
IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 3 No 2 June 2022, 131-150 

131 

 

 

 

Optimization and Selection of Boring Process Parameters for IS 2062 

E250 Steel Plates Using Hybrid Taguchi-Pareto Box Behnken-Genetic 

Algorithm Method 
 
Yakubu Umar Abdullahi 1, Sunday Ayoola Oke1* 
1 Department of Mechanical Engineering, University of Lagos, Lagos, 101017, Nigeria 

 
ARTICLE INFORMATION  A B S T R A C T  

Article history: 

 

Received: 4 May 2022 

Revised: 24 May 2022 

Accepted: 29 May 2022 

 

Category: Research paper 

The integrated Taguchi-Pareto-Box-Behnken design (TP-

BBD) method has been recognized as an effective method 

for boring operation optimization. Yet it has further 

optimization opportunities even with less information 

availability. In this study, the genetic algorithm (GA) was 

integrated with the TP-BBD method to form a novel TP-

BBD-GA method to effectively deal with the paucity of 

boring data and generate multiple optimal solutions. 

Numerical simulation coupled with experimental data 

analysis was conducted to ascertain the effectiveness of the 

proposed method using literature data. To combine the 

procedure of the constituent methods, the authors analysed 

the literature data with the Taguchi-Pareto method. Then the 

output was used as inputs to the Box Behnken design 

method. Afterwards, linear programs with objective 

functions and constraints were formulated and introduced 

into the genetic algorithm structure and then solved using 

the python language. The results revealed that the proposed 

method exhibits good performance for boring operations as 

it predicts the best parameter i.e. speed, feed rate, depth of 

cut and noise radius values for optimal surface roughness 

values. This article offers a unique contribution to the boring 

literature since it examines an additional optimization 

procedure to the existing one. The study analyzes the 

optimization behaviour of the IS 2062 E250 steel plates in 

the boring process and gives an easy procedure for process 

engineers on improving the boring operations. 
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1. INTRODUCTION  

The prevailing practice of operators and process 

engineers in the boring industry is to seek 

optimization of resources, including those 

related to the implementation of parameters 

(Reddy et al., 2015; Nugroho et al., 2016; Izelu 

et al., 2021). Managers in the machining 

industry often weigh the likely operational cost 

of boring operations against the same cost when 

the parameters of the boring operation are 

Availableonline at: http://publikasi.mercubuana.ac.id/index.php/ijiem 

IJIEM (Indonesian Journal of Industrial Engineering & Management) 

ISSN (Print)  : 2614-7327     ISSN (Online)  : 2745-9063 

 

https://creativecommons.org/licenses/by-sa/4.0/
http://publikasi.mercubuana.ac.id/index.php/ijiem/index


IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 3 No 2 June 2022, 131-150 

 

132 

 

optimized (Atia et al., 2017). However, with the 

contemporary machining practice whereby 

dual/multiple optimization methods replace the 

recommendations of a single optimization 

method, a re-orientation of the operators and 

process engineer would radically transform the 

boring operation's performance. Unfortunately, 

a possible method of the Taguchi-Pareto Box 

Behnken approach, which may be deemed fit 

for optimizing the process machine parameters 

of the IS 2062 E250 steel plates cannot survive 

with the paucity of data (Abdullahi and Oke, 

2022). It is also unable to provide multiple 

solution points through which several feasible 

alternatives could be chosen (Abdullahi and 

Oke, 2022). Further, in the present era of 

scarcity of operational resources where 

assurance about waste avoidance is required by 

the managers of machining processes from 

operators and process engineers. Besides, the 

methods to prioritise parameters according to 

the importance of prudent resource distribution 

are essential (Atia et al., 2017). From these 

arguments, it is obvious that an optimization 

method to re-assure an already optimized 

structure for further optimization is required. In 

this context, the genetic algorithm with useful 

attributes of operating successfully in situations 

involving scarcity of data and with multiple 

solution points is introduced (Dennison et al., 

2012). In a combined form, the genetic 

algorithm is introduced to an existing method of 

Taguchi-Pareto Box Behnken to form the 

Taguchi-Pareto Box Behnken-genetic 

algorithm method.  

 

The purpose of this research is to introduce and 

tests a new method called the Taguchi-Box 

Behnken design-genetic algorithm (TP-BBD-

GA) that optimizes and selects the parameters 

of a boring process involving the use of IS2062 

E250 steel plates. The developed approach has 

the competence of optimizing the inputs, which 

are the speed, depth of cut, feed and nose radius 

while the output is the surface roughness of the 

IS 2062 E250 steel plates. The experimental 

data obtained from Patel and Deshpande (2014) 

validated the method. The contribution of Patel 

and Desphande (2014) launched an initiative in 

performance enhancement in boring for the IS 

2062 E250 steel plates using the Taguchi 

method. But Abiola and Oke (2021) probably 

discovered the negative influence of the 

inability to distinguish which of the Taguchi's 

parameters is more important than the other. 

Thus they argued that the use of three methods 

can avoid this effect. Consequently, they 

deployed the entropy, decision tree and the 

VIKOR approach to address this issue and 

illustrated the effectiveness of their method 

with the IS 2062 E250 steel plates data 

produced by Patel and Desphande (2014).  

 

Yet some other authors such as Kilickap et al. 

(2011), Abiola and Oke (2022) exposed the 

unique opportunity of synergy in combining 

methods to solve the boring problem. In 

particular, Abiola and Oke (2022) addressed the 

surface roughness minimization issue using the 

IS 2062 E250 steel plates. Thus, they 

contributed a fuzzy analytic hierarchy process 

on one part and the combination of two other 

methods on the other part. These methods are 

the Markov chain together with any of the 

weighted sum-product, weighted product 

method and WASPAS method. Still in the 

endeavor of enhancing the performance of 

surface roughness of the IS 2062 E250 steel 

plates, Abdullahi and Oke (2022) established 

two different methods each containing the 

merger of Box Behnken design with either the 

Taguchi-Pareto or the Taguchi-ABC method. 

The authors expanded previous submissions in 

the literature using the data by Patel and 

Desphande (2014) to justify the two methods 

while boring the IS 2062 E250 steel plates. 

Despite the proposal by Abdullahi and Oke 

(2022), it is felt that an enhanced optimization 

may still be achieved using a robust optimizer 

called the genetic algorithm. Therefore, using 

their results and Patel and Deshpande's (2014) 

experimental data, the scope of the present 

study is to introduce the genetic algorithm as a 

potential enhancement tool, to further enhance 

the Taguchi-Pareto Box Behnken design and 

the Taguchi-ABC Box Behnken design using 

the IS 2062 E250 steel plate with the surface 

roughness improvement in focus.  

 

By using Abdullahi and Oke's (2022) methods, 

the present study identifies what optimum 

solutions are obtainable when the genetic 

algorithm data is generated from the objective 

function formulated from the Box Behnken 

Design equation obtainable from Abdullahi and 

Oke (2022). The results were validated using 
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the regression equation as the objective function 

and running the genetic algorithm-based 

method using the coded programme from the 

Python language. Furthermore, based on the 

opinions from previous studies described in a 

state of the art review that showcases the 

differences between the previous and current 

studies, the novelty of the present research is 

stated as follows. This research explores the 

optimization behavior of the IS 2062 E250 steel 

plates under boring conditions and analyses this 

optimization attribute through the incorporation 

of the genetic algorithm into a known Taguchi-

Pareto Box Behnken design method. The chief 

novelty of this article is the development of an 

efficient method for the boring operation of the 

IS 2062 E250 steel plates. Next, a multiphase 

optimization approach using the genetic 

algorithm integration, capable of operating 

successfully where the paucity of data exists is 

created to quickly achieve optimal parameters 

and outputs for the boring operation planning. 

Besides, the superiority and effectiveness of the 

developed approach are demonstrated using the 

IS 2062 E250 steel plates machined in a boring 

process on a CNC machine.  

