
IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 4 No 2 June 2023, 99-112 

99 

 

 

 

Foraging Bee Optimization Algorithm 
 
Ebun Phillip Fasina*, Babatunde Alade Sawyerr, Shuaibu Babangida Alkassim  
Department of Computer Science, University of Lagos, Lagos, Nigeria 

 
ARTICLE INFORMATION  A B S T R A C T  

Article history: 

 

Received: 3 May 2023 

Revised: 2 June 2023 

Accepted: 4 June 2023 

 

Category: Research paper 

Honeybees feed on pollen and nectar from flowers. Nectar 

to meet their energy requirements and pollen for protein and 

other vital nutrients. The act of searching for these flowers 

by honeybees is called foraging. The foraging behaviour of 

bees depends on the profitability of nectar and pollen 

sources as well as the needs of the colony. This behaviour is 

modelled by the Foraging Bee Optimization Algorithm 

(FBA) as metaphor for optimization. After initialization, the 

algorithm loops through three phases based on bees’ 

foraging behaviour –work, withdraw, and waggle (3W). 

Flowers are initialized randomly in the problem space. 

During the waggle phase, bees are recruited to flowers with 

profitable nectar sources. In the work phase, new flowers are 

discovered and memorized by bees. In the withdraw phase 

bees remove unprofitable flowers from collective memory 

and recalibrate for recruitment. The proposed FBA is tested 

on three unimodal and twelve multimodal benchmark 

functions. The result is compared with two other state-of-

the-art swarm intelligence algorithms, Artificial Bee Colony 

(ABC) and Particle Swarm Optimization (PSO). Analysis of 

comparison results shows FBA to be highly competitive, 

outperforming PSO on all benchmarks and matching ABC 

in overall performance. 
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1. INTRODUCTION 

The study of the behavior of social organisms 

as a swarm in and outside their colonies led to 

Swarm Intelligence (SI) (Eberhart, Shi, & 

Kennedy, 2001; Janaki & Geethalakshmi, 2022; 

Selvaraj & Choi, 2020). SI is a discipline in 

computer science that mimics the intelligence 

displayed by social organisms (Kaswan, 

Dhatterwal, & Kumar, 2023; Schumann, 2020). 

This intelligence can be self-learning, healing, 

or optimizing. Researchers model and create 

algorithms based on this intelligence. These 

algorithms are classified as Nature-Inspired or 

Swarm Intelligence Optimization algorithms or 

metaheuristics and have been applied to solve a 

diverse range of problems  (Fakhermand & 

Derakhshani, 2023; Tzanetos & Dounias, 2020; 

Engelbrecht, 2007; Alizadehsani, et al., 2023; 

Altshuler, 2023; Shahzad, et al., 2023; Kumar, 

Chatterjee, Payal, & Rathore, 2022; Cruz, Maia, 

& de Castro, 2021). 

 

Nature-Inspired algorithms find approximate 

solutions to optimization problems, the solution 

can be local or global optimum depending on 

the set of constraints the optimization problem 
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is subjected to. An optimization problem 

requires an objective function that may be 

constrained or unconstrained to be maximized 

or minimized. Optimization algorithms invoke 

the objective function to determine the fitness 

of a large and varied selection of solutions to 

determine the best or near optimum. 

Optimization techniques are mostly applied to 

minimize cost or error, maximize profit, and 

find optimal designs for engineering problems 

or provide optimal decisions for operational and 

management problems. 

 

Various natured-inspired algorithm has been 

proposed among which are the Particle Swarm 

Optimization (PSO) by Kennedy and Eberhart 

(Kennedy J. and Eberhart, 1995) which is 

inspired by simulation studies of the social 

behavior found in schools of fish and flocks of 

birds. Bee Colony Optimization (BCO) by 

(Teodorovic & Dell’orco, 2005), Bee 

Algorithm (BA) by (Pham, et al., 2005), 

Artificial Bee Colony by (Karaboga, 2005) are 

all inspired the foraging behavior of bee 

colonies. Genetic recombination and natural 

selection inspired the Generic Algorithm (GA) 

proposing by (Holland, 1975). Studies of ant 

colonies resulted in the Ant Colony 

Optimization (ACO) algorithm by (Dorigo, 

Colorni, & Maniezzo, 1991). Differential 

Evolution (DE) was proposed by (Storn & 

Price, 1997), and Glowworm Swarm 

Optimization was proposed by (Krishnanand & 

Ghose, 2005). GSO mimics the behavior of 

luminescent glowworms in nature. 

