process can be done more quickly and efficiently, using the K-Nearest Neighbors (KNN) or C5.0 algorithm to improve diagnosis accuracy. The results show that the KNN algorithm is superior to the C5.0 algorithm specifically for lung cancer detection.
Full Text:
PDFReferences
“Types of lung cancer.” Accessed: May 19, 2024. [Online]. Available: https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/types
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, Jul. 2020, doi: 10.33096/ijodas.v1i2.13.
Y. Crismayella, N. Satyahadewi, and H. Perdana, “Algoritma Adaboost pada Metode Decision Tree untuk Klasifikasi Kelulusan Mahasiswa,” Jambura J. Math., vol. 5, no. 2, pp. 278–288, Aug. 2023, doi: 10.34312/jjom.v5i2.18790.
N. H. Harani and F. S. Damayanti, “Implementasi Algoritma C5.0 Untuk Menentukan Pelanggan Potensial Di Kantor Pos Cimahi,” J. SITECH Sist. Inf. Dan Teknol., vol. 4, no. 1, pp. 69–76, Jun. 2021, doi: 10.24176/sitech.v4i1.6281.
“Lung Cancer.” Accessed: May 17, 2024. [Online]. Available: https://www.kaggle.com/datasets/nancyalaswad90/lung-cancer
A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 3, pp. 504–510, Jun. 2021, doi: 10.29207/resti.v5i3.3067.
E. Wulandari, “KLASIFIKASI KANKER PARU-PARU MENGGUNAKAN METODE NAIVE BAYES,” Int. Res. Big-Data Comput. Technol. -Robot, vol. 6, no. 2, pp. 20–24, Sep. 2022, doi: 10.53514/ir.v6i2.325.
DOI: http://dx.doi.org/10.22441/collabits.v1i3.27285
Refbacks
- There are currently no refbacks.
Collabits Journal
Print ISSN: 3062-8601 | |
Online ISSN: 3046-6709 |
Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
http://publikasi.mercubuana.ac.id/index.php/collabits
e-mail: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.