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Effective distribution of COVID-19 vaccines is crucial for 

pandemic control. This study utilized a multi-product mixed-

integer nonlinear programming (MINLP) model to optimize the 

distribution of five vaccine types across (AstraZeneca, 

Sinopharm, Moderna, Pfizer, and Sinovac). The population, 

segmented into five age groups (12-18 years, 19-30 years, 31-45 

years, 46-59 years and over 60 years), accesses vaccines through 

59 healthcare facilities in one of the large cities in Indonesia. With 

a budget of IDR 150 billion, the model procured five vaccine a 

total of 574,748 vaccine doses, distributed as follows: 112,954 of 

type 1, 115,733 of type 2, 115,649 of type 3, 112,171 of type 4, 

and 118,241 of type 5 vaccines. The model successfully optimized 

the distribution, achieving a delivery-to-demand ratio of 0.049, 

which reflects the proportion of vaccine demand met under 

various scenarios, particularly in scenario 4, which represents 

actual conditions. Decision-makers can further enhance vaccine 

allocation by adjusting the total budget; for instance, an additional 

IDR 10 billion would enable the distribution of 123,474 more 

doses, increasing the delivery-to-demand ratio to 0.056. This ratio 

of 0.056 was obtained by adjusting the total budget allocated for 

vaccine distribution in scenario 5, based on the results from AMPL 

and Gurobi software. A significant contribution of this study is the 

development of a MINLP model that ensures equitable 

distribution tailored to age-specific pandemic requirements. 

Validation using real-world data enhances the existing literature 

on vaccine distribution strategies. This study provides valuable 

insights for policymakers and managers aiming to optimize 

resource allocation and distribution strategies for COVID-19 

vaccination programs, thereby improving overall pandemic 

management efficiency.  
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1. INTRODUCTION 

Mass vaccination is the main and most effective 

strategy in reducing the spread of COVID-19 

(Shiri et al., 2022). As of January 19, 2022, 

approximately nine billion vaccine doses have 

been administered globally, which is an important 

milestone in the fight against the pandemic 

(World Health Organization, 2022). A 

universally implemented vaccination initiative 

could offer a long-term solution to the COVID-

19 crisis (Deroo et al., 2020). The success of such 

a programme depends on various factors, 

including vaccine potency, efficient 

administration, equitable accessibility, and 

distribution (Su, McDonnell et al., 2021). 

 

The pivotal phase of the mass vaccination effort 

lies in the production and dissemination of the 

COVID-19 vaccine. Such an endeavor demands 

meticulous planning and execution to meet the 

staggering demands. Public institutions must 

adeptly navigate and surmount all conceivable 

obstacles, including challenges in distribution 

and allocation. Hence, optimizing vaccine 

distribution emerges as a pivotal concern to 

bolster the global success of COVID-19 

vaccination programs (Davahli et al., 2021). 

 

Indonesia's healthcare facilities were under 

immense pressure due to the COVID-19 

pandemic, especially at the height of the Delta 

variant in mid-2021. This unprecedented health 

crisis resulted in a surge of cases, causing 

hospitalization rates to increase significantly and 

overwhelming health facilities nationwide. The 

Indonesian government launched a mass 

vaccination initiative in January 2021, 

prioritizing healthcare workers and high-risk 

groups to mitigate the impact of the virus. By the 

end of 2022, more than 70% of the population had 

received at least one dose of the vaccine, thanks 

to coordinated efforts between central and local 

governments, as well as support from the private 

sector (Alam et al., 2021). Balikpapan City, one 

of the largest cities in Indonesia, was particularly 

hard hit during the height of the surge. According 

to the Kementerian Kesehatan Republik 

Indonesia Direktorat Jenderal Pencegahan dan 

Pengendalian Penyakit (2021), the increased 

vaccination coverage significantly contributed to 

a decrease in hospitalizations and deaths from 

COVID-19 in the region.  