 

In this work a new algorithm called FBA that is 

inspired by the foraging behavior of bees is 

proposed and implemented to improve the 

speed of convergence of bee-inspired 

algorithms, avoid premature convergence as 

well as balance exploitation with exploration. 

 

2. LITERATURE REVIEW  

I. Foraging Bee in Nature 

Honeybees are social insects or organisms that 

live together in well-organized colonies and can 

perform complex tasks in reasonable time with 

ease. These tasks include controlling the 

environment, division of labor, defense of nest 

and queen, nest construction, communications, 

and foraging for food. The process of foraging 

for food involves scouting, collection of pollen 

and nectar from flowers, and conveyance of 

pollen and nectar to the colony. Bees in charge 

of foraging are called foragers. Each forager 

modulates its behaviour in relation to the 

profitability of the nectar source – the more 

profitable the source, the higher the intensity of 

foraging activity around the source, the more 

repetitive and dancing (or waggle) at the nest 

pointing to the source, and the lower the 

probability of abandoning the source. Without 

comparing sources, bee individually calculate 

the absolute profitability of a source. The 

collective nectar and pollen source selection by 

a colony of bees is decentralized; it is a process 

of natural selection where foragers from more 

profitable nectar sources continue to visit these 

sources over a long period of time and 

eventually recruit bees from less profitable 

sources. In a typical foraging season, bees 

collect roughly 20 – 30 kg of pollen and 125kg 

nectar which translate to between 1,125,000 and 

4,000,000 visits to flowers. 

 

II. Bee Colonies as Metaphors for Swarm 

Intelligence Algorithms 

Agents in the Bee Algorithm (BA) first 

proposed by (Pham, et al., 2005) combined 

randomized search of the problem space with 

neighborhood search in promising regions of 

this space. BA is complex and can easily be 

trapped in a local optimum. The Artificial Bee 

Colony (ABC) algorithm proposed by 

(Karaboga, 2005) is less complex when 

compared with previous bee optimization 

algorithms (Bolaji, Khader, Al-Betar, & 

Awadallah, 2013) but converges poorly. (Sato 

& Hagiwara, 1997) reformulated the Genetic 

Algorithm (GA) to develop a new algorithm 

called the Bee System (BS). BS performs global 

search using GA operators and then improves 

on local search by introducing new operators 

such as concentrated crossover and the pseudo-

simplex method. 

 

The mating behavior of bees is the inspiration 

for the Mating Bee Optimization MBO 

algorithm (Abbass, 2001). MBO algorithm 

begins with one queen with no relatives, to a 

colony of relatives with a single queen or 

multiple queens. MBO has been modified 

several to form a new algorithms such as the 

Honey Bee Optimization (HBO) algorithm by 

(Curkovic & Jerbic, 2007), Honey Bees Mating 
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Optimization (HBMO) algorithm by (Haddad, 

Afshar, & Mariño, 2006) and the Fast Marriage 

in Honey Bees Optimization (FMHBO) 

algorithm by (Yang, Chen, & Tu, 2007). 

 

(Gao, Liu, & Huang, 2012) modified the ABC 

algorithm in order to improve its exploitation. 

The new algorithm called ABC/Best searches 

only around the fittest bee based on the last best 

solution. They employed a chaotic system and 

opposition-based learning for improving the 

speed of global convergence. 

 

(Mathlouthi & Bouamama, 2016) integrated a 

centralized and distributed technique called a 

local optimum detector to an algorithm inspired 

by marriage in honeybees. The local detector 

enhanced finding the local optimum. (Li & 

Yang, 2016) proposed a variant of ABC. They 

introduced a memory mechanism that aids 

artificial bees by memorizing their best foraging 

experience so far. (Pan, 2016) hybridized ABC 

and GA to develop a self-adaptive algorithm 

with a dual population of independently 

evolving bees that exchange information 

through information entropy that ensures 

diversity and accelerates convergence. 