 

Nevertheless, for the benefits of this method, it 

could be stated that the multistage optimization 

approach incorporating initiation and mutation 

characteristics exploits the utmost benefits of 

soft computing aspects where the complicated 

and multiple computer statements are 

transformed quickly into feasible solutions for 

practical implementations (Reddy and Rao, 

2005; Sardinas et al., 2006). Besides, the other 

benefits of this new method include the 

availability of multiple optimization points for 

choices of the most robust option. Also, a 

display of interaction behavior among variables 

is an additional benefit of the method. Lastly, 

the prioritization of parameters during the 

optimization process is possible. Thus, by 

implementing this developed framework, one 

can shed new light on the optimization 

characteristics of the IS 2062 E250 steel plates 

during the boring operation. 

 

2. LITERATURE REVIEW 

Optimization of process parameters in a boring 

operation is very vital in achieving a high-

quality product of optimal surface roughness. In 

the present study, an original methodology is 

proposed to predict optimal parameters that 

could result in achieving high-quality surface 

roughness in the boring operation of E250 B0 

steel material on a CNC machine tool. The 

proposed methodology is an integration of the 

Taguchi method, Pareto principle, Box 

Behnken design approach and an evolutionary 

genetic algorithm optimization approach. In this 

section, opinions from previous studies are 

described in a state of the art to clearly show the 

difference between previous studies and the 

present study. The literature review contains the 

contents of references related to materials, 

research methods, machines used, outputs 

considered by authors and the most common 

input parameters discussed by researchers.  

 

2.1 General 

In several studies, Dave et al. (2016), Ahmad et 

al. (2005) and Zoelan et al. (2013) used 

aluminium and other alloys as test materials. 

Khundrakpam et al. (2018), Palanisamy et al. 

(2007) and Patel and Deshpande (2014) 

employed steel and their alloys as the test 

materials. Furthermore, metallic and their 

composites were deployed by Kumar et al. 

(2012) and Zain et al. (2010) as their work 

materials. From these reviews, extremely 

scanty research was conducted with the IS 2062 

E250 steel plates as it occurred only in a study. 

In that study, Patel and Deshpande (2014) the 

materials were used to establish the optimal 

parameters for minimum roughness in the 

boring activity. However, the IS 2062 E250 

material is advantageous in its many features. 

Currently, the IS 2062 E250 steel grade is 

preferred to other materials because of its 

several features such as dimensional accuracy, 

thermal stability, corrosion resistance and 

finishing. Moreover, its practical use includes 

gear housing, metal plates, industrial pipes, 

bolts and nuts. However, with an expected 

annual growth rate in volume and revenue 

forecasts and the relative paucity of reports on 

it in the literature, it was taken as the choice 

material for the present study.  

 

In the literature, different research methods 

were deployed in conjunction with a genetic 

algorithm, which is the principal addition of the 

present study to the literature. For instance, 

methods like response surface methodology, 

analysis of variance, self-optimizing adaptive 
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penalty, Taguchi method and Pareto sorting 

were integrated with the genetic algorithm 

optimization process to obtain optimal 

machining parameters for the best value of 

various output parameters (Kilickap et al., 

2011). Furthermore, other authors used genetic 

algorithms alone to obtain the optimal 

machining parameters (Saffar et al., 2009; 

Marimuthu et al., 2015; Palanisamy et al., 

2007). By thinking about the possibility of 

minimizing the experimental design cost, the 

Taguchi method is useful.  

 

Also, considering the prioritization of the 

parameters, where the possibility of increasing 

productivity and the opportunity to connect 

production errors, the Taguchi-Pareto method is 

essential. Besides, by contemplating the 

probable interfaces between parameters, the 

Box Behnken design method is useful. Thus, by 

combining Taguchi methods, Abdullahi and 

Oke (2022) revealed how new and interesting 

results may be produced. However, with a 

continuous intensive demand for improvements 

by stakeholders in manufacturing, it is useful to 

extend Abdullahi and Oke's line of thinking for 

scholars to connect the strength of these various 

methods for improved operational performance. 

In this article, the authors achieve this by 

amalgamating the genetic algorithm with the 

methods presented by Abdullahi and Oke 

(2022). This task is aimed at motivating 

researchers and process engineers in thinking 

about multi-phase optimization since the 

present article further optimizes the results of 

previous authors. 

 

Notwithstanding, the literature concerning 

machine usage considers the CNC as the main 

machine tool for verification experiments in 

different machining operations. These include 

turning, end milling, face milling, drilling and 

boring in verifying the optimal parameters from 

various analytical studies. In the following, the 

sole or combination of machining operations 

was demonstrated by the authors: boring and 

milling (Cubonova et al., 2019) and turning 

(Ganesan et al., 2011). Equally interesting are 

the varieties of machine tools used by authors in 

the literature. The CNC turning machine 

Moriseiki NV 2500 (Nugroho et al., 2016), 

CNC Batliboi Sprint (Patel and Deshpande, 

2014), universal milling machine and the 

electric discharge machine are the varieties 

employed by authors in machining. Although 

several versions of machines were used by 

authors, the CNC Batliboi Sprint used by Patel 

and Deshpande (2014) is the choice in this 

work.  

 

Besides, an important feature of the literature is 

an analysis of the outputs considered by 

authors. Common responses include surface 

roughness, drilled diameter, tool path, cutting 

force, machine power, tool life, operation time, 

material removal rate, milling force, vibration 

amplitude, production time, tool deflection, 

rake angle and burr heights. Among the 

responses, surface roughness as a single output 

was mostly used throughout the literature 

(Khundrakpan et al., 2018; Zain et al., 2010; 

Tien et al., 2020). Burr height was considered 

by Mahesh et al. (2015). Nonetheless, multiple 

outputs were considered by Ganesan et al. 

(2011), Sangwan and Kant (2017) and 

Dhavamani and Alwarsamy (2012). But surface 

roughness is a surface texture indicator 

calculated from deviations along the normal 

vector of the object's real surface against its 

ultimate mode. This output is essential to 

establish how an actual entity interrelates with 

its environment. Thus, the surface roughness 

measure may seem more important in certain 

cases than other output types. As in the present 

case of evaluating the IS 2962 E250 steel plate 

on a CNC machine, the surface roughness 

measure is adapted to be of interest to the 

present researchers. 

 

Apart, based on the machining process and 

machine tools employed by various researchers, 

the most common input parameters used for 

CNC machining are spindle speed, feed rate, 

depth of cut and nose radius (Kumar et al., 

2012). The pulse on-time current and pulse off 

time are used in electrical machining (Dave et 

al., 2016). 

 

Notwithstanding, by considering the task of 

enlarging holes developed using the casting 

process or drilling on the lathe machine, the 

boring operation has relevance to the present 

industrial economy and the current article. 

Besides, the essential characteristics and 

benefits include the following. Firstly, 

regarding efficiency, boring operations are 



IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 3 No 2 June 2022, 131-150 

135 

 

efficient and ease the whole production process. 

Consequently, a growing number of industries 

are augmenting boring machines with their 

existing facilities. Secondly, boring has a long 

lifespan. Third, during its operation, noise 

pollution and odour are avoided. Therefore, 

using the increasingly demanded IS 2062 E250 

steel plates; Patel and Deshpande (2014) 

showed the possibility of producing interesting 

outcomes from experiments. Since the IS 2062 

E250 steel plates are growing in commercial 

appeal, in this article, the authors re-examine 

the data based on the IS 2062 E250 steel plates. 

This is aimed at broadening researchers' 

understanding of the important attributes and 

optimization possibilities with the material 

using the experimental data from Patel and 

Deshpande (2014). 

 

Furthermore, as the literature search 

commenced, the researchers' attention was 

drawn to the article by Patel and Deshpande 

(2014), which tackled the performance analysis 

of the boring process while machining the IS 

2062 E250 steel plates. But it became evident 

that an important gap exists in the article 

regarding the difficulty of the Taguchi method 

in specifying which of the parameters is better 

than the rest. Thus, the present authors 

monitored the attempts by previous authors to 

bridge this gap by Abiola and Oke (2021) and 

subsequently in another article by the same 

authors. However, more striking is the approach 

by Abdullahi and Oke (2022) as it diverges 

from the two mentioned earlier articles in 

improving on the Taguchi method as opposed to 

the earlier contributors that provided solutions 

to the problem through the amalgamation of 

Markov chains and WSM, WPM/WASPAS 

(Abiola and Oke, 2022) and the joint 

consideration of three methods, namely the 

entropy, VIKOR and decision tries (Abiola and 

Oke, 2021). The unique approach conducted by 

Abdullahi and Oke (2022) amalgamated the 

Taguchi method on one side with the Box 

Behnken design and Taguchi-Pareto and Box 

Behnken design on the other side. The two parts 

of the contributions by these authors contain 

two optimization methods each, namely the 

Taguchi and the Box Behnken on one side and 

the other two optimization methods, namely 

Taguchi-Pareto and Box Behnken design on the 

other side. However, the other method 

containing the Taguchi-Pareto is capable of 

prioritizing the parameters.  