 

Several prior studies explored mathematical 

programming as a prevalent approach in 

modeling vaccine distribution. Notable research 

efforts include those by Abbasi et al. (2020), 

Bluth et al. (2022), Ma et al. (2021), Marie 

(2021), Matrajt (2020), and Shim (2021) have 

focused on COVID-19 vaccine distribution. 

Additionally Enayati & Özaltın (2020), Kim & 

Jung (2019), and Rastegar et al. (2021) have also 

contributed to this research. These authors 

proposed mathematical models for vaccine 

distribution, emphasizing population group 

prioritization (based on age or susceptibility) and 

optimal allocation strategies across various 

locations. Additional research by Georgiadis & 

Georgiadis (2021) for COVID-19 vaccines and 

Ng et al. (2018) for influenza vaccines aimed to 

minimize distribution costs, while work by 

Bertsimas et al. (2022), Bravo et al. (2022), 

Leithäuser et al. (2021), and Tang et al. (2022) 

focused on minimizing travel distances between 

vaccination sites and targets. Furthermore, 

investigations by Jahani et al. (2022), Soria-

Arguello et al. (2021), and Sripada et al. (2021) 

pertained to COVID-19 vaccine optimization, 

while Lim et al. (2019), Yang et al. (2021), and 

Yang & Rajgopal, (2020) addressed World 

Health Organization-expanded programme on 

immunization (WHO-EPI) vaccine strategies. 

Finally, Li et al. (2019) developed an updated 

distribution network for optimizing vaccine 

dissemination. 

 

The mathematical models proposed by Abbasi et 

al. (2020), Enayati & Özaltın (2020), Golan et al. 

(2021), Kim & Jung (2019), Lim et al. (2019), 

Rastegar et al. (2021), Sripada et al. (2021), and 

Tang et al. (2022) is a single-product model for 

vaccine distribution optimization for both 

influenza and COVID-19 vaccines that only uses 

one type of product. Thus studies did not 

incorporate the number of vaccines into the 

proposed mathematical model. Handling the 

COVID-19 pandemic globally involves using 

several types of vaccines. According to the 

literature review conducted, there is no research 

that specifically includes the type of vaccine in its 

analysis. 

 

In this study, we present a multi-product mixed-

integer nonlinear programming (MINLP) model 

designed to optimize the distribution of COVID-

19 vaccines. The model seeks to ensure an 
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equitable allocation by classifying the population 

into five distinct age groups. The local 

government's vaccination initiative enables 

elderly and pre-elderly individuals to receive their 

vaccines at the nearest healthcare facilities, while 

individuals from other age groups can access 

vaccinations at various sites. Key decision 

variables in our model include the distribution of 

vaccine doses to each age group, the selection of 

vaccination facilities, and the scheduling of 

vaccination sessions to maximize coverage and 

minimize waiting times. 

 

The contribution of our paper are the following. 

Firstly, we developed a MINLP model that 

incorporates various types of COVID-19 

vaccines to ensure fair and equitable distribution. 

Secondly, we enhanced the model by 

categorizing the population into five age groups 

for vaccination during the pandemic. 

Furthermore, our model advances existing 

frameworks by shifting the application context 

from influenza vaccines to COVID-19 vaccines 

and introducing greater technical complexity 

through the consideration of multi-product usage, 

which has not been addressed in previous models. 

 

Finally, the remainder of this paper is organized 

as follows. In Section 1, we introduce our 

research on vaccine distribution, optimization, 

and mathematical programming. In Section 2, we 

provide a comprehensive review of previous 

studies on vaccine supply chain and vaccine 

distribution optimization using mathematical 

programming approach. In Section 3, we present 

the proposed mathematical model to show the 

applicability of the proposed method in this study. 

In Section 4, we present the case study, the data 

used, and the results. Section 5 contains 

conclusions and suggestions for future research. 