 

(Pan, 2016) proposed a hybrid, self-adaptive 

genetic-bee colony algorithm based on 

information entropy. The algorithm evolved 

two populations of bees independently but 

allowed the exchange of information between 

bees in the two populations using entropy to 

maintain population diversity and accelerate the 

evolution process. Under analysis it was found 

that this strategy accelerated the emergence of 

fitter individuals by competition between the 

populations performs better in complex 

function optimization problems. 

(Aslan, Karaboga, & Badem, 2020) modeled 

the complex behavior of foraging bees in detail 

– how they pass through the dance area and how 

long they performed their dance to attract 

onlooker bees – then adapted it to ABC to 

develop a new variant of ABC, termed the 

intelligent forager forwarding ABC (iff-ABC). 

They analyzed the contribution of the intelligent 

forager forwarding strategy on the performance 

of ABC algorithms by evaluating its 

performance on the CEC benchmark suite and 

comparing it with the performance of different 

variants of ABC. The results obtained showed 

that an intelligent forager forwarding strategy 

significantly improves the quality of final 

solutions and the convergence speed of ABC 

algorithms. 

 

(Chen, Tianfield, & Du, 2021) proposed a novel 

bee-foraging learning PSO (BFL-PSO) 

algorithm that is inspired by the search 

mechanism of the artificial bee colony 

algorithm. The proposed BFL-PSO has three 

different search phases, namely: employed 

learning, onlooker learning and scout learning. 

The employed learning phase is the one-phase-

based PSO search, while the onlooker learning 

phase exploits the region around promising 

solutions, and the scout learning phase 

introduces new diversity by re-initializing 

stagnant particles. The proposed BFL-PSO is 

evaluated on the CEC2014 benchmark suite, 

and compared with state-of-the-art PSO and 

artificial bee colony algorithms The 

experimental results show BFL-PSO to be 

competitive in performance and the accuracy of 

its solutions. 

 

It is helpful to study and compare various 

versions of bee inspired metaheuristics to 

enable the selection of these algorithms in the 

optimization tasks and the refinement and 

development of new variants. (Solgi & 

Loáiciga, 2021) identifies seven basic or root 

algorithms applied to solve continuous 

optimization problems, namely: Bee System 

(BS), Mating Bee Optimization (MBO), Bee 

Colony Optimization (BCO), Bee Evolution 

for Genetic Algorithms (BEGA), Bee 

Algorithm (BA), Artificial Bee Colony (ABC), 

and Bee Swarm Optimization. They ranked 

these algorithms by performance and 

convergence efficiency and found ABC, 

BEGA, and MBO to be the most efficient. 

They discussed the strengths and shortcomings 

of each algorithm and explained the variations 

observed in the convergence rate of these 

algorithms. 

 

3. THE FORAGING BEE 

OPTIMIZATION ALGORITHM (FBA) 

The Foraging Bee (Optimization) Algorithm 

(FBA) is inspired by the foraging behaviour of 

bees for pollen and nectar, and the collective 

natural selection of more profitable nectar 

sources over poor ones. The FBA algorithm is 
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developed. In FBA, the colony consists of bees, 

termed foragers, who scout for flowers that are 

rich sources of pollen and nectar in a patch of 

the problem space in the work phase, then return 

to the colony during the withdraw phase to 

communicate their findings using dance in the 

waggle phase. The FBA pseudocode is listed 

below as follows: 

 

Bee 

A bee 𝑏𝑖 is modeled by the tuple 𝐵 =
𝐵(𝑥𝐵, 𝑓𝐵, 𝐷, 𝑃) where 𝑥𝐵 is the vector 

representing the current position of the bee, 

𝑓𝐵 ← 𝑓(𝑥𝐵) is the fitness of the current position 

of the bee, 𝐷 is the direction of the bee and 𝑃 is 

the patch in which the bee is initialized. Each 

bee makes a foraging move in time 𝑡 + 1 in 

dimension 𝑗 as follows: 

 

𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡)

+ 𝑝𝑟1(𝑑𝑗
+{𝑈𝑗 − 𝑥𝑗(𝑡)}

+ 𝑑𝑗
−{𝑥𝑗(𝑡) − 𝐿𝑗}) 

(1) 