 

Besides, while progress is made in research to 

produce these methods by Abdullahi and Oke 

(2022), there is a continuous pressure mounting 

up to build more efficiency into existing friction 

stir welding processes. Although the method 

proposed by Abdullahi and Oke (2020) was 

optimized, further optimization was attempted 

by introducing the genetic algorithms into the 

proposal by Abdullahi and Oke (2020). 

Consequently, the major difference between the 

current research and the previous one is the 

introduction and demonstration of the genetic 

algorithms as a tool capable of further 

optimizing the integrated Taguchi-Box 

Behnken design and Taguchi-Pareto Box 

Behnken design method proposed by Abdullahi 

and Oke (2020). Towards the introduction of 

the genetic algorithms, an objective function 

was formed based on the box Behnken design 

outputs to be used in the codes written on 

genetic algorithm problems using python 

programming.  

 

It should be noted that for the two articles of the 

present and the previous, the same IS 2062 

E250 steel plates are used as the basis while the 

operation is the boring machining process. 

Furthermore, it is required to emphasize the 

coding of the problem using python 

programming. Previously, hand computations 

have been used by all the past researchers in the 

present study but the current article takes a 

unique turn from this practice to introduce 

programming codes in python language that 

will simplify the use of the procedures of the 

proposed method referred to as the integrated 

Taguchi-Pareto box Behnken design genetic 

algorithm. 

 

2.2 Research gap  

The proceeding section on the view of literature 

in the extant literature within the domain of 

boring operation has provided a comprehensive 

understanding of the perspectives of the 

literature. The review helped examine to what 

extent authors have impacted the literature on 

the use of optimization methods and also 

revealed how the issues of prioritization of 

factors while optimizing have not been tackled 

in most studies. The review also showed the 
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degree to which studies with sparse 

experimental data could be treated, which are 

completely ignored in most studies. Moreover, 

the search heuristic approach regarding the 

concurrent optimization, prioritization of 

factors and interaction analysis between factors 

are not found in the existing literature. This may 

reveal substantial importance in the boring 

operation's productivity, efficient control and 

economy. Also, the literature associated with 

approaches to evaluating boring operation 

optimization is less. To the authors' surprise, 

only a study on the Taguchi-Pareto-Box 

Behnken Design, which appears to be 

pioneering (Abdullahi and Oke, 2022) appears 

to be recently documented in this regard. Hence, 

it is understandable that optimization in 

concurrence with prioritization, interactions of 

factors and search algorithm in the context of 

probabilistic transition rules of genetic 

algorithm, which offers possible outcomes with 

related probabilities have not been identified. 

This is particularly true for the boring operation 

where the IS 2062 E250 plates are studied. The 

body of knowledge on boring operations has 

failed to examine the appropriate method 

necessary to provide results for boring 

operations where less processing information is 

available, the probabilistic nature of the process 

is considered and where an opportunity for a 

large set of solution space is provided. This 

could hamper the boring workshop operations 

despite the availability of skilled manpower and 

boring resources to achieve the system's 

objectives. However, it was also understood 

from the engineering literature that researchers 

deploy the combined genetic algorithm method 

with the Taguchi method, Pareto analysis and 

Box Behnken design to enhance performance. 

However, this has not been deployed to the 

boring operation's domain. No 

recommendations were offered to utilize the 

appropriate tools for hybridized optimization 

and concurrent prioritization and interactive 

analysis. In the current literature, it was 

understandable that no paper has shed light on 

the complete effort to improve performance 

using the Taguchi-Pareto-Box Behnken-genetic 

algorithm.  

 

3. METHOD 

 

3.1 Terminologies used in the boring 

operation and optimization 

In this article, a new method for the 

optimization of boring activities is presented. 

Nonetheless, some terminologies were used, 

which relate to both the boring operation of the 

IS 2062 E250 steel plates on the CNC machine 

and the methods used. The meanings of these 

terms are explained in the present section. 

 
Term Description 

Mutation an operator that generates offspring chromosomes from a chromosome to maintain 

randomness in the process and to prevent premature convergence. 

Mutation probability the probability that indicates the amount of mutation that may take place in a set of 

chromosomes. The mutation probability is usually chosen to be low in optimization 

processes to prevent over-randomness in the process. For instance, if the mutation 

probability is chosen as 0.2, this means that mutation of 20% of a set of the 

chromosome is likely to take place. 

Crossover an operator that generates offspring from a population of parent chromosomes. It is 

implemented by swapping the chromosomes of two randomly selected parent 

chromosomes in the population of chromosomes at the cutting or swapping point. 

It is randomly selected too to give to two offspring. 

Cut off point is a randomly selected point at which crossover or interchanging of chromosomes 

in a population takes place in a crossover operation. 

Crossover probability the probability that determines if a crossover would take place or not, is usually 

fixed high, to increase the chances of its occurrence. It comes to play by randomly 

selecting a number between 0 and 1, if the selected random number is less than the 

chosen cross over probability, cross over takes place else it does not occur. 

Bits the encoded real parameters or factors into the binary parameter of 0s(zeros) and 

1s(ones). They represent the chromosomes. 

Parents are best performing chromosomes in a population from which new solutions 

(offspring) are generated. 
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Offsprings are newly generated solutions in a population, produced through the mutation and 

crossover operations. 

Iteration the number of times an algorithm is performed to reach the desired objective is also 

termed generation in the population-based optimization process. 

Convergence the description of how the values of a process tend to behave in the same way over 

a fixed number of iterations. 

Convergence rate the rate at which convergence occurs is how fast a process tends to converge in a 

given maximum number of iterations. A fast convergence rate converges earliest in 

iteration and vice versa. 

Signal to noise ratio the ratio of the information-carrying signal compared to the undesirable 

interferences (noise).it is of three distinct types; which are lower the better, nominal 

the best and greater the better. 

Optimized parameter the global best solution vector that results in the convergence of process 

optimization. 

Surface roughness a measure of how much deviation of a surface texture from its usual form. Where 

deviation is large then the surface is considered rough and vice versa. 

Input parameter a set of data that is introduced into a function, they can be referred to as independent 

variables in a process. 

Output parameter the result of the activity of a function to which input parameters were deployed. 

 

3.2 Procedure for the implementation of the 

proposed method 

In Table 1, a detailed description of the 

procedure and working of the TP-BBD-GA 

method is clearly explained. Here, the objective 

function from the concept of linear 

programming is generated and the search space, 

which is the constraints of each parameter is 

established. This is followed by initializing all 

algorithmic parameters of the genetic algorithm 

such as the crossover probability, mutation 

probability, the population size, the number of 

bits and the maximum number of iterations. The 

following is the procedure for the 

implementation of the proposed method:

 
Table 1. Procedures for the TP-BBD-GA approach 

Step 1a Scenario 1: Generate an objective function from the optimized parameter using the Pareto-Box Behnken 

design approach part of the work of Abdullahi and Oke (2022), using the concept of linear programming. 

For instance, assuming the optimized parameter from the Box Behnken design approach were 50 rpm of 

spindle speed, 0.002 for feed rate, 0.01 for depth of cut, 0.0 for nose radius. Using the linear programming 

concept we have the objective function generated as Equation (1), 

F(x) = 50S + 0.002F + 0.01 DC + 0.0 NR                                                             (1) 

Scenario 2: Use the regression equation in the Pareto-Box Behnken design approach part of the work of 

Abdullahi and Oke (2022) as the objective function 

Step 1b  Generate constraints for the objective function from the bounds of each parameter i.e. the upper and lower 

bounds. Take for instance the experimental value is in three-level of the four parameters under 

consideration. Say the speed parameter for the three-level of the experiment are 15rpm for level one, 35rpm 

for level 2 and 60rpm for level 3. Therefore, the constraint for the speed parameter would be generated as 

15 ≤ S ≤ 60. The same process is followed to generate constraints for the feed rate, depth of cut and nose 

radius parameters. Assume the constraint for the feed rate parameter is 0.001 ≤ F ≤ 0.005 and that of the 

depth of cut is 0.005 ≤ DC ≤ 0.03, while that of nose radius is also assumed to be 0.0 ≤ NR ≤ 0.006. 