 

2. LITERATURE REVIEW  

2.1 Vaccine Supply Chain 

Vaccination is one of the most effective ways to 

control infectious disease outbreaks. Vaccination 

is a medical intervention that is not possible 

without good logistics. Duijzer et al. (2018) 

introduced the identified vaccine supply chain 

including: product, production, allocation, and 

distribution. With an operations research 

perspective, the four categories were categorized 

by incorporating World Health Organization 

(WHO) priorities to realize a robust and flexible 

vaccine supply chain.   

 

de Boeck et al. (2019) scrutinized the vaccine 

distribution chain, spanning from national stock 

to final procurement in various low- and middle-

income nations. They noted a dearth of attention 

to distribution chain issues in operations research 

literature. Abila et al. (2020) contended that, 

drawing from past vaccination endeavors, the 

vaccine distribution chain remains a formidable 

obstacle in vaccine reception and dissemination. 

Their study underscores the necessity of early 

community involvement for equitable 

distribution in ongoing vaccination efforts. 

 

Ocampo & Yamagishi (2020) asserted that 

mitigating potential pandemic losses hinges on 

vaccine availability. Thus, comprehensive 

planning and response are imperative to ensure 

equitable coverage for the entire population. 

Alizadeh (2021) elucidated that amidst the 

COVID-19 crisis, other health issues have taken 

a backseat in the healthcare sector, with relentless 

efforts directed towards pandemic combat. Given 

the urgency, COVID-19 vaccine distribution 

demands heightened sensitivity compared to 

other vaccinations. 

Alam (2021) contended that the COVID-19 

pandemic has posed substantial challenges to the 

vaccine supply chain, prompting significant 

disruptions. Their study identified 15 challenges 

crucial for shaping a resilient COVID-19 vaccine 

distribution network. Golan (2021) argued that 

the increasingly globalized vaccine supply chain 

faces potential bottlenecks that could precipitate 

systemic failure. Effective COVID-19 

vaccination necessitates not only a robust supply 

chain for quality product manufacturing but also 

comprehensive coverage across the target 

population, transcending mere efficiency. 

 

Rastegar et al. (2021) argued that an effective 

vaccine distribution chain requires an efficient 

overall structure, level of demand, vaccine 

inventory requirements. In addition, the 

identification of vaccine distribution locations is 

also very important. It can be used to distribute 

vaccines from the manufacturer to each 

consumer. 

 

2.2 Vaccine Distribution Optimization Using  

      Mathematical Programming Approach 

A number of studies employed mathematical 
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programming approach to optimize vaccine 

distribution. Ng et al. (2018) proposed a model to 

determine the ideal influenza vaccine allocation 

across vulnerable groups in various immunization 

programs. Their model advocated a strategy of 

initially evenly distributed mass vaccination, 

transitioning to targeted vaccination later, 

proving both cost-effective and efficient. Lim et 

al. (2019) utilized the mixed-integer 

programming (MIP) model to revamp the optimal 

expanded programme on immunization (EPI) 

vaccine distribution network in Africa, resulting 

in a new network that saves both time and costs. 

 

Kim & Jung (2019) developed a mathematical 

model for the 2009 A/H1N1 influenza outbreak 

in South Korea, considering five age groups. 

Their research provided a sound strategy for 

prioritizing vaccinations based on age to mitigate 

the epidemic. Li et al. (2019) proposed a MINLP 

model to pinpoint vaccination station locations, 

factoring in travel distance, operational costs, and 

work schedules. The study's solution can identify 

vaccination sites, thus conserving public health 

resources. 

 

Enayati & Özaltın (2020) delved into optimal 

influenza vaccine distribution within a 

heterogeneous population with several 

subgroups. Their mathematical model forecasted 

the required vaccine stock for future outbreaks. 

Abbasi et al. (2020) developed an MIP model to 

allocate vaccines in Australia, considering 

various factors. The result of their research yields 

policy recommendations for vaccine distribution 

based on different allocation scenarios. 

 

Matrajt et al. (2020) utilized an age-graded 

mathematical model with an optimization 

algorithm to optimize vaccine allocation, 

enabling prioritization based on need. Georgiadis 

& Georgiadis (2021) devised an mixed-integer 

linear program (MILP) model to enhance the 

efficiency of the COVID-19 vaccine supply 

chain, increasing the number of vaccines 

transferred at each vaccination site. 