 

where 𝑟1 is a random number between 0 and 1, 

𝑈𝑗  𝑎𝑛𝑑 𝐿𝑗 are the upper and lower bounds in 

dimension 𝑗 of patch 𝑃, 𝑝 is the propensity of 

the bee. The direction vector 𝐷 is a unit vector 

indicating the current direction of the foraging 

bee. Bees make decisions before moving in 

direction 𝐷 by determining the direction 𝑑𝑗
± to 

move in each dimension 𝑗 using the random 

variable 𝑟2~𝑈(0,1). Assume that the bee is 

moving in direction 𝑑𝑗
+ in time 𝑡. The decision 

to continue in direction 𝑑𝑗
+ is determined by 

 

𝑟2 <
|𝑎𝑗 − 𝑥𝑗|

𝑈𝑗 − 𝐿𝑗
 (2) 

where 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) is the bee attractor in 

each patch. If (2) is true and 𝑐𝑗 is in direction of 

𝑈𝑗, then 𝑑𝑗
+ = 1 and 𝑑𝑗

− = 0 otherwise 𝑑𝑗
− = 1 

and 𝑑𝑗
+ = 0. 

 

Algorithm 1: Foraging Bee Optimization 

Algorithm 

1 set the following parameters 

  𝐵𝑝𝑜𝑝 is the population of bees 

  M is the minimum population of 

flowers 

  N is the minimum population of newly 

discovered flowers 

  K number of scouts added as recruits 

during each waggle phase 

  𝑃𝑝𝑟𝑜𝑏 is the search space 

  𝛽 is fraction of resource rich flowers 

for estimating the attractor of a patch 

  p is the propensity of bees when 

exploring patches 
   

2 initialize M flowers in patches 

 set 𝑓𝑇 as the fitness of the fittest flower 

 initialize bees randomly in patch 𝑃 

 termcond ← false 

 n ← 1, k ← 0 

3 while true 

  // WORK PHASE 

  for 𝑖 = 1 to T 

   move bee 𝑏𝑖 

   if 𝑓(𝑏𝑖) < 𝑓𝑇 mark 𝑏𝑖 with flower 

𝐹𝑀+𝑛 and increment n 

  if 𝑛 < 𝑁 then continue 

  // WITHDRAW PHASE 

  termcond ← GET-TERMCOND( ) 

  if termcond then 

   return fittest flower as optimum 

  n ← 1 

  set 𝑓𝑇 as the fitness of the fittest 

flower 

  // WAGGLE PHASE 

  select best M flowers in 𝑃𝑝𝑟𝑜𝑏 

  Estimate promising patch using 

selected flowers 𝑃𝑏𝑒𝑠𝑡 

  Determine the location of attractors in 

each patch. 

  increment k 

  initialize 𝑘 bees (recruits) randomly 

in 𝑃𝑏𝑒𝑠𝑡 

  initialize other bees 𝐵𝑝𝑜𝑝 − 𝑘 (scouts) 

in 𝑃𝑝𝑟𝑜𝑏 

 

The propensity 𝑝 determines how bees explore 

or exploit a patch. Lower values of 𝑝 favors 

exploitation over exploration. The continuous 

reduction in the spatial dimensions of 𝑃𝑏𝑒𝑠𝑡 

allows the exploitation of promising patches by 

recruits while scouts continue to explore the 

entire problem space. The bee search equation 

guides the bees to forage only within the patch 

in which they are initialized making exploration 

and exploitation explicit processes guided by 

patches 𝑃𝑝𝑟𝑜𝑏 and 𝑃𝑏𝑒𝑠𝑡. 

 

 



IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 4 No 2 June 2023, 99-112 

103 

 

Flower 

A flower 𝐹 is modeled by the tuple 𝐹 =
𝐹(𝑥𝐹 , 𝑓𝐹), where 𝑥𝐹 is the vector representing 

the current position of the flower 𝐹 and 𝑓𝐹 is its 

fitness. The lower value of 𝑓𝐹 the richer the 

flower as a source nectar and pollen to bees. 

