Analisis Pengaruh Strategi Pembelajaran Terhadap Prestasi Akademik Mahasiswa Gen-Z dengan Visualisasi Data Menggunakan Matplotlib pada Python
Abstract
This research examines the influence of learning strategies on the Grade Point Average (GPA) of Generation Z (Gen-
Z) students. The background of this research is to understand how the learning strategies used by Gen-Z students
affect their GPA. The research aims to analyze the influence of various learning strategies, identify the most effective
ones, and demonstrate the use of the Matplotlib library in Python for data visualization. This research is quantitative
in nature using statistical methods to evaluate the results. Data was collected through a questionnaire distributed to
students, including the frequency of using learning strategies such as reading books, watching YouTube tutorials,
doing practice questions, taking private lessons/online tutoring, and participation in training/seminars/workshops.
Data analysis was carried out using Python and the Matplotlib library to visualize the data and provide a clear picture
of the effectiveness of the learning strategy implemented. The research results show that active and technology-
integrated learning strategies have a significant influence on increasing the academic achievement of Gen-Z students.
Specifically, strategies such as watching YouTube tutorials and doing practice questions had a positive correlation
with improving students' GPAs. These findings indicate the importance of adapting learning methods that suit the
characteristics and learning preferences of Gen-Z students.
References
Hastono, S. P. (2001). Analisis
data. Depok: Fakultas Kesehatan
Masyarakat Universitas Indonesia, 1-2.
Saleh, S. (2017). Analisis data kualitatif.
Jogiyanto Hartono, M. (Ed.).
(2018). Metoda pengumpulan dan teknik
analisis data. Penerbit Andi.
Riany, J., Fajar, M., & Lukman, M. P.
(2016). Penerapan deep sentiment
analysis pada angket penilaian terbuka
menggunakan K-Nearest
Neighbor. SISFO Vol 6 No 1, 6.
Maryuliana, M., Subroto, I. M. I., &
Haviana, S. F. C. (2016). Sistem
informasi angket pengukuran skala
kebutuhan materi pembelajaran
tambahan sebagai pendukung
pengambilan keputusan di sekolah
menengah atas menggunakan skala
likert. TRANSISTOR Elektro dan
Informatika, 1(1), 1-12.
Ari, N., & Ustazhanov, M. (2014,
September). Matplotlib in python.
In 2014 11th International Conference
on Electronics, Computer and
Computation (ICECCO) (pp. 1-6). IEEE.
Hunter, J. D. (2007). Matplotlib: A 2D
graphics environment. Computing in
science & engineering, 9(03), 90-95.
Tosi, S. (2009). Matplotlib for Python
developers. Packt Publishing Ltd.
Alfarizi, M. R. S., Al-farish, M. Z.,
Taufiqurrahman, M., Ardiansah, G., &
Elgar, M. (2023). Penggunaan Python
Sebagai Bahasa Pemrograman untuk
Machine Learning dan Deep
Learning. Karimah Tauhid, 2(1), 1-6.
Retnoningsih, E., & Pramudita, R.
(2020). Mengenal machine learning
dengan teknik supervised dan
unsupervised learning menggunakan
python. Bina Insani Ict Journal, 7(2),
-165.
Matplotlib. (n.d.). Pyplot tutorial.
Matplotlib.
https://matplotlib.org/stable/tutorials/py
plot.html
DataCamp. (n.d.). Matplotlib tutorial -
Python. DataCamp.
https://www.datacamp.com/tutorial/mat
plotlib-tutorial-python
Helma, A. (2021, Januari 25). Generasi
Z: Siapa mereka, apa yang mereka
lakukan, dan mengapa mereka penting.
Kumparan.
https://kumparan.com/azzahra-
helma/generasi-z-siapa-mereka-apa-
yang-mereka-lakukan-dan-mengapa-
mereka-penting-21zmK53Ftj4/full
Rahman, S. (2013). Prestasi akademik
mengikut gender. ResearchGate.
https://www.researchgate.net/profile/Sae
mah-
Rahman/publication/255643055_Prestas
i_Akademik_Mengikut_Gender/links/53
db86280cf216e4210bf384/Prestasi-
Akademik-Mengikut-Gender.pdf
MDPI. (2021). Education. MDPI.
https://www.mdpi.com/2227-
/11/9/513
Blog Kejarcita. (2020, Maret 2). Faktor
yang mempengaruhi prestasi akademik
dan non-akademik. Blog Kejarcita.
https://blog.kejarcita.id/faktor-yang-
mempengaruhi-prestasi-akademik-dan-
non-akademik
Moruzzi, G., & Moruzzi, G. (2020).
Plotting with matplotlib. Essential
Python for the Physicist, 53-69.
DOI: http://dx.doi.org/10.22441/collabits.v2i1.28450
Refbacks
- There are currently no refbacks.
Collabits Journal
![]() | Print ISSN: 3062-8601 |
---|---|
Online ISSN: 3046-6709 |
Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
http://publikasi.mercubuana.ac.id/index.php/collabits
e-mail: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.