Analisis dan Prediksi Customer Churn pada Industri Telekomunikasi Menggunakan Logistic Regression dan Random Forest

Celsi Alisa Nabila

Abstract


Customer churn represents a major challenge for telecommunication companies because of its significant influence on revenue stability and customer retention efforts. Intense competition among service providers has increased the need for reliable predictive models capable of identifying customers with a high probability of terminating their subscriptions. This study focuses on the analysis and prediction of customer churn by applying machine learning techniques to the Telco Customer Churn dataset. The research workflow includes data preprocessing stages such as duplicate removal, treatment of missing values, and transformation of both categorical and numerical features. Exploratory data analysis supported by visualization techniques is employed to examine customer behavior and feature relationships. Subsequently, the dataset is partitioned into training and testing subsets using an 80:20 stratified split. A preprocessing pipeline is applied, incorporating feature scaling for numerical variables and one-hot encoding for categorical variables. Predictive models are developed using Logistic Regression and Random Forest algorithms, and their performance is assessed through accuracy measurements and classification reports. The results indicate that the Random Forest model delivers better predictive performance than Logistic Regression, demonstrating its effectiveness in modeling complex data patterns. Overall, the study confirms that machine learning-based approaches can serve as effective tools for churn prediction and offer meaningful insights to support strategic decision-making in customer retention within the telecommunication sector.

Keywords


customer churn; machine learning; logistic regression; random forest; telecommunication industry

References


D. A. Kusuma, A. R. Dewi, and A. R. Wijaya, “Prediksi Customer Churn Menggunakan Algoritma Random Forest pada Data Pelanggan Telekomunikasi,” Jurnal Sistem Informasi, vol. 10, no. 2, pp. 186–194, 2025.

P. Dewi, R. N. Aulia, R. Taufiqillah, and J. Heikal, “Customer Churn Prediction for Life Insurance Using Binary Logistic Regression,” Economic Reviews Journal, vol. 3, no. 3, pp. 2289–2299, 2024, doi: 10.56709/mrj.v3i3.353.

Y. Yudiana, A. Y. Agustina, and N. Khofifah, “Prediksi Customer Churn Menggunakan Metode CRISP-DM pada Industri Telekomunikasi sebagai Implementasi Mempertahankan Pelanggan,” IJIEB: Indonesian Journal of Islamic Economics and Business, vol. 8, no. 1, pp. 1–20, Jun. 2023.

D. Putriani, A. P. A. Prayogi, A. I. Shofyana, A. Ristyawan, and E. Daniati, “Prediksi Customer Churn Menggunakan Algoritma Decision Tree,” INOTEK, vol. 8, Aug. 2024.

A. R. K. Maranto, L. Damayanti, and I. R. Ramadika, “Perbandingan Algoritma C4.5 dan Naïve Bayes dalam Prediksi Loyalitas Pelanggan,” Bit-Tech (Binary Digital–Technology), vol. 7, no. 2, Dec. 2024.

N. Namira, I. Slamet, and I. Susanto, “Prediksi Nasabah Churn dengan Algoritma Decision Tree, Random Forest dan Support Vector Machine,” in Proc. 3rd ESCAF, 2024, pp. xx–xx.

M. F. Naufal et al., “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Potensi Hilangnya Nasabah Bank,” Techno.COM, vol. 22, no. 1, pp. 1–11, Feb. 2023.

N. A. Khafsoh and Suhairi, “Pemahaman Mahasiswa Terhadap Kekerasan Seksual di Kampus,” Marwah: Jurnal Perempuan, Agama dan Jender, vol. 20, no. 1, pp. 61–75, 2021.

F. Sinata et al., “Klasifikasi Pelanggan pada Customer Churn Prediction Models Menggunakan Decision Tree,” Jurnal Algoritma, Logika dan Komputasi, vol. 8, no. 2, pp. 839–846, 2025.

R. Govindaraju, T. Simatupang, and T. M. A. Samadhi, “Perancangan Sistem Prediksi Churn Pelanggan PT. Telekomunikasi Seluler dengan Memanfaatkan Proses Data Mining,” Jurnal Informatika, vol. 9, no. 1, pp. 33–42, 2008.

L. N. Wakhidah, A. K. Zyen, and B. B. Wahono, “Evaluation of Telecommunication Customer Churn Classification with SMOTE Using Random Forest and XGBoost Algorithms,” Journal of Applied Informatics and Computing, vol. 9, no. 1, pp. 89–95, Feb. 2025.

F. S. Pratiwi, M. A. Barata, and A. D. Ardianti, “Implementasi Metode SMOTE dan Random Over-Sampling pada Algoritma Machine Learning untuk Prediksi Customer Churn di Sektor Perbankan,” Jurnal Sistem Informasi dan Informatika (Simika), vol. 8, no. 1, 2025.