 

Patch 

Patches are modeled by the tuple 𝑃 =
𝑃(𝐿, 𝑈, 𝐴) where 𝐿 is the vector that represents 

the lower limit of the patch in all dimensions, 𝑈 

is the vector that represents the upper limit of 

the patch in all dimensions and 𝐴 is the bee 

attractor. 𝑃𝑝𝑟𝑜𝑏 is initialized with 𝑀 + 𝑁 or 

more flowers while 𝑃𝑏𝑒𝑠𝑡 is estimated with 𝑀 

best flowers. The point attractor of bees in a 

patch is the centroid the best flower 𝑓𝑇 and a 

fraction 𝛽 ≅ 0.5 of the other flowers in the 

patch. Candidate flowers for bee attractor 

computation selected using the roulette operator 

[]. Unlike GA flowers are selected without 

replacement, i.e., a candidate flower cannot be 

selected more than once. It is important that the 

point attractor of bees in patches 𝑃𝑝𝑟𝑜𝑏 and 

𝑃𝑏𝑒𝑠𝑡 are not coincident at the early stages of 

search. Observe that all points in 𝑃𝑏𝑒𝑠𝑡 are 

interior points of 𝑃𝑝𝑟𝑜𝑏. 

 

Foraging Bee Algorithm 

The flowchart in Fig. 1 highlight phases FBA. 

It begins with the initialization of search 

parameters and objects such as bees, patches, 

and flowers. This is followed by the work phase 

where scout bees and recruits search for new 

resource rich flowers. During the withdraw 

phase critical parameters are reset and the GET-

TERMCOND method determines if an 

approximate solution has been found or the 

maximum number of objective function 

evaluation has been exceeded. If the algorithm 

does not stop it enters the waggle phase where 

information is shared; 𝑃𝑏𝑒𝑠𝑡 is initialized or 

recalibrated and scouts are recruited to exploit 

the patch. The algorithm repeats the work, 

withdraw and waggle phases until it terminates 

in the withdrawal phase. 

 

Start

Is 

Termination 

Condition?

Waggle 

Phase

Stop

No

Yes

Work 

Phase

Withdraw 

Phase

 

Fig. 1. Flowchart of FBA 

 

4. RESULT AND DISCUSSION 

The FBA algorithm was run on standard 

benchmark test function; these functions were 

presented in Table 1 as equations (3) to (17) and 

their properties a tabulated in Table 2. They 

were carefully chosen to test FBA’s capacity to 

solve problems with diverse properties and 

varying levels of difficulty. 𝑓1 to 𝑓3 are simple 

unimodal functions while 𝑓4 to 𝑓15 are 

multimodal functions with local minima 

ranging from a few hundred to millions. The 

performance of FBA on each test function is 

benchmarked with 30 trials of 50000 function 

evaluations. 

 
Fig. 2. Graph of FBA results 

 

The overall performance based on the best, 

average, and worst-case error rates, standard 

deviation, and success rate of each test function 
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is tabulated in Table 3 and shown graphically in 

Fig. 2. The success rate of each function is also 

shown in Fig. 5. The success of any run is 

determined by an error of at least four leading 

zeros (E-04). 

 

Table 1. Benchmark test functions 
 

1) Sphere function  

 
𝑓1(𝑥) = ∑𝑥𝑖

2

𝑛

𝑖=1

 (3) 

   

2) Schwefel P2.22 function  

 
𝑓2(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 (4) 

   

3) Rosenbrock’s function  

 

𝑓3(𝑥) = ∑{100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)2}

𝑛−1

𝑖=1

 (5) 

   

4) Ackley F1  

 

𝑓4(𝑥) = −20 exp (−0.2√
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

) −   exp (
1

𝑛
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 (6) 

   

5) Goldstein-Price  

 𝑓5(𝑥) = {1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)}
× {30 + (2𝑥1 − 3𝑥2)

2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2)} 
(7) 

   

6) Penalized Function P8  

 

𝑓6(𝑥) =
𝜋

𝑥
{10 sin2(𝜋𝑦𝑖) + ∑{1 + 10 sin2(𝜋𝑦𝑖+1)} +

𝐷−1

𝑖=1

(𝑦𝑑 − 1)2} + ∑𝜇(𝑥𝑖 , 10,100,4)

𝐷

𝑖=1

 (8) 

   

7) Penalized Function P16  

 
𝑓7(𝑥) = 0.1 {sin2(3𝜋𝑥𝑖)