Step 2a Set or initialize the population size of chromosome to be considered. Take for example the population size 

to be 4, i.e. there are 4 different chromosomes in the population, which are represented by a binary number.  

Step 2b Set a constant number of bits for each factor or parameter under consideration for all chromosomes in the 

population, for instance, take the number of bits to be 4. 

Step 2c Set the crossover probability and the mutation probability i.e. the probability that determines if crossover 

and mutation would take place in the chromosome population respectively. Say for instance the crossover 

probability and the mutation probability are set as 0.5 and 0.2 respectively. 

Step 2d Set the number of generations or iterations to be considered in the algorithm. For instance, 5 iterations or 

generations are to be considered. 

Step 3a Randomly select four bits of binary numbers throughout the population. For each of the factors in 

consideration, note that the compositions of each chromosome in the population are the factors under 

consideration i.e. speed, feed rate, depth of cut and nose radius. Therefore, each factor in the chromosome 

must have 4 binary numbers throughout the population. For example, a chromosome can be represented as 

thus [1101  0011  1010  1110]. That is the first group of a four-bit binary number, which represents the 
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speed parameter. The second group of a four-bit binary number represents the feed rate parameter while the 

third group represents the depth of cut parameter. Lastly, the fourth group of four binary numbers represents 

the nose radius parameter. Likewise, the rest of the chromosome in the population is presented in the same 

way.  

Step 3b Decode all the binary numbers in the population from base 2 to base 10 real numbers. Therefore, there will 

be four real numbers each in all the chromosomes in the population. For instance, decoding a chromosome 

in the population may result as thus: [12  7  15  1] where 12 represents the decoded binary number of the 

speed parameter, 7 represents the decoded binary number for the feed rate parameter, while 15 represents 

the decoded binary number for the depth of cut parameter, lastly, 1 represents the decoded binary number 

for the nose radius parameter, respectively. The same should apply to the rest of the chromosomes in the 

population.  

Step 3c Find the actual number of each decoded real number in the population using Equation (2)  

)(
12

minmax
min Dv

xx
xx

n


−

−
+=                                                                                   (2) 

where xmin is the lower bound for the parameter in view, xmax represents the upper bound for the 

parameter studied, n is the number of bits while Dv is the decoded value. 

Recall that from the example in step 3b, the first decoded value for the speed parameter is 12. 

Thus, in computing the actual value, substitute all appropriate values into Equation (2) for the 

speed parameter, i.e.  

51)12(
12

1560
15

4
=

−

−
+=x                             

This represents the actual value of the speed parameter in the above chromosome instance. Use 

the same process to compute actual values for the remaining decoded values in the chromosome 

and throughout the population. 

Step 4 Compute the fitness value of the population by substituting it into the objective function. For instance take 

a chromosome in the population to be [51,0.004,0.01,0.02], where 51,0.004,0.01, and 0.02 represents the 

actual value obtained from the decoded value of the speed, feed rate, depth of cut and nose radius, 

respectively, in a population. Now, these values are substituted into the objective function generated in step 

1a, yielding F(x) =50 x 51+ 0.02 x 0.004 +0.01 x 0.01 +0.0 x 0.02, which gives 2550.0202 as the fitness 

value of this [51, 0.004, 0.01, 0.02] chromosome in the population. By so doing, all fitness values of 

chromosomes in the population are computed. 

Step 5a Conduct tournament competition between two randomly selected chromosomes in the population four times 

(i.e. the population size) with different contending mates each time. Use their fitness value to contend to 

populate the mating pool with four winners, and eliminate the weakest chromosome in the population. For 

example, take the fitness values of the chromosomes in the population as 2550.0202 P1, 2003.0102 P2, 

2367.9001 P3, 2451.1103 P4
. Then randomly select two pairs of chromosomes as P2 and P4, P1 and P2, P1 

and P4, P2 and P3. The next activity is to compare the fitness value of each pair and keep our objective of 

minimization in mind i.e. the lower fitness value is more desirable to our course of finding optimal 

parameters which would lead to the lowest surface roughness. Therefore, the winners are introduced into 

the mating pool as thus; mating pool [2003.0102P2, 2367.9001P3, 2451.1103P4, 2003.0102P2]. Note that P1 

being the weakest in the population is eliminated while P2 being the strongest in the population appears 

twice in the mating pool. 

Step 5b The binary number corresponding to the fitness value of chromosomes in the matting pool is considered as 

the parent population i.e. the fitness value in the mating pool is traced back to the various binary numbers 

that gave rise to them. For instance, the binary number corresponding to 2003.0102P2 could be traced back 

to [1101 1111 0000 1010]. This is done for all the fitness values in the mating pool to give rise to four sets 

of binary chromosomes. 

Step 6 Generate a random number between 0 and 1. If this number is less than the crossover probability then 

crossover would take place in the population of chromosomes. But if otherwise, the crossover would not 

occur in the population. Recall that our chosen crossover probability is 0.5 and taking the generated random 

number as 0.3, therefore, in this case, the crossover would take place. In applying crossover, select two pairs 

of parent chromosomes randomly then randomly choose a crossover point (i.e. when considering a single 

point cross over) from which the crossover would take place. Then all binary numbers after the crossover 

point are swapped between the two pairs of parent chromosomes. For example, consider this pair of 

chromosomes; 

[1101 1111 0000 1010]  

[1101 1101 0110 1010] 

Taking the crossover point to be at the 5th bit in both chromosomes, i.e. 

[1101 1111 0000 1010] 

[1101 1101 0110 1010] 
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Then exchanging all the bits after the crossover point in the two-parent chromosomes, gives 

[11011101 0110 1010] 

[11011111 0000 1010] 

This same crossover procedure is applied to the second pair of parent chromosomes in the 

population. After the cross over, the resulting chromosomes are referred to as the offspring, and 

together, the offspring population. 

For example, the offspring population could be 

[11011101   0110   1010] 

[11011111   0000   1010] 

[01011100   0111   1010] 

[10011100   0011   1010] 

Step 7 Conduct mutation of the offspring population based on the mutation probability chosen i.e. 0.2. The 

mutation is conducted by generating random numbers between 0 and 1 based on the number of bits 

considered in a chromosome. Each random number generated is attached to every bit in the chromosome. 

For instance, take the first chromosome in the population of the offspring and attach 16 randomly generated 

numbers between 0 and 1 to each bit in the chromosome as thus: 

 

[1      1     0    1     1      1      0    1     0     1     1    0    1      0     1    0]  

[0.1  0.4  0.6 0.2  0.7   0.5  0.1  0.9 0.8  0.1   0.3 0.2  0.1  0.9  0.2 0.5] 

 
Considering the mutation probability of 0.2, the mutation process is such that if the random number attached 

to a particular bit is less than the mutation probability that bit is changed, i.e. if it were 0, it is changed to 1 

and if it were 1 it would be changed to 0. Applying mutation on the chromosome above, we have a mutated 

version of the chromosome as thus [0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0] which represents a stronger offspring 

chromosome. Therefore applying the mutation process on the whole chromosome is the population to yield 

a stronger offspring population. 

Step 8 Repeat step 3b to step 4 on the mutated offspring population above. Recall that each chromosome is a group 

of four bits each representing four factors under consideration, i.e. a chromosome in the population must 

have 16 bits of binary numbers. Executing step 3b to step 4 on the offspring population would result in 

having four fitness values of the offspring population computed. For instance assuming [52, 0.002, 0.02, 

0.004] actual chromosome values resulted in a fitness value of 2600.000204, [40, 0.003, 0.01, 0.002] actual 

chromosome values also result in a fitness value of 2000.000106, while  [46, 0.001, 0.04, 0.001] actual 

chromosome values resulted in a fitness value of 2300.000402 and lastly [30, 0.005, 0.03, 0.006] actual 

chromosome values resulted in a fitness value of 1500.00031. With our objective of minimization in mind 

and comparing the fitness values, the lowest is 1500.0031 which represents the best fitness value in the 

population, its corresponding actual chromosome values are [30, 0.005, 0.03, 0.006] which represents the 

optimal solution in the first generation or iteration to be considered, where 30, 0.005, 0.03, 0.006 are the 

optimal speed, feed rate, depth of cut and nose radius parameter respectively. 
Step 9a Use the µ +ʎ strategy to combine the initial population with their respective fitness values with the offspring 

population and their respective fitness values Here, the initial population and its corresponding fitness values 

are placed above while the population of offspring and its corresponding fitness values are placed below 

(Note that the initial population and offspring population should be both in binary chromosome form). 

