Optimalisasi Data Tidak Seimbang Pada Data Nasabah Koperasi dalam Pemberian Pinjaman Menggunakan Random Oversampling

Richky Faizal Amir, Andreyestha Andreyestha, Imam Nawawi, Rino Ramadan

Abstract


Cooperatives have developed from time to time, in providing services, credit cooperatives certainly have certain requirements as prospective customers to receive loans. Cooperatives need to check whether interested parties will receive loans. Loans to customers are the main source of income for cooperatives. In data mining, there are several classification algorithms that can be used for credit analysis, including the Random Forest and the C4.5 Algorithm. Data on prospective customers received from cooperatives as a condition for applying for credit is processed using Random Forest data mining and C4.5 Algorithm to support credit analysis in order to obtain accurate information on whether the prospect who applies for credit is feasible or not, this study was conducted to classify loans to prospective customers. cooperative customers using the Random Forest method and the C4.5 Algorithm which is optimized by Random Oversampling because the dataset is in an unbalanced condition. In testing the C4.5 Algorithm which is optimized with Random Oversampling, it gets an accuracy of 78.03%, where the accuracy increases by 7.89% from the previous 70.14%. Meanwhile, Random Forest with Random Oversampling has an accuracy value of 87.12%, an increase of 23.69% from the previous Random Forest test of 63.43

Keywords


Imbalanced Class, Random Oversampling, C4.5, Random Forest, Cooperative.

Full Text:

PDF

References


A. B. Nugraha, “Perbedaan Saham dan Sertifikat Modal Koperasi Ditinjau Dari Kajian Yuridis Menurut Hukum Koperasi Indonesia,” J. Ilmu Sos. dan Pendidik., vol. 5, no. 4, pp. 2598–9944, 2021, doi: 10.36312/jisip.v5i4.2599/http.

I. G. T. Isa and G. P. Hartawan, “Perancangan Aplikasi Koperasi Simpan Pinjam Berbasis Web (Studi,” J. Ilm. Ilmu Ekon., vol. 5, no. 10, pp. 139–151, 2017.

E. Supriyanto and N. Ismawati, “Sistem Informasi Fintech Pinjaman Online Berbasis,” J. Sist. Informasi, Tekhnologi Inf. dan Komput., vol. 9, no. 2, pp. 100–107, 2019.

A. Sucipto, “Prediksi Kredit Macet Melalui Perilaku Nasabah Pada Koperasi Simpan Pinjam Dengan Menggunakan Metode Alogaritma Klasifikasi C4.5,” J. DISPROTEK, vol. 6, no. 1, pp. 75–87, 2015.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

Dr. T. Senthil Kumar, “Data Mining Based Marketing Decision Support System Using Hybrid Machine Learning Algorithm,” J. Artif. Intell. Capsul. Networks, vol. 2, no. 3, pp. 185–193, 2020, doi: 10.36548//jaicn.2020.3.006.

S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.

D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” J. Phys. Conf. Ser., vol. 1339, no. 1, 2019, doi: 10.1088/1742-6596/1339/1/012042.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A Comparative Analysis of Logistic Regression, Random Forest and KNN Models for the Text Classification,” Augment. Hum. Res., vol. 5, no. 1, 2020, doi: 10.1007/s41133-020-00032-0.

L. Cheng, X. Chen, J. De Vos, X. Lai, and F. Witlox, “Applying a random forest method approach to model travel mode choice behavior,” Travel Behav. Soc., vol. 14, no. August 2018, pp. 1–10, 2019, doi: 10.1016/j.tbs.2018.09.002.

V. Anestiviya, A. Ferico, and O. Pasaribu, “Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus : Sman 1 Natar),” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 80–85, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

H. Sabijono, V. Ilat, and Y. N. Makaombohe, “Rasio Likuiditas Dan Jumlah Kredit Terhadap Profitabilitas Perbankan Di Bursa Efek Indonesia,” J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 2, no. 1, pp. 617–626, 2014.




DOI: http://dx.doi.org/10.22441/format.2023.v12.i1.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Format : Jurnal Ilmiah Teknik Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Format : Jurnal Ilmiah Teknik Informatika
Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215840816
http://publikasi.mercubuana.ac.id/index.php/format

p-ISSN: 2089-5615
e-ISSN: 2722-7162

 Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

View My Stats