Sistem Otomatis Ringkasan Laporan Keuangan Berbasis PDF Menggunakan Metode NLP Transformer
Abstract
Kompleksitas dan volume laporan keuangan perusahaan yang terus meningkat menjadi tantangan bagi analis dan pemangku kepentingan dalam menginterpretasikan informasi secara cepat dan akurat. Analisis manual cenderung memakan waktu lama dan rentan terhadap kesalahan. Penelitian ini mengusulkan sistem otomatis untuk melakukan peringkasan laporan keuangan berbasis PDF dengan menggunakan metode Natural Language Processing (NLP) berbasis Transformer. Sistem dikembangkan menggunakan Python serta memanfaatkan PyPDF2/pdfplumber untuk ekstraksi teks, NLTK untuk prapemrosesan, dan model BART/T5 dari Hugging Face Transformers untuk menghasilkan ringkasan. Evaluasi dilakukan pada laporan tahunan perusahaan multinasional dengan panjang 50–200 halaman. Hasil pengujian menunjukkan sistem mampu mereduksi teks hingga 10–15% dari panjang asli, dengan nilai rata-rata ROUGE-1 = 0,72; ROUGE-2 = 0,62; dan ROUGE-L = 0,70. Ringkasan yang dihasilkan mempertahankan informasi penting seperti tren pendapatan, laba bersih, beban operasional, dan arus kas. Pendekatan ini dapat mempercepat analisis keuangan, mengurangi beban kognitif analis, serta menghasilkan ringkasan yang konsisten. Ke depan, penelitian dapat dikembangkan dengan fine-tuning model pada korpus keuangan serta integrasi analisis sentimen untuk memperkaya interpretasi manajerial.
Keywords
Full Text:
PDFReferences
Y. Dong, H. Zhao, and M. Lapata, “Towards Unified Abstractive Long Document Summarization,” Transactions of the Association for Computational Linguistics (TACL), vol. 10, pp. 1–15, 2022. doi: 10.1162/tacl_a_00449.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL-HLT, pp. 4171–4186, 2019. doi: 10.48550/arXiv.1810.04805.
Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” arXiv preprint, arXiv:1907.11692, 2019. doi: 10.48550/arXiv.1907.11692.
M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” ACL, pp. 7871–7880, 2020. doi: 10.48550/arXiv.1910.13461.
C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,” JMLR, vol. 21, no. 140, pp. 1–67, 2020. doi: 10.48550/arXiv.1910.10683.
J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization,” ICML, pp. 11328–11339, 2020. doi: 10.48550/arXiv.1912.08777.
T. Wolf et al., “Transformers: State-of-the-Art Natural Language Processing,” EMNLP (System Demonstrations), pp. 38–45, 2020. doi: 10.48550/arXiv.1910.03771.
A. Rothe et al., “Leveraging Pre-trained Checkpoints for Sequence Generation Tasks,” TACL, vol. 9, pp. 1130–1143, 2021. doi: 10.1162/tacl_a_00420.
H. Liu, Y. Chen, and X. Li, “Abstractive Summarization of Long Documents Using Machine Learning: Applications in Finance,” IEEE Access, vol. 9, pp. 140120–140133, 2021. doi: 10.1109/ACCESS.2021.3119342.
Y. Yang, J. Gao, and C. Zhang, “Domain-Specific Text Summarization in Financial Reports: A Deep Learning Approach,” Expert Systems with Applications, vol. 168, p. 114129, 2021. doi: 10.1016/j.eswa.2020.114129.
J. Xu, S. Wu, and H. Wang, “A Hybrid Extractive-Abstractive Summarization Approach for Long Financial Documents,” Applied Sciences, vol. 11, no. 23, p. 11240, 2021. doi: 10.3390/app112311240.
Y. Wu, Z. Li, and L. Wang, “Fine-tuning Transformers for Domain-Specific Financial Summarization,” Information Processing & Management, vol. 59, no. 6, p. 103063, 2022. doi: 10.1016/j.ipm.2022.103063.
A. Fabbri, W. Li, J. She, and S. Radev, “Multi-News: A Large-Scale Multi-Document Summarization Dataset and Abstractive Benchmark,” ACL, pp. 1907–1920, 2019. doi: 10.48550/arXiv.1906.01749.
A. R. Javed, S. A. Hassan, M. T. Afzal, and T. Baker, “Financial Sentiment Analysis Using Machine Learning Techniques,” Computers, Materials & Continua, vol. 68, no. 2, pp. 1935–1950, 2021. doi: 10.32604/cmc.2021.014565.
Z. Song, R. Zhao, and Y. Wang, “Summarizing Financial Reports with Pre-trained Transformers and Graph Neural Networks,” Knowledge-Based Systems, vol. 235, p. 107621, 2022. doi: 10.1016/j.knosys.2021.107621.
A. Dong, Y. Zhao, and J. Li, “Financial Text Summarization with Pre-trained Transformers: A Case Study on Annual Reports,” IEEE Access, vol. 11, pp. 45420–45433, 2023. doi: 10.1109/ACCESS.2023.3267890.
DOI: http://dx.doi.org/10.22441/format.2025.v14.i2.009
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Format : Jurnal Ilmiah Teknik Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Format : Jurnal Ilmiah Teknik Informatika
Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215840816
http://publikasi.mercubuana.ac.id/index.php/format
|

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.