Step 9b Compare the fitness values of the combined population and select the four smallest fitness values since our 

objective is minimization, to generate a new population i.e. the binary chromosomes that correspond to the 

four selected fitness values would now represent a new population used for the next iteration or generation. 

This signifies the end of the first iteration.  

Step 10 Repeat step 3b to step 9b on the new population each time till the set number of generations or iterations is 

reached. 

Step 11 The genetic algorithm optimization approach explained above is then coded using the python 

programming language. 

Step 12  Report results from the two scenarios outputted from the python coded genetic algorithm optimization 

approach  

 
Furthermore, the flowchart of the research method is shown in Fig. 1. 
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Fig. 1. Flowchart of the research method  

 

4. RESULTS AND DISCUSSION 

The Taguchi-Pareto-Box Behnken approach in 

a previous study is extended to include genetic 

algorithm optimization to further optimize the 

parameters in the boring Process of IS 2062 

E2500 Plate on a CNC machine. This is done by 

creating an objective function from the 

optimized parameters of the Box Behnken 

design approach from Minitab software. This is 

followed by generating the constraints for the 

objective function from the bands of the 

parameters. With the objective function and its 

constraints, one can proceed to the genetic 

algorithm procedures, generation of the 

objective function and its constraints. The 

output obtained from the Box Behnken 

approach in the Minitab software is speed, feed 

rate, depth of cut and nose radius. This 

represents the optimized parameters at the end 

of the Box Behnken approach, from which the 

objective function is generated; they serve as 

the coefficient in the objective function while 

their various abbreviated names stand as the 

variable names of the function.  

The objective function generated is stated in 

Equation (3): 

  

F(x) = 1090.9091S + 0.06F + 1.250DC + 

0.6061NR  (3) 

 

where: 

S is the speed, F is the feed rate, DC is the depth 

of cut and NR is the nose radius  

 

The constraints serve as the bounds of the 

various parameter for example the speed 

parameter ranges between 800 to 1400, so the 

constraint of the speed parameter is: 800 ≤ S ≤ 

1400, the Sam applies to feed, depth of cut, nose 

radius, their constraints are given in Equation 

(4) to (6), respectively 

0.06 ≤ F ≤ 0.12   (4) 

1 ≤ DC ≤ 1.5    (5) 

0 ≤ NR ≤ 1.2    (6) 

 

Scenario 1(Generate objective function 

from the optimized parameters in the Box 

Behnken part of the work of Abdullahi 
and Oke (2022) using the concept of 

linear programming) 

 

Scenario 2 (Use the regression equation 

in the Box Behnken part of the work of 

Abdullahi and Oke (2022) as an 

objective function. 

Generate constraints for each 

parameter using the lower and 

upper bounds of each parameter 

Initialize population size and other 

user-defined constants, i.e.numbers 

of bits, crossover probability and 
mutation probability. 

Generate the initial population 

of binary chromosomes based 

on the above-chosen 
parameters. 

Decode all the binary 

chromosomes representing 

each parameter in the 
optimization problem into base 

10 real numbers. 

Compute the 

actual values 

of each 
decoded real 

numbers 

Compute the fitness 

values of the population 
by substituting them 

into the objective 

function accordingly. 
 

Conduct a 

tournament selection 

process between 
members of the 

population to select 

the parent. 

Apply the crossover 

operator to conduct 
the crossover 

process. 

Apply the mutation 

operator to conduct 
the mutation process 

 

Decode the newly 

generated offspring 

which is in binary 
numbers into real 
numbers in base 10. 

Compute the actual 

value of each decoded 
real number of the 

newly generated 

offspring. 

Compute the fitness 
value of the actual 

values of the newly 

generated offspring 
by substituting into 

the objective function 

accordingly. 

Using the µ+ʎ 
strategy to 

generate a new 

population for the 

next generation 

Repeat the procedure 
on the new population 

till the set number of 

iterations or generations 

is reached 
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4.1 Genetic algorithm optimization 

procedures   

The genetic algorithm is an optimization 

method which aims to mimic the natural 

selection of good traits or genes and discarding 

of bad traits or genes in nature or the human 

body.  

1. The procedure starts with the initialization of 

the population size to be considered and other 

user-defined constants like the numbers of bits, 

probability of crossover or crossover 

probability, mutation probability, and iteration 

number:  

n, number of bits  = 5 

Np, Population size  =  4 

Pc, Crossover probability =  0.8 

Pm, Mutation probability =        0.3  

2. For genetic algorithm illustration purposes, 

randomly select 17 bits of binary numbers, for 

the chosen population size, for each parameter, 

so each parameter would have four sets of 5bit 

binary numbers as follows: 

 
       S              F     DC NR 

   10101      11001      11111      10110 

   01100      01101      00111      00100 
   11100      10001      11101      01011 

   01110      00001      10101      11110 

 
3. Decode all the binary numbers in each 

parameter or population into base 10 i.e. real 

number so we have four different real numbers 

in each parameter as below.  

 
P0 =  21          25 31         22 

12         13 7           4 

28         17 29         11 
14         1 2 1        30 

 
4. The actual value of each decoded number is 

determined using Equation (2): 

)(
12

minmax
min Dv

xx
xx

n


−

−
+=                     (2)                                                                           

 

where xmin is the lower bound for the parameter 

in view, xmax represents the upper bound for the 

parameter studied, n is the number of bits while 

Dv is the decoded value. 
 
The actual value were computed as thus,  
PA =   
    1206.452    0.108387    1.5                0.851612903 

    1031.258    0.06        1.112903226      0.15483871 

    1341.935    0.06        1.467741935      0.425806452 
    1070.968    0.06        1.338709677      1.161290323 

 

5. The fitness value is computed for each 

population as thus. For example  

F(x) = 1090.9091 (1206.452) + 0.06 (0.108387) 

+ 1.250 (1.5) + 0.6061 (0.851612903) = 

1316131.863 

This represents the fitness value for the first 

population. 

 

6. Tournament is then conducted between two 

randomly selected populations, four times, with 

different mates each time using their various 

fitness values to contend. To populate the 

matting pool with 4 four winners and do away 

with the weakest population as thus.  

The fitness value for each population is: 
1316131.863 P1 

1126101.134 P2 
1463931.119 P3 

1168331.118 P4 

 
P2 = 1126101.134 
P4 = 1168331.118 

 

P1 = 1316131.863  
P3 = 1463931.199 

 

P1 = 1316131.863 
P4 = 1168331.118 

 

P2 = 1126101.134 
P3 = 1463931.199 

 
The first tournament is between P2 and P4 the 

population with the lowest. The fitness value is 

the winner, which means making it to the 

mating pool. Comparing P2 and P4, P4 is the 

winner of the tournament, so it made it to the 

mating pool. This process is repeated for all 

pairs and the winners are introduced to the 

mating pool. Note that P3 as the weakest in the 

population did not make it to the pool.  