+ ∑(𝑥𝑖 − 1)2{1 + 10 sin2(3𝜋𝑥𝑖+1)} + (𝑥𝑑 − 1)2{1 + 10 sin2(2𝜋𝑥𝐷)}

𝑛−1

𝑖=1

}

+ ∑𝜇(𝑥𝑖 , 5,100,4)

𝐷

𝑖=1

 

(9) 

   

8) Schaffer’s F6 function  

 

𝑓8(𝑥) = 0.5 +
sin2(√∑ 𝑥𝑖

2𝑛
𝑖=1 ) − 0.5

{1 + 0.001(∑ 𝑥𝑖
2𝑛

𝑖 )}2
 (10) 

   

9) Shekel 5 function  

 

𝑓9(𝑥) = −∑
1

∑ (𝑥𝑖 − 𝑎𝑖𝑗)
2
+ 𝑐𝑖

4
𝑗=1

5

𝑖=1

 (11) 

   

10) Shekel 7 function  

 

𝑓10(𝑥) = −∑
1

∑ (𝑥𝑖 − 𝑎𝑖𝑗)
2
+ 𝑐𝑖

4
𝑗=1

7

𝑖=1

 (12) 

   

11) Shekel 10 function  
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𝑓11(𝑥) = −∑
1

∑ (𝑥𝑖 − 𝑎𝑖𝑗)
2
+ 𝑐𝑖

4
𝑗=1

10

𝑖=1

 (13) 

   

 

𝐴 = [𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
4 4 4 4
1
8
6
3
2
5
8
6
7

1
8
6
7
9
5
1
2

3.6

1
8
6
3
2
3
8
6
7

1
8
6
7
9
3
1
2

3.6]
 
 
 
 
 
 
 
 

 𝐶 = [𝑐𝑖] =

[
 
 
 
 
 
 
 
 
0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5]

 
 
 
 
 
 
 
 

  

   

12) Six-Hump Camelback  

 
𝑓12(𝑥) = (4 − 2.1𝑥1

2 +
𝑥1

4

3
)𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2 (14) 

   

13) Schwefel P2.6 function  

 
418.9829𝑛 − ∑𝑥𝑖 sin (√|𝑥𝑖|)

𝑛

𝑖=1

 (15) 

   

14) Griewank’s function  

 
𝑓14(𝑥) = 1 +

1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1

 (16) 

   

15) Rastrigin’s function  

 
𝑓15(𝑥) = ∑(𝑥𝑖

2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1

 (17) 

 

Table 2. Properties of benchmark test functions 

 Name Feasible Bounds 𝑛 Optimum, 𝒙∗ 𝒇(𝒙∗) 

𝑓1 Sphere [−100, 100]𝑛 5 0𝑛 0 

𝑓2 Schwefel P2.22 [−500, 500]𝑛 5 420.9687𝑛 0 

𝑓3 Rosenbrock’s [−100, 100]𝑛 5 1𝑛 0 

𝑓4 Ackley’s F1 [−32.768, 32.768] 5 0𝑛 0 

𝑓5 Goldstein-Price [−2, 2] 2 (0, −1) 0 

𝑓6 Penalized F8 [−50, 50] 5 −1𝑛 0 

𝑓7 Penalized P16 [−50, 50] 5 1𝑛 0 

𝑓8 Schaffer F6 [−100, 100]𝑛 2 0𝑛 0 

𝑓9 Shekel 5 [0, 10]𝑛 4 4.0𝑛 -10.1499 

𝑓10 Shekel 7 [0, 10]𝑛 4 4.0𝑛 -10.3999 

𝑓11 Shekel 10 [0, 10]𝑛 4 4.0𝑛 -10.5319 

𝑓12 Six-Hump Camel [−5, 5]𝑛 2 (-0.0898, 0.7126), 

(0.0898, -0.7126) 

-1.0316 

𝑓13 Schwefel P2.6 [−500, 500]𝑛 5 420.9687𝑛 0 

𝑓14 Griewank [−600, 600]𝑛 5 0𝑛 0 

𝑓15 Rastrigin [−5.12, 5.12] 5 0𝑛 0 
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Table 3. The summary results obtained by the FBA algorithms for 30 runs 