 

Leithäuser et al. (2021) employed mathematical 

programming approach to determine optimal 

vaccination site locations, workforce 

requirements, and community access in 

Germany, minimizing distance to maximize 

vaccination efficiency. Ma et al. (2021) proposed 

an MIP model for vaccine allocation in New York 

City, prioritizing locations with higher 

vulnerability and prolonged outdoor exposure. 

 

Marie et al. (2021) formulated a multi-objective 

linear programming model for COVID-19 

vaccine distribution in Quezon City, prioritizing 

the elderly. Shim (2021) structured a 

mathematical model by age to allocate vaccines, 

significantly reducing pandemic deaths in South 

Korea.  

 

Rastegar et al. (2021) introduced an MILP model 

for equitable influenza vaccine distribution, 

considering different human groups during the 

COVID-19 pandemic. Soria-Arguello et al. 

(2021) proposed a mathematical model for 

COVID-19 vaccine distribution in Mexico, 

optimizing the distribution network. 

 

Sripada et al. (2021) developed a programming 

model for various aspects of vaccine distribution, 

yielding an optimal model useful for decision-

making frameworks. Yang et al. (2021), Yang & 

Rajgopal (2020) designed mathematical models 

for vaccine EPI distribution network optimization 

in Sub-Saharan Africa. 

 

Bravo et al. (2022) formulated a large-scale MIP 

model to meet vaccination demand while 

minimizing travel distance, improving access to 

vaccination sites. Jahani et al. (2022) devised a bi-

objective nonlinear programming model for 

efficient COVID-19 vaccine distribution, 

considering different susceptibility levels. 

 

Bertsimas et al. (2022) devised a bilinear, non-

convex model to optimize COVID-19 vaccine 

distribution. Their model determines optimal 

vaccination site locations, crucial for mass 

vaccination programs. Bluth et al. (2022) 

developed an MIP model to schedule vaccine 

distribution and supply efficiently, aiming to 

minimize infection risks. Their model aids in 

decision-making regarding initial vaccine 

distribution. 

 

Tang et al. (2022) addressed vaccination 

planning, optimizing travel distance and 

operating costs using the MILP model. Their 

model minimizes total vaccination recipient 

distance, ensuring optimal vaccination processes 

in Tongzhou's case study.  
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Through these studies, we can see that 

mathematical programming has become a very 

reliable approach to optimizing vaccine 

distribution.

 

3. METHOD 

3.1 PROPOSED MODEL 

3.1.1 Set and Indices 

The set and  indices included in the proposed model are shown in Table 1. 

Table 1. Set and indices 

Notation Definition 

ℎ ∈ 𝐻 

𝑣 ∈ 𝑉 

𝑔 ∈ 𝐺 

𝑑 ∈ 𝐷 

𝑡 ∈ 𝑇 

Demand 

Vaccine type 

Age group 

Distribution center 

Time period 

3.1.2 Parameters

The parameters used in the proposed model are shown in Table 2.

Table 2. Parameters 

Notation Definition 

𝐷𝐺𝑔ℎ Amount of vaccine needed for age group 𝑔 at location ℎ 

𝑆𝐶𝑑 Set-up cost for distribution center  𝑑 

𝑃𝐶𝑣 Purchase cost per dose of COVID-19 vaccine 𝑣 

𝑇𝐶𝑣𝑑ℎ Transportation cost per dose of COVID-19 vaccine 𝑣 at distribution center 𝑑 to location ℎ 

𝐻𝐶𝑣ℎ Storage cost per dose of COVID-19 vaccine 𝑣 in location ℎ 

θ𝑔 Minimum percentage of age group 𝑔 to be vaccinated 

𝑀𝐶𝑑𝑡 Maximum capacity of distribution center 𝑑 to supply vaccine in period 𝑡 

𝐴𝐵 Available budget 

𝑀 A big number 

3.1.3 Decision Variables 

The decision variables in the proposed model are shown in Table 3.  