 

7. The binary numbers corresponding to the 

fitness values of the populations in the mating 

pool are then considered as the parent 

population, as thus:  
Parent population 

    

        10101     11001 11111    10110 

        01100     01101 00111    00100   

        01110     00001 10101    11110 
        01100     01101 00111    00100 

 
8. Applying one point crossover method to pairs 

of the population based on the crossover 

probability 0.8 to form the population of 

offspring. For example, 

Mating pool 

P2 = 1126101.134 

P1 = 1316131.863 
P4 = 1168331.118 

P2 = 1126101.134 
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10101     11001     11111     10110 
01100     01101     00111     00100  

01110     00001     10101     11110 

01100     01101     00111     00100 

 
Beyond the crossover point, the bits are 

swapped as thus, to create the offspring 
             offspring population 
              10100     01101     00111     00100 

              01101     11001     11111     10110      
              01110     01101     00111     00100 

              01100     00001     10101     11110 

 
9. Conducting mutation of the offspring based 

on the mutation probability 0.3 as thus:  

Select randomly 20 different numbers between 

0 and 1, each of which is attached to the 20 bits 

in a population.  
        1.010001101  00111 00100  
bits 0.3  0.5  0.1  0.2  0.6  0.5  0.9  0.7  0.3  0.3       

       0.1  0.0  0.9  0.0  0.6  0.2  0.1  0.7  0.9  0.9 

 
Since the chosen mutation probability is 0.3, all 

random numbers less than 0.3 corresponding to 

each bit is changed or altered i.e. If it were 1, it 

is changed to 0 and If it were 0, is changed to 1, 

the process is called the mutation process.  

This results in the offspring:  
1001001101         11101 11100 represents the 

offspring after mutation.  
The process is repeated for the rest of the 

offspring population and it result in the 

following:  
           Offspring after mutation 
         10010     01101     11101     11100 

         01101     11000     10110 10101       
         01111     01110     00110 00110 

         01101     00001     10001 11110 

10. The offspring population is then decoded 

as thus: 

 
     18     13     29     28 

     13     24     22     21         =  00 

     15     14      6       6 
     13     1      17     30 

 
11. Actual value of decoded value is computed 

and results in the following: 

 
1148.387      0.0852      1.4677      1.0839 

1051.613      0.1065      1.3548      0.8129 
1090.321      0.0871      1.0968      0.2323 

1051.613      0.0619      1.2742      1.1613 

 

12. Computing the fitness value of the actual 

offspring’s decoded value by substituting into 

the objective function as thus: 

 

The first offspring population for example is 

computed as: 

F(x) = 1090.9091 (1148.387) + 0.06 

(0.0852) + 1.250 (1.4677) + 0.6061 (1.0839) = 

1252788.325 

 

This represents the fitness value of the first 

offspring population. The fitness values are 

then computed for the rest of the offspring 

population in the same way thus yielding  
 
     1252788.325 

     1147216.384 

     1189442.618 
     1147216.492 

         
         (1051.613, 0.0852, 1.4677, 1.0839)

  

 
13. Using the µ +ʎ strategy, we combine the 

initial population and the offspring population 

as follows:  
10101     11001     11111     10110          1316131.863 

01100     01101     00111     00100    P0  1126101.134 
11100     10001     11101     01001          1463931.119 

01110     00001     10101     11110          1168331.118 

 
10010     01101     11101     11100          1252788.325 

01101     11000     10110     10101     O  1147216.384 

01111     01110     00110     00110          1189442.618 
01101     00001     10001     11110          1.147216.492 

 
14. Next is to pick the first four biggest fitness 

values of the combined population. These are 
     1126101.134 

     1147216.384 
     1147216.492 

     1168331.118 

The bit population corresponding to these 

fitness values becomes the new population or 

generation i.e.  
     01100 01101     00111     00100 
     01101 11000     10110     10101 

     01101 00001     10001     11110  

     01110 00001     10101     11110 

 
The above procedure is repeated on the new 

population till the set number of iterations is 

reached. The genetic algorithm procedure is 

then coded with a python programming 

language for accuracy and ease of computing 

large iterations numbers. Some user-defined 

variables used in the python coded genetic 

algorithm program are maximum iteration = 50, 

Crossover Point  

Crossover Point  

The minimum fitness is 

1147216.384 and its 

corresponding optimal 
solution in the first iteration 
is:  
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Bits = 100, Population size = 200, Crossover 

rate = 0.8 and Mutation rate = 0.3 

Table 2 shows the result of the genetic 

algorithm from the python code.  

 

Table 2. Genetic algorithm data when the objective function is generated using optimized Box 

Behnken design parameters 
Iteration Optimal Solutions 

1 [806.3112017890312, 0.06853017828708838, 1.1244688186350014, 0.6577763076899129] 

2 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

3 [806.3112017890312, 0.06852974312774945, 1.1794134895833177, 0.6577763076899129] 

4 [806.3112017890312, 0.07034109137302588, 1.1244689743550462, 0.6577763076899129] 

5 [803.9786965106678, 0.09315552528565782, 1.0679278206718763, 0.3876489115813109] 

6 [802.7837100344519, 0.09917560815126998, 1.340941670972866, 0.29745054051285336] 

7 [806.3112017890312, 0.07034109137302588, 1.124468818636553, 0.8837651129839498] 

8 [806.3112017890312, 0.06852974313010786, 1.179413489583316, 0.6577763076899129] 

9 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763078472952] 

10 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

 The Best chromosome fitness value at end of the 10th iteration is 875765.917 

11 [808.6661965106678, 0.09315552528565782, 1.0679278206718763, 0.3876828729306819] 

12 [806.3112017890312, 0.07034109137302588, 1.124468818636593, 0.6577763076899129] 

13 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

14 [806.3112017890312, 0.06852974312774944, 1.179095283480303, 0.8837597029022295] 

15 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.88375970290201] 

16 [806.3112017890312, 0.06852974312774944, 1.1794134884643719, 0.8837597029022295] 

17 [806.3112017890312, 0.0685370673462385, 1.1794134895833177, 0.6577763076899129] 

18 [806.3112017890312, 0.06852974312774944, 1.1794134895832609, 0.6577763076899129] 

19 [806.3112017890312, 0.06852974312792506, 1.1244665901692552, 0.6577763076899129] 

20 [806.3112017890312, 0.06852974312774944, 1.124468818636553, 0.6577763076899129] 

 The Best chromosome fitness value at end of the 20th iteration is 875765.917 

21 [806.3112017890312, 0.06852974312774944, 1.124468818636553, 0.6577763076899129] 

22 [808.6661965106678, 0.09315552528565782, 1.0679278206718763, 0.3876828729306819] 

23 [806.3112017890312, 0.06852974309867571, 1.124468818629277, 0.8839481826899128] 

24 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.8837597027448493] 

25 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

26 [806.3112017890312, 0.06852974312774944, 1.179413489583204, 0.6577763076899278] 

27 [806.3112017890312, 0.06852974312774944, 1.1794134828764364, 0.8837597029022295] 

28 [806.3112017890312, 0.06853200934177589, 1.124468818636553, 0.8837597027625311] 

29 [806.3112017890312, 0.07034109137302588, 1.124468818636553, 0.6577763076899129] 

30 [806.5402442995863, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

  The Best chromosome fitness value at end of the 30th iteration is 875765.917 

31 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

32 [806.3112017890312, 0.06852974312774944, 1.124468818636553, 0.8839481826899128] 

33 [806.3112017890312, 0.06852974312774944, 1.179413489628525, 0.6577763076899129] 

34 [806.3112017890312, 0.06852974312774943, 1.124468818636593, 0.6577763076899129] 

35 [806.3112017890312, 0.07034109137301398, 1.1794134895833177, 0.6577763076899129] 

36 [806.3112017890312, 0.0703410911785822, 1.1794134895833177, 0.6577763076899129] 

37 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

38 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

39 [806.3112017890312, 0.06852974312774945, 1.124468818636553, 0.6577763076899129] 

40 [806.3112017890312, 0.06852974312774944, 1.1794133703740282, 0.6577763076899129] 

  The Best chromosome fitness value at end of the 40th iteration is 875765.917 

41 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

42 [806.3112017890312, 0.06852974312776136, 1.124468818636553, 0.6577763076899129] 

43 [806.3112017890312, 0.07034109137302588, 1.1794134895833177, 0.6577763076899129] 

44 [806.3112017890312, 0.06852974312774944, 1.1794134895833177, 0.6577763076899129] 

45 [806.3113624636488, 0.07034109137302588, 1.124468818636553, 0.8837597029022295] 

46 [806.3112017890312, 0.06846609137302588, 1.1794134895833177, 0.6577763076899129] 

47 [806.3112017890312, 0.06852974312774944, 1.1794134893956945, 0.6577763076899129] 

48 [802.7837100344519, 0.09917560815126998, 1.3409416709781485,0.06981382176285335] 

49 [806.3112017890307, 0.07034109137415993, 1.1794134895833177, 0.6577763076899129] 

50 [806.3112017890307, 0.07034109137302588, 1.124468818636553, 0.6577763076899129] 

 The Best chromosome fitness value at end of the 50th iteration is 875765.917 

Optimal 

solution 

[802.7837100344519, 0.09917560815126998, 1.3409416709781485,   0.06981382176285335]. 