N. Suryana, Pratiwi, and R. T. Prasetio, “Penanganan Ketidakseimbangan Data pada Prediksi Customer Churn Menggunakan Kombinasi SMOTE dan Boosting,” IJCIT, vol. 6, no. 1, pp. 31–37, 2021.

A. K. Harahap et al., “Perbandingan Akurasi Algoritma K-Nearest Neighbor dan Logistic Regression untuk Prediksi Customer Churn,” Jurnal Sentinel, vol. 5, no. 1, pp. 575–581, 2024.

A. R. P. Astawa, G. H. Martono, and Mayadi, “Penerapan Ensemble Learning dengan Hard Voting untuk Klasifikasi Customer Churn,” in Seminar Nasional CORISINDO, 2025.

Holilurrahman and M. Imron, “Implementasi Model Prediksi Churn Pelanggan Menggunakan Algoritma Random Forest pada Website Industri Telekomunikasi,” Alghoritm: Jurnal Teknologi Informasi, vol. 1, no. 1, 2025.

A. R. Y. Siregar and M. Iqbal, “Prediksi Customer Churn pada Layanan IndiHome Menggunakan Algoritma Decision Tree,” Journal of Science and Social Research, vol. 8, no. 1, pp. 204–211, 2025.

A. N. Rachmi, “Implementasi Metode Random Forest dan XGBoost pada Klasifikasi Customer Churn,” Tugas Akhir, Universitas Islam Indonesia, 2020.

R. N. S. Hakim and Asmunin, “Optimasi Algoritma Random Forest dengan Teknik Boosting dalam Prediksi Churn Pelanggan di Industri Telekomunikasi,” Universitas Negeri Surabaya.

S. T. Utomo, “Analisis Pengaruh Ketidakpuasan dan Perilaku Mencari Variasi dalam Minat Churn,” Tesis, Universitas Diponegoro.

I. M. Latief, A. Subekti, and W. Gata, “Analisis Data Pelanggan Menggunakan Pendekatan Machine Learning,” Jurnal Informatika, vol. 21, no. 1, 2021.

M. R. Zulman et al., “Temporal Pattern Recognition: A BiLSTM-Based Framework for Churn Prediction,” Journal of Artificial Intelligence and Software Engineering, vol. 5, no. 2, pp. 651–659, 2025.

S. D. Lukitasari, “Service Innovation for Customer Satisfaction of Telecommunication Companies,” ITEJ, vol. 5, no. 1, pp. 14–24, 2020.

R. W. Pertiwi, “Analisis Faktor-Faktor yang Mempengaruhi Ketidakpuasan Pelanggan dan Implikasinya Terhadap Minat Churn Indosat,” Skripsi, Universitas Diponegoro, 2015.

M. G. Saputra and B. J. Santoso, “Implementation of Feature Selection Using Boruta to Improve the Accuracy of the Lapser Prediction Model,” MALCOM, vol. 5, no. 3, pp. 886–895, 2025.

Yulianti, “Metode Data Mining untuk Prediksi Churn Pelanggan,” Jurnal ICT Akademi Telkom Jakarta, vol. 17, 2018.

A. Hermawan et al., “Membangun Model Prediksi Churn Pelanggan yang Akurat,” Merkurius, vol. 2, no. 6, pp. 67–81, 2024.

D. Maheswari et al., “Implementasi Algoritma C4.5 untuk Klasifikasi Dampak Pola Penggunaan Media Sosial,” JATI, vol. 9, no. 2, 2025.

N. P. N. Fauzi et al., “Penerapan Feature Engineering dan Hyperparameter Tuning untuk Meningkatkan Akurasi Model Random Forest,” JTIIK, vol. 12, no. 2, pp. 251–262, 2025.

R. R. Aryanto et al., “Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin,” Jurnal RESTI, vol. 5, no. 5, pp. 853–862, 2021.

I. P. Putri et al., “Comparative Analysis of Machine Learning Algorithms for Predicting Child Stunting,” MALCOM, vol. 4, no. 1, pp. 257–265, 2024.

T. A. Tutupoly and I. Alfarobi, “Identifikasi Keakuratan Data Pelanggan Menggunakan C4.5 dan Naïve Bayes,” Jurnal Teknik Informatika STMIK Antar Bangsa, vol. 4, no. 2, 2018.

J. Jeffry, S. Usman, and F. Aziz, “Analisis Perilaku Pelanggan Menggunakan Metode Ensemble Logistic Regression,” Jurnal Penelitian Teknik Informatika, vol. 6, no. 2, 2023.




DOI: http://dx.doi.org/10.22441/collabits.v3i1.37599

Refbacks

  • There are currently no refbacks.


Journal Collabits
Portal ISSNPrint ISSN: 3062-8601
Online ISSN: 3046-6709

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/collabits

e-mail: [email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.