Func. Best Value Average Value Worst Value Std. Dev. Success Rate 

𝑓1 1.0686E-119 1.7687E-16 5.2875E-15 9.6525E-16 100 

𝑓2 4.6843E-33 3.7497E-04 7.0707E-03 1.4766E-03 93.33 

𝑓3 2.8994E+00 1.8798E+04 2.2862E+04 4.4271E+03 0 

𝑓4 0.0000E+00 7.1304E-08 2.1232E-06 3.8756E-07 100 

𝑓5 -9.5923E-14 5.4712E-05 1.6414E-03 2.9967E-04 96.67 

𝑓6 2.1903E-11 3.8512E-02 9.2391E-01 1.6801E-01 43.33 

𝑓7 1.4096E-14 6.2899E-05 1.5010E-03 2.7692E-04 96.67 

𝑓8 3.3695E-13 3.7001E-04 2.4989E-03 5.6688E-04 90 

𝑓9 -3.8281E-06 2.7995E+00 7.6638E+00 2.8028E+00 33.33 

𝑓10 -1.2173E-04 1.0171E+00 6.4562E+00 1.8296E+00 60 

𝑓11 -1.2609E-04 1.2683E+00 7.7326E+00 2.2092E+00 66.67 

𝑓12 -3.0562E-08 9.4618E-03 1.0871E-01 2.0714E-02 33.33 

𝑓13 3.5809E+01 1.4418E+02 2.0573E+02 4.3292E+01 0 

𝑓14 2.1281E-02 7.9438E-02 1.2790E-01 2.6691E-02 0 

𝑓15 1.7127E+00 3.2470E+00 6.2162E+00 1.1694E+00 0 

 

Fig. 3(a) to (k) show successful runs of FBA on 

11 benchmark test functions for which it 

converges, and successfully returns at least once 

an approximate solution to the optimum with 

error rates less the 1E-08. Fig. 4 (a) to (d) on the 

other hand are unsuccessful runs of FBA on 4 

benchmark test functions. 

 

FBA is compared ABC and PSO using T-test. 

Table 4 shows the mean and standard error of 

FBA, ABC and PSO on the test function while 

Table 5 tabulates the results of the T-test and 

indicates test functions in which the 

performance of FBA is statistically significant 

when compared with both ABC and PSO. FBA 

did not return any success for four (𝑓3, 𝑓13, 𝑓14, 

and 𝑓15) benchmark functions out of the fifteen 

tested on. Three (𝑓6, 𝑓9, and 𝑓12) were below 

fifty percent while the remaining eight ranges 

from sixty to hundred percent. 

 

Results in Table 5 show that the comparison 

between FBA and PSO on all 10 benchmark test 

functions is statistically significant. Results also 

show that 7 out of the 10 benchmark tests 

between FBA and ABC are statistically 

significant. In nine of the ten statistically 

significant benchmark test FBA performed 

better than PSO while in two of the seven 

statistically significant test FBA performed 

better than ABC. 

 

  

  

Fig. 3(a). Sphere Fig. 3(b). Schwefel P2.22 
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Fig. 3(c). Ackley Fig. 3(d). Goldstein-price 

  

 
Fig. 3(e). Penalized function P8 

  

Fig. 3(f). Penalized function P16 Fig. 3(g). Schaffer F6 
  

  

Fig. 3(h). Shekel 5 Fig. 3(i). Shekel 7 
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Fig. 3(j). Shekel 10 Fig. 3(k). Six-Hump Camel 

  

 
Fig. 4(a). Rosenbrock 

  

 
Fig. 4(b). Griewank 

  

 
 

Fig. 4(c). Schwefel P2.6 Fig. 4(d). Rastrigin 
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Fig. 5. Histogram of success rates 

 

Table 4: The Comparison between FBA, PSO, and ABC 

Function 
FBA ABC PSO 

Mean Std. Error Mean Std. Error Mean Std. Error 
Sphere 1.77E-16 ±1.76E-16 6.99E-10 ±1.08E-10 2.75E+00 ±4.48E-02 