This is interpreted as a speed of 802.78, feed of 0.09, depth of cut of 1.34 and nose radius of 
0.07 

Note: Iteration = 50, Bits = 100, Population size = 200, Crossover rate = 0.8 and Mutation rate = 0.3 
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In addressing the issue of the behavior of the 

results obtained in this article and comparing it 

with the literature, it is interesting to discuss 

how the genetic algorithm behaved in this case 

application. Points of interest include the fast 

convergence attribute and the high 

computational speed of the procedure. For the 

convergence rate, the researchers are interested 

in knowing the iteration at which the results 

stop changing. To the knowledge of the 

researchers, convergence may occur when the 

input parameter stops changing. This may result 

in the outputs not changing also. The 

convergence rate was quite fast such that it 

happens at the first iteration. This is because the 

population of 200 and the number of bit of 100 

were used in the study. Furthermore, it is known 

that working with some evolutionary methods 

takes time to compute the optimal solutions. 

However, the experience obtained in running 

the data shows high computational speed on a 

computer of processor speed 2.3 Hz, 4 

gigabytes RAM, system size of 64-bit operating 

system and the Windows Edition of Window 10 

home while the hard disk is 500 gigabytes. 

From Table 2, the best fitness value is 

875765.917 and the corresponding best solution 

is 802.7837 for speed, 0.0992 for feed rate, 

1.3409 for depth of cut and 0.0698 for nose 

radius. Fig. 2 shows the behaviour of the 

programme after specific iterations.

 

 

 

Fig. 2. Plot when the objective function is generated by optimized BBD parameters 

  
To conclude, the optimized parameters from the 

box Behnken part of the present work which 

were 1090.9091 for speed, 0.06 for feed rate, 

1.250 for depth of cut and 0.6061 for nose 

radius, were all further optimized by generating 

an objective function from the optimized 

values, which is then used for further analysis 

using genetic algorithm approach, which 

resulted in the results:  Speed is 802.7837, Feed 

yields 0.0992, Depth of cut gives 1.3409 and 

Nose radius is obtained as 0.0698. The results 

show complete disagreement in that the optimal 

solution is both approaches are not the same but 

are in a similar range of numbers.  

 

4.2 Regression equation (objective function) 

used for GA 

The regression equation generated by the Box 

Behnken design approach part of the current 

study from the Minitab software is given by 

Equation (7): 

 

SNR = -69.3+0.0233 x speed – 3 x feed + 2.5 x 

depth of cut +10.92 x Nose radius – 0.00010 x 

speed x speed + 35 x feed X feed -1.01 x depth 

of cut x depth of cut -7.72 x Nose radius x Nose 

radius -0.0000 x speed x feed +0.0000 x speed 

x Depth of Cut – 0.000092 x Nose radius -0.0 x 

feed x depth of cut -9.2 x Feed x Nose radius + 

0.0 x Depth of cut x Nose radius                   (7) 



IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 3 No 2 June 2022, 131-150 

145 

 

This regression equation was used as the 

objective function in the python coded genetic 

algorithm optimization, where the bounds of 

each parameter are the constraints of the 

regression equation i.e.   

800 ≤ S ≤ 1400   (8) 

0.06 ≤ F ≤ 0.12   (9) 

0 ≤ NR ≤ 1.2   (10) 

1 ≤ DC ≤ 1.5   (11) 

 

The following are outputs when the regression 

equation from the Box Behnken design 

approach part of the current study is used as the 

objective function in the python coded genetic 

algorithm optimization approach when 

population size is 200, several bits is 100, 

maximum iteration is 50, crossover rate is 0.8 

and mutation rate is 0.3. 

The number of iterations was plotted against 

the best or maximum objective function values 

at the end of each iteration (Fig. 3).

  

 

 

Fig. 3. Genetic algorithm when regression equation is used as the objective function 

 

To conclude, the regression equation from the 

box Behnken design approach part of the 

current studies is used as the objective function 

using the bounds of each parameter as 

constraints for the regression equation in the 

python coded genetic algorithm for the present 

work which resulted in the following (Table 3): 

The speed parameter was optimized to 

1128.3867 the feed rate was optimized to 

0.0610, the depth of cut was optimized to 

1.4241, and lastly the nose radius was optimized 

to 0.6024. 

 

  

Table 3. Genetic algorithm data when regression equation was used as the objective function 
Iteration Optimal solutions 

1 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

2 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

3 [1181.1657581946051, 0.06613258204223611, 1.36946483436625, 0.5512075358320482] 

4 [1112.405227958149, 0.07159251014246057, 1.4523538407402263, 0.5931165856034069] 

5 [1181.1657581945904, 0.06613258204223611, 1.36946483436625, 0.541702682261272] 

6 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

7 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

8 [1145.9297576684646, 0.06218635396655763, 1.1887081065841083, 0.5120491779223741] 

9 [1122.3945527044639, 0.06102202171021221, 1.42405716024528, 0.6024019611953872] 

10 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940912343] 

  The Best chromosome fitness value at end of the 10th iteration is -51.470 

11 [1161.580206933474, 0.07999764433908133, 1.1688630882697963, 0.5812429982349516] 

12 [1119.5721312134945, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 
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Table 3 (Cont’d). Genetic algorithm data when regression equation was used as the objective function 
Iteration Optimal solutions 

13 [1145.9297576684646, 0.06218635396655763, 1.197922379499772, 0.5120491779223741] 

14 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940928485] 

15 [1161.580206933474, 0.07999647530502633, 1.1688630882697963, 0.5812422400569364] 

16 [1145.9297576684646, 0.06218635396655763, 1.0104223795004328, 0.5120491779223741] 

17 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

18 [1068.4996651426716, 0.06661027882842234, 1.2279069718374507, 0.5775469429932851] 

19 [1122.3946435053535, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

20 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

  The Best chromosome fitness value at end of the 20th iteration is  -51.470 

21 [1194.5721312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929396] 

22 [1128.3866791693076, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

23 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

24 [1112.4052286625283, 0.09637394452288814, 1.3981088456230388, 0.5931165856034069] 

25 [1100.8221312134901, 0.0705407437519141, 1.2083608569421385, 0.5684125940929167] 

26 [1068.4996651426716, 0.06661027882842234, 1.2279069718374507, 0.5775469429932851] 

27 [1122.3946435053535, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

28 [1161.580206933474, 0.07999647530502633, 1.4327276882018096, 0.5811697560474516] 

29 [1100.2738143704933, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

30 [1145.9297576684646, 0.06218635396655763, 1.1887081067003178, 0.5120491779223741] 

  The Best chromosome fitness value at end of the 30th iteration is -51.469 

31 [1159.0812897309836, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

32 [1195.1956893704933, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

33 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

34 [1122.3946435053535, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

35 [1100.8221312134901, 0.07051009815884449, 1.2083608569421385, 0.5684125940929167] 

36 [1181.1657581946042, 0.0716014784278874, 1.1354051337193183, 0.5417026822612713] 

37 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

38 [1181.1657581946042, 0.0716014784278874, 1.36946483436625, 0.5417026822612713] 

39 [1122.5273041693076, 0.06099669918381786, 1.0107548184199513, 0.6024019611953872] 

40 [1181.1657581946042, 0.0716014784278874, 1.13508983436625, 0.5417043620039232] 

  The Best chromosome fitness value at end of the 40th iteration is -51.469 

41 [1122.3946435053454, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

42 [1145.9297576684646, 0.06218635396655763, 1.1887081067005236, 0.5120491779223741] 

43 [1122.3946435053535, 0.06102201923691845, 1.0107548184199513, 0.6024019611953872] 

44 [1145.9297576684646, 0.06218635396655763, 1.135422379499772, 0.5120491779223741] 

45 [1100.8221312134988, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

46 [1145.9297576684646, 0.06218636243227984, 1.1887081067005236, 0.5120491779223741] 