Table 3. Decision variables 

Notation Definition 

𝑝𝑣𝑔ℎ𝑡  Integer variable, donates the number of vaccine 𝑣 allocated to age group 𝑔 at health facility ℎ 

in period 𝑡 

𝑟𝑣𝑑ℎ𝑡  Integer variable, donates the number of vaccine 𝑣 delivered from distribution center 𝑑 to 

location ℎ in period 𝑡 

𝑞𝑣ℎ𝑡 Integer variable, donates the number of vaccine 𝑣 stored at health facility ℎ in period 𝑡 

 

3.1.4 Objective Function and Constraints 

The objective function in the mathematical 

model is as follows: 

maximize Z = 𝑚𝑖𝑛 {
𝑝𝑣𝑔ℎ𝑡

𝐷𝐺𝑔ℎ

}  (1) 

The objective function (1) is adapted from the 

model developed by Rastegar et al. (2021), 

which is a mathematical model for influenza 

vaccine distribution during the COVID-19 

pandemic. This adaptation aims to maximize the 

minimum delivery-to-demand ratio per age 

group at each demand point. The foundation of 

the objective function is that vaccine demand at 

each demand point is based on the delivery-to-

demand ratio. This ratio serves as an objective 

function to illustrate the mathematical 

relationship between the amount of vaccine 

delivered and the amount of vaccine received. 

∑ 𝑝𝑣𝑔ℎ𝑡 ≥ 𝜃𝑔 𝐷𝐺𝑔ℎ

𝑣∈𝑉,𝑡∈𝑇

  ∀𝑔 ∈ 𝐺, ℎ ∈ 𝐻 (2) 
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Constraint (2) ensures that the COVID-19 

vaccine is distributed to each age group at or 

above the coverage rate. This constraint 

guarantees that the number of vaccines allocated 

exceeds the total demand. 

𝑞𝑣ℎ𝑡 = ∑ 𝑟𝑣𝑑ℎ𝑡 − ∑ 𝑝𝑣𝑔ℎ𝑡

𝑔∈𝐺

  ∀𝑣 ∈ 𝑉, ℎ

𝑑∈𝐷

∈ 𝐻, 𝑡 ∈ {1} 

(3) 

𝑞𝑣ℎ𝑡 = 𝑞𝑣,ℎ,𝑡−1 + ∑ 𝑟𝑣𝑑ℎ𝑡 − ∑ 𝑝𝑣𝑔ℎ𝑡

𝑔∈𝐺

  ∀𝑣

𝑑∈𝐷

∈ 𝑉, ℎ ∈ 𝐻, 𝑡\{1} 

 (4) 

Constraint (3) aims to determine the supply of 

the COVID-19 vaccine at the point of demand in 

the first period, while constraint (4) addresses 

the supply in the following period. This is 

achieved by reducing the inventory of COVID-

19 vaccine shipments by the number of vaccines 

allocated. 

∑ 𝑟𝑣𝑑ℎ𝑡 ≤  𝑀𝐶𝑑𝑡

ℎ∈𝐻

  ∀𝑣 ∈ 𝑉, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇 (5) 

Constraint (5) ensures that the capacity of the 

distribution center is not exceeded by considering 

that the number of vaccines delivered remains 

within the specified limit. 

𝑟𝑣𝑑ℎ𝑡 ≤ 𝑀  𝜔𝑑   ∀𝑣 ∈ 𝑉, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 (6) 

Constraint (6) ensures that all potential 

distribution centers in this model can receive the 

vaccine. If a distribution center is not ready, it 

cannot receive any vaccine supply. 

