Analysis of the Influence of Learning Strategies on the Academic Achievement of Gen-Z Students with Data Visualization Using Matplotlib in Python

Yovi Naila Salsabila, Nabila Aulia Lutfansa, Fitri Nur Fadiyah, Nazwa Nurul Qurotaani, Dessi Adelia Safira, Mohamad Yusuf

Abstract


This research examines the influence of learning strategies on the Grade Point Average (GPA) of Generation Z (Gen- Z) students. The background of this research is to understand how the learning strategies used by Gen-Z students affect their GPA. The research aims to analyze the influence of various learning strategies, identify the most effective ones, and demonstrate the use of the Matplotlib library in Python for data visualization. This research is quantitative in nature using statistical methods to evaluate the results. Data was collected through a questionnaire distributed to students, including the frequency of using learning strategies such as reading books, watching YouTube tutorials, doing practice questions, taking private lessons/online tutoring, and participation in training/seminars/workshops. Data analysis was carried out using Python and the Matplotlib library to visualize the data and provide a clear picture of the effectiveness of the learning strategy implemented. The research results show that active and technology- integrated learning strategies have a significant influence on increasing the academic achievement of Gen-Z students. Specifically, strategies such as watching YouTube tutorials and doing practice questions had a positive correlation with improving students' GPAs. These findings indicate the importance of adapting learning methods that suit the characteristics and learning preferences of Gen-Z students.

Keywords


Learning strategies; Academic Achievement; Gen-Z students; Matplotlib; Python;

Full Text:

PDF

References


Hastono, S. P. (2001). Analisis data. Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 1-2. Saleh, S. (2017). Analisis data kualitatif.

Jogiyanto Hartono, M. (Ed.). (2018). Metoda pengumpulan dan teknik analisis data. Penerbit Andi.

Riany, J., Fajar, M., & Lukman, M. P. (2016). Penerapan deep sentiment analysis pada angket penilaian terbuka menggunakan K-Nearest Neighbor. SISFO Vol 6 No 1, 6.

Maryuliana, M., Subroto, I. M. I., & Haviana, S. F. C. (2016). Sistem informasi angket pengukuran skala kebutuhan materi pembelajaran tambahan sebagai pendukung pengambilan keputusan di sekolah menengah atas menggunakan skala likert. TRANSISTOR Elektro dan Informatika, 1(1), 1-12.

Ari, N., & Ustazhanov, M. (2014, September). Matplotlib in python. In 2014 11th International Conference on Electronics, Computer and Computation (ICECCO) (pp. 1-6). IEEE.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95.

Tosi, S. (2009). Matplotlib for Python developers. Packt Publishing Ltd.

Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning. Karimah Tauhid, 2(1), 1-6.

Retnoningsih, E., & Pramudita, R. (2020). Mengenal machine learning dengan teknik supervised dan unsupervised learning menggunakan python. Bina Insani Ict Journal, 7(2), 156-165.

Matplotlib. (n.d.). Pyplot tutorial. Matplotlib. https://matplotlib.org/stable/tutorials/py plot.html

DataCamp. (n.d.). Matplotlib tutorial - Python. DataCamp.

https://www.datacamp.com/tutorial/matplotlib-tutorial-python

Helma, A. (2021, Januari 25). Generasi Z: Siapa mereka, apa yang mereka lakukan, dan mengapa mereka penting Kumparan. https://kumparan.com/azzahra- helma/generasi-z-siapa-mereka-apa- yang-mereka-lakukan-dan-mengapa- mereka-penting-21zmK53Ftj4/full

Rahman, S. (2013). Prestasi akademik mengikut gender. ResearchGate. https://www.researchgate.net/profile/Saemah- Rahman/publication/255643055_Prestas i_Akademik_Mengikut_Gender/links/53 db86280cf216e4210bf384/Prestasi-

Akademik-Mengikut-Gender.pdf

MDPI. (2021). Education. MDPI.

https://www.mdpi.com/2227- 7102/11/9/513

Blog Kejarcita. (2020, Maret 2). Faktor yang mempengaruhi prestasi akademik dan non-akademik. Blog Kejarcita. https://blog.kejarcita.id/faktor-yang- mempengaruhi-prestasi-akademik-dan- non-akademik

Moruzzi, G., & Moruzzi, G. (2020). Plotting with matplotlib. Essential Python for the Physicist, 53-69.




DOI: http://dx.doi.org/10.22441/collabits.v2i1.28450

Refbacks

  • There are currently no refbacks.


Collabits Journal
Portal ISSNPrint ISSN: 3062-8601
Online ISSN: 3046-6709

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/collabits

e-mail: [email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.