Klasifikasi Kematangan Buah Pepaya Berdasarkan Fitur Warna Menggunakan Metode SVM

Nur Hafiizah

Abstract


This research aims to develop a method for identifying the ripeness level of papaya based on color features using the Support Vector Machine (SVM) algorithm. In the introduction, it is emphasized that generally, the color changes in papaya skin serve as the primary indicator of ripeness, but the accuracy of human observations in distinguishing colors can sometimes be suboptimal. Therefore, this study focuses on utilizing the SVM algorithm, particularly recognized for its excellent classification capabilities, especially in image processing and classification.The initial step in the research method involves a literature review to gather the latest information on fruit ripeness classification, with a specific emphasis on color features. The subsequent steps include formulating problems and hypotheses to determine whether color-based classification methods, particularly SVM, can effectively classify papaya ripeness levels. The design and implementation phase encompass capturing papaya images using a smartphone camera, converting the images from RGB to LAB, and extracting color features using a multi-level SVM. Testing and evaluation are then conducted to assess the system's accuracy.The implementation results indicate an accuracy rate of 96%, categorizing papayas into three classifications: mature, partially mature, and immature. Evaluation metrics such as precision, recall, and F1-score provide in-depth insights into the system's performance, demonstrating SVM's capability in identifying papaya ripeness levels. In conclusion, this research successfully applies SVM as an effective method for classifying papaya ripeness based on color features, contributing to the development of an accurate and reliable automated system for fruit ripeness identification.

Keywords


Buah Pepaya,Fitur Warna,Klasifikasi,Metode SVM,Kematangan.

Full Text:

PDF

References


M. Arief, “Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Warna Menggunakan Metode SVM,” Jurnal Ilmu Komputer dan Desain Komunikasi Visual, vol. 4, no. 1, pp. 9–16, 2019.

E. Dwianto and M. Sadikin, “Analisis Sentimen Transportasi Online pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes dan Support Vector Machine,” 2021.

M. Andrea Rossi et al., “Estimasi Nilai Akhir Mata Pelajaran Komputer dan Jaringan Dasar Menggunakan Algoritma Linear Regression Berganda,” 2023.

S. Y. Putra, I. Agus, S. Fakultas, T. Informasi, and U. N. Mandiri, “Optimalisasi Overload Traffic dan Request Cloud Environment Menggunakan Metode Content Delivery Network dan Private Zone Di RCTI+,” 2023.

A. A. Permana and A. B. Prakoso, “Perancangan Sistem Informasi Antrian Jasa Service Menggunakan Metode Iteratif Berbasis Website,” 2022.

P. A. Y. W. S. I wayan Suartika E, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101, vol. 5, pp. 65–69, 2016.

J. Homepage, K. Buah Segar dan Busuk Menggunakan Ekstraksi Fitur Hu-Moment, H. dan Histogram Fani Nurona Cahya, R. Pebrianto, and T. M. Adilah, “IJCIT (Indonesian Journal on Computer and Information Technology),” 2021.

Y. W. Pamungkas, A. Adiwijaya, and D. Q. Utama, “Klasifikasi Gambar Gigitan Ular Menggunakan Regionprops dan Algoritma Decision Tree,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 1, no. 2, p. 69, Jan. 2020, doi: 10.30865/json.v1i2.1789.

P. Rosyani, S. Saprudin, and R. Amalia, “Klasifikasi Citra Menggunakan Metode Random Forest dan Sequential Minimal Optimization (SMO),” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, pp. 132–134, Apr. 2021, doi: 10.26418/justin.v9i2.44120.

S. Informasi et al., “Sistem Informasi Aplikasi Kasir Pada Koperasi RSCM Jakarta Pusat Berbasis Java,” vol.11, no.2, pp. 176-183, 2022.

J. Januraga et al., “Mendeteksi Keamanan Website SMP Negeri 1 Blahbatuh Menggunakan Metode Open Web Application Security Project (OWASP) Versi 2.11: XSS & Rate Limiting 1 I Made Agus,” vol.11, no.2 , pp. 137-144, 2022.




DOI: http://dx.doi.org/10.22441/format.2024.v13.i1.006

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Format : Jurnal Ilmiah Teknik Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Format : Jurnal Ilmiah Teknik Informatika
Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215840816
http://publikasi.mercubuana.ac.id/index.php/format

p-ISSN: 2089-5615
e-ISSN: 2722-7162

 Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

View My Stats