Schwefel P2.22 3.75E-04 ±2.70E-04 2.36E-06 ±1.52E-07 5.45E+00 ±1.43E-01 

Rosenbrock 1.87E-03 ±8.08E+02 3.93E-02 ±5.68E-03 5.46E+01 ±2.85E+00 

Ackley F1 7.13E-08 ±7.08E-08 1.02E-05 ±4.45E-03 2.02E+01 ±8.20E-03 

Penalized F. P8 3.85E-02 ±3.07E-02 1.60E-11 ±3.56E-12 8.86E+00 ±3.83E-01 

Penalized P16 6.29E-05 ±5.06E-05 3.72E-09 ±3.27E-10 1.22E-01 ±2.10E-03 

Schaffer F6 3.70E-04 ±1.03E-04 2.07E-03 ±7.14E-04 - - 

Shekel 7 -9.38E+00 ±3.34E-01 -1.04E-01 ±2.88E-16 5.31E+00 ±6.05E-06 

Shekel 10 -9.26E+00 ±4.03E-01 -1.05E-01 ±6.19E-15 5.40E+00 ±6.19E-06 

Griewank 7.94E-02 ±4.87E-03 8.73E-09 ±2.68E-09 1.01E+00 ±3.10E-03 

Six-Hump Camel 9.46E-03 ±2.07E-02 - - 1.77E+00 ±2.89E-01 

 

Table 5: The T-test between FBA/PSO and FBA/ABC 
 T-test FBA/PSO T-test FBA/ABC 

Function Value 
Critical 

Value 
Significant Value 

Critical 

Value 
Significant 

Sphere 61.5223 <0.00001 YES 6.4781 <0.00001 YES 

Schwefel P2.22 38.2318 <0.00001 YES 1.3829 0.0885 YES 

Rosenbrock 2.2662 0.0154 YES 2.3258 0.0135 YES 

Ackley F1 2472.81 <0.00001 YES 0.0023 0.4991 NO 

Penalized F. P8 25.0648 <0.00001 YES 1.2555 0.1095 NO 

Penalized P16 59.4977 <0.00001 YES 1.2440 0.1116 NO 

Schaffer F6 - - - 2.7852 0.0046 YES 

Shekel 7 -44.8228 <0.00001 YES 3.0444 0.0024 YES 

Shekel 10 -36.3861 <0.00001 YES 3.1452 0.0019 YES 

Griewank -525.4461 <0.00001 YES 16.3014 <0.00001 YES 

Six-Hump Camel 6.5879 <0.00001 YES - - - 

 

  



IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 4 No 2 June 2023, 99-112 

 

110 

 

V. CONCLUSION 

The Foraging Bee Optimization (FBA) 

algorithm is a swarm intelligence optimization 

algorithm, which has a new unique approach 

inspired by the characteristics and intelligent 

behavior displayed by the swarm of foraging 

bees for solving optimization problems. The 

algorithm mimics bee colonies by organizing 

search into three phases: work – when bees 

forage in patches and discover and exploit new 

resource-rich flowers; withdraw – when bees 

return to the colony and reset for the next work 

phase; and waggle – when bees share 

information about locations containing resource 

rich flowers. 

 

The algorithm increased the speed of 

convergence and balance exploration and 

exploitation by positioning flowers at the 

extreme of a rectangular workspace that must be 

scooped by the bees with a propensity that 

ensures thorough exploration.  Exploitation is 

achieved by a spatial reduction of the best patch 

subspace over several 3W cycles. Unlike PSO, 

FBA avoids stagnation and minimizes the 

possibility of premature convergence that 

occurs when algorithms are guided by 

exemplars, honeybees in FBAs are guided by 

attractors which shift as new flowers are 

discovered. The proposed algorithm was tested 

on fifteen standards benchmarks of which three 

are unimodal while the remaining are complex 

multimodal spaces with millions of local 

optima. 

 

The algorithm was compared with two state-of-

the-art algorithms PSO and ABC, and the 

statistically significant result shows that FBA is 

more efficient than PSO while being 

competitive with ABC. FBA has been tested 

extensively in this work, but more experiments 

need to be done to tune the parameters of FBA 

for solving more complex test functions at 

higher dimensions. In addition, adaptive 

variants of FBA should be developed to reduce 

the number of parameters that require tuning for 

high performance. Finally, an information- 

sharing mechanism will be developed to reduce 

the overall complexity of the search algorithm. 
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