Analisis Pengaruh Strategi Pembelajaran Terhadap Prestasi Akademik Mahasiswa Gen-Z dengan Visualisasi Data Menggunakan Matplotlib pada Python

Nabila Aulia Lutfansa

Abstract


 

This research examines the influence of learning strategies on the Grade Point Average (GPA) of Generation Z (Gen-
Z) students. The background of this research is to understand how the learning strategies used by Gen-Z students
affect their GPA. The research aims to analyze the influence of various learning strategies, identify the most effective
ones, and demonstrate the use of the Matplotlib library in Python for data visualization. This research is quantitative
in nature using statistical methods to evaluate the results. Data was collected through a questionnaire distributed to
students, including the frequency of using learning strategies such as reading books, watching YouTube tutorials,
doing practice questions, taking private lessons/online tutoring, and participation in training/seminars/workshops.
Data analysis was carried out using Python and the Matplotlib library to visualize the data and provide a clear picture
of the effectiveness of the learning strategy implemented. The research results show that active and technology-
integrated learning strategies have a significant influence on increasing the academic achievement of Gen-Z students.
Specifically, strategies such as watching YouTube tutorials and doing practice questions had a positive correlation
with improving students' GPAs. These findings indicate the importance of adapting learning methods that suit the
characteristics and learning preferences of Gen-Z students.

 


References


Hastono, S. P. (2001). Analisis

data. Depok: Fakultas Kesehatan

Masyarakat Universitas Indonesia, 1-2.

Saleh, S. (2017). Analisis data kualitatif.

Jogiyanto Hartono, M. (Ed.).

(2018). Metoda pengumpulan dan teknik

analisis data. Penerbit Andi.

Riany, J., Fajar, M., & Lukman, M. P.

(2016). Penerapan deep sentiment

analysis pada angket penilaian terbuka

menggunakan K-Nearest

Neighbor. SISFO Vol 6 No 1, 6.

Maryuliana, M., Subroto, I. M. I., &

Haviana, S. F. C. (2016). Sistem

informasi angket pengukuran skala

kebutuhan materi pembelajaran

tambahan sebagai pendukung

pengambilan keputusan di sekolah

menengah atas menggunakan skala

likert. TRANSISTOR Elektro dan

Informatika, 1(1), 1-12.

Ari, N., & Ustazhanov, M. (2014,

September). Matplotlib in python.

In 2014 11th International Conference

on Electronics, Computer and

Computation (ICECCO) (pp. 1-6). IEEE.

Hunter, J. D. (2007). Matplotlib: A 2D

graphics environment. Computing in

science & engineering, 9(03), 90-95.

Tosi, S. (2009). Matplotlib for Python

developers. Packt Publishing Ltd.

Alfarizi, M. R. S., Al-farish, M. Z.,

Taufiqurrahman, M., Ardiansah, G., &

Elgar, M. (2023). Penggunaan Python

Sebagai Bahasa Pemrograman untuk

Machine Learning dan Deep

Learning. Karimah Tauhid, 2(1), 1-6.

Retnoningsih, E., & Pramudita, R.

(2020). Mengenal machine learning

dengan teknik supervised dan

unsupervised learning menggunakan

python. Bina Insani Ict Journal, 7(2),

-165.

Matplotlib. (n.d.). Pyplot tutorial.

Matplotlib.

https://matplotlib.org/stable/tutorials/py

plot.html

DataCamp. (n.d.). Matplotlib tutorial -

Python. DataCamp.

https://www.datacamp.com/tutorial/mat

plotlib-tutorial-python

Helma, A. (2021, Januari 25). Generasi

Z: Siapa mereka, apa yang mereka

lakukan, dan mengapa mereka penting.

Kumparan.

https://kumparan.com/azzahra-

helma/generasi-z-siapa-mereka-apa-

yang-mereka-lakukan-dan-mengapa-

mereka-penting-21zmK53Ftj4/full

Rahman, S. (2013). Prestasi akademik

mengikut gender. ResearchGate.

https://www.researchgate.net/profile/Sae

mah-

Rahman/publication/255643055_Prestas

i_Akademik_Mengikut_Gender/links/53

db86280cf216e4210bf384/Prestasi-

Akademik-Mengikut-Gender.pdf

MDPI. (2021). Education. MDPI.

https://www.mdpi.com/2227-

/11/9/513

Blog Kejarcita. (2020, Maret 2). Faktor

yang mempengaruhi prestasi akademik

dan non-akademik. Blog Kejarcita.

https://blog.kejarcita.id/faktor-yang-

mempengaruhi-prestasi-akademik-dan-

non-akademik

Moruzzi, G., & Moruzzi, G. (2020).

Plotting with matplotlib. Essential

Python for the Physicist, 53-69.




DOI: http://dx.doi.org/10.22441/collabits.v2i1.28450

Refbacks

  • There are currently no refbacks.


Collabits Journal
Portal ISSNPrint ISSN: 3062-8601
Online ISSN: 3046-6709

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/collabits

e-mail: [email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.