47 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

48 [1122.3946435040493, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

49 [1100.8221312134901, 0.07051009815884461, 1.2083608569421385, 0.5684125940929167] 

50 [1122.3946435053535, 0.061022021695610044, 1.0107548184199513, 0.6024019611953872] 

 The Best chromosome fitness value at end of the 50th iteration is -51.46878753096503 

Optimal 
solution 

 [1128.3866791693076, 0.06102202171021221, 1.4240571602395922, 0.6024019611953872] 

Note: Iteration = 50, Bits = 100, Population size = 200, Crossover rate = 0.8 and Mutation rate = 0.3 

 
This result is in agreement in that the maximum 

objective function value i.e. -51.468 is in 

agreement with the maximized signal to noise 

ratio in the optimization plot of the Box 

Behnken design approach part of the current 

work, which was -51.952 but the optimal 

solution is both approaches are in the similar or 

same range of numbers. Except for the speed 

parameter which was 1090.9091 in the box 

Behnken design approach and which is now 

1128.3867 in the current approach. Therefore, 

at the end of the 50th iteration, which is the 

maximum iteration chosen in the python coded 

programmed genetic algorithm, the best or 

minimum objective function value is -51.468 

and the optimal solution of the genetic 

algorithm optimization is (1128.3867, 0.0610, 

1.4241, 0.06024) i.e. Speed yields 1128.3867, 

Feed rate gives 0.610, Depth of cut is obtained 

as 1.4241 while Nose radius gives 0.0624. 

 

4.3 Summarised results for the TP-BBD-GA 

method 

The result of the proposed methodology 

presented in the current paper, suggest the 

optimal parameter to achieve high quality 

surface roughness when the objective function 

is generated using the optimized parameter 

from the Pareto-BBD part of the work of 

Abdullahi and Oke (2022) using the concept of 
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linear programming is 802.7937 rpm for speed, 

0.0992 for feed rate, 1.3409 for depth of cut and 

0.0698 for nose radius, while when the 

regression equation generated in the work of 

Abdullahi and Oke (2022) is used as the 

objective function, the optimal parameters for 

high quality surface roughness is; 1128.3867 

rpm for speed, 0.0610 for feed rate, 1.4241 for 

depth of cut and 0.6024 for nose radius, it was 

observed that the result, when the objective 

function is generated using linear programming 

concept is used in the python coded genetic 

algorithm optimization is compared with the 

result obtained by Abdullahi and Oke (2022) in 

the Pareto-Box Behnken design part of their 

work  both result are in partial agreement in that 

feed rate and depth of cut parameter values were 

in agreement but vary slight in value while the 

speed and nose radius were not in agreement as 

their values differ quite widely, and that the 

optimal signal to noise ratio when the objective 

function is generated by concept of linear 

programming, computed as -54.85dB. This was 

obtained by introducing the optimal parameter 

from the first scenario into the regression 

equation obtained by Abdullahi and Oke 

(2022). This is to facilitate a comparison of the 

results. The obtained value of -54.85dB is less 

than what was reported in the Pareto-BBD part 

of Abdullahi and Oke (2022). This shows that 

the optimal parameters in this regard would not 

give a better surface roughness quality as those 

from the work of Abdullahi and Oke (2022). 

 

Meanwhile, the result, when the regression 

equation from the work of Abdullahi and Oke 

(2022) is used as the objective function in the 

python coded genetic algorithm optimization is 

compared to that obtained by Abdullahi and 

Oke (2022) in the Pareto-Box Behnken design 

part of their work, it was observed that all 

parameters were in agreement and that the 

optimal signal to noise ratio from the current 

study which is -51.468  is greater than that from 

the Pareto-Box Behnken design part of the work 

of Abdullahi and Oke (2022) which shows that 

the parameters when the regression equation is 

used as the objective function in the present 

study using genetic algorithm are better for 

obtaining high-quality surface roughness in the 

boring operation of EN250 steel material. The 

best result from the three scenarios is when the 

regression equation is used as the objective 

function in the python coded genetic algorithm 

optimization approach; which could be applied 

to parts that require very high-quality surface 

roughness in their design. 

 

Besides, the concluding part of the data shows 

the optimum solution and the corresponding 

output for the regression equation. It was 

observed from it that the optimum output as 

understood from the analysis of the signal to 

noise ratios on the data while using the 

regression equation as the objective function in 

the genetic algorithm is -51.46dB. But by 

comparing it to that of the Box Behnken design 

part of Abdullahi and Oke (2022), -51.95dB 

was reported. This reveals that the regression 

equation-based objective function genetic 

algorithm method is superior to Abdullahi and 

Oke's (2022) reported results. Furthermore, as 

the linear programming concept is used to 

generate the objective function, a signal to noise 

ratio was not obtained. However, after the 

optimization process, to compare the result, 

with that of the previous one, the researcher can 

pick the optimum parameter and put it into the 

regression equation to reveal some 

understanding of the magnitude of the signal to 

noise ratio. It was discovered that the optimal 

signal to noise ratio after being run with the 

genetic algorithm module was -54.84dB. 

Besides, the authors argue that the results can be 

improved by querying the parameters. It should 

be noted that when ANOVA analysis is being 

done the following information is revealed. 

When the model is linear none of the parameters 

were significant to the model. However, when 

it is squared, the square model is significant to 

the objective. So, when this additional 

information was discovered to make the present 

study robust, the results were close to that of 

Abdullahi and Oke (2022), better than that 

previously obtained. But it does not exceed that 

of Abdullahi and Oke (2022). Thus instead of 

having about -54dB, the best result yield 

roughly -52dB. Furthermore, there is a need for 

more clarification on the signal to noise ratios, 

which arise from the regression equation. The 

regression equation generated by Abdullahi and 

Oke (2022) was based on the output of the 

signal to noise ratios. It is the same regression 

equation that is being used in the present study 

as the second scenario part. 
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5. CONCLUSIONS 

In this article, a new method called the Taguchi-

Box Behnken design-genetic algorithm method 

was established to optimize and select the 

parameters of a boring process involving the use 

of IS 2062 E250 steel plates. The method 

optimized the input parameters of speed, depth 

of cut, feed and nose radius while the output is 

the surface roughness of the IS 2062 E250 steel 

plates. After using the experimental data 

obtained from Patel and Desphande (2014) for 

the new method proposed, it was concluded as 

follows: The T-BBD-GA method proved its 

efficiency to optimize the boring process 

parameters. The present article optimizes the 

surface roughness, an output of the boring 

process using the CNC lathe machine through 

moderating the influential parameters in boring 

operation, such as the depth of cut, feed, speed 

and nose radius by applying the T-BBD-GA 

method for the IS 2062 E250 steel plates.  

 

This article is an extension of a previously 

published work where the earlier authors had 

established the possibility of enhancing the 

surface roughness of the IS 2062 E250 steel 

plates subjected to the boring operation. In the 

work, the Taguchi method and Taguchi-Pareto 

method were independently integrated with the 

Box Behnken design. These two amalgamated 

methods proved feasible and a demonstrated 

analysis based on the experimental data 

contained in Patel and Deshpande (2014) was 

showcased in Abdullahi and Oke (2022). 

However, the current machining environment 

continues to be stiffer and business survival 

becomes increasingly difficult. But with the 

continuous improvement philosophy that 

currently engages the industry, further 

optimization is required from the already 

optimized results of the boring situation 

regarding the IS 2062 E250 steel plates. 

Therefore, it varies with the literature, the 

present study improved on the work of 

Abdullahi and Oke (2022) with the following 

contributions: 

1. Improving initially optimized 

parameters by incorporating an 

evolutionary approach. Hence, the 

optimized parameters were first 

optimized by the Taguchi-Box 

Behnken design method and 

additionally, the genetic algorithm was 

added in the present article. 

2. Introducing a new approach to the 

surface roughness in a boring 

operation. Besides, the developed, 

method has not been previously found 

in the literature. Therefore, the new 

mechanism of a multi-step optimization 

approach is rare to find in the literature 

and has been proved effective.  

Future research may consider the replacement 

of the genetic algorithm with other evolutionary 

methods such as the firefly, teaching-learning 

based optimization and grey wolf optimization 

procedures. The results may be compared with 

those of the present study. 
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