∑ 𝑆𝐶𝑑

𝑑∈𝐷

 𝜔𝑑 + ∑ 𝑃𝐶𝑣 

𝑣∈𝑉,𝑑∈𝐷,ℎ∈𝐻,𝑡∈𝑇

𝑟𝑣𝑑ℎ𝑡

+ ∑ 𝑇𝐶𝑖𝑑ℎ

𝑣∈𝑉,𝑑∈𝐷,ℎ∈𝐻,𝑡∈𝑇

 𝑟𝑣𝑑ℎ𝑡

+ ∑ 𝐻𝐶𝑖ℎ 𝑞𝑣ℎ𝑡 ≤ 𝐴𝐵

𝑣∈𝑉,ℎ∈𝐻,𝑡∈𝑇

 

(7) 

Constraint (7) aims to ensure that the provided 

budget is sufficient to cover the total cost of 

distributing the COVID-19 vaccine. The 

distribution cost includes purchasing, 

transportation, and storage expenses. 

 

3.2   CASE STUDY AND DATA 

The case study for this research focuses on 

Balikpapan City, one of the largest city in 

Indonesia. Balikpapan has a population of 

672,328, making it relatively dense compared to 

other cities in the country (East Kalimantan 

Provincial Department of Population, Women’s 

Empowerment, and Child Protection, 2022). In 

2021, the local government initiated a 

vaccination program targeting the elderly and 

pre-elderly at nearby health facilities. A total of 

59 healthcare facilities across the city served as 

vaccination points. The number of COVID-19 

vaccine requirements for each age group is 

detailed in Table 4, while the coverage rates for 

each age group are shown in Table 5. The 

number of COVID-19 vaccine doses required 

per age group at the point of demand varies with 

the coverage rates for each group. The specific 

needs for each age group are detailed in Table 4.

Table 4. The demand for vaccine doses for each age group and each healthcare facility 

(not shown in full due to page limitations) 

 No. 
Healthcare 

facility 

Age group 

1 2 3 4 5 

12-18 yo 19-30 yo 31-45 yo 46-59 yo >60 yo 

1 Baru Ilir 1385 2435 2816 1849 877 

2 Baru Tengah 1974 3472 4015 2636 1250 

3 Baru Ulu 2008 3532 4084 2681 1272 

4 Marga Sari 906 1593 1842 1210 574 

… … … … … … … 

59 Klinik Prodia 183 316 302 235 92 
Source: East Kalimantan Prov. Dept. of Population, Women’s Empowerment, and Child Protection (2022) 
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Table 5. The coverage rate for each age group 

 

Age group 

1 2 3 4 5 

12-18 yo 19-30 yo 31-45 yo 46-59 yo >60 yo 

Vaccinated 66,623 115,402 144,833 98,139 31,987 

Target 81,103 141,376 173,357 109,661 51,091 

Coverage rate 0.85 0.85 0.87 0.93 0.64 

Source: Balikpapan City Health Office (2021) 

 

The coverage rate represents the minimum level 

of vaccination required within a population. It is 

calculated by determining the ratio of vaccinated 

individuals to the target population within a 

specific age group. Table 5 presents the coverage 

rates for the five age groups.  

4. RESULT 

4.1   Model Outputs 

Data processing was conducted using AMPL 

software (https://ampl.com/) in conjunction with 

the Gurobi solver (https://www.gurobi.com/) to 

implement the proposed mathematical model. 

The optimal value of the objective function is 

0.049, which reflects the ratio of delivery to 

demand. With a budget of IDR 150 billion, a total 

of 574,748 doses of the COVID-19 vaccine can 

be distributed. This allocation consists of 112,954 

doses of type 1 vaccine, 115,733 doses of type 2 

vaccine, 115,649 doses of type 3 vaccine, 

112,171 doses of type 4 vaccine, and 118,241 

doses of type 5 vaccine. All potential distribution 

centers are eligible for use in the COVID-19 

vaccine distribution effort. The optimal allocation 

of type 1 vaccine doses among various age groups 

is detailed in Table 6. 
 

Table 6. The optimal number of type 1 vaccine doses allocated to all age groups and each healthcare facility in 

period 1 (not shown in full due to page limitations) 

No. 
Healthcare 

facility 

Age group 

1 2 3 4 5 

12-18 yo 19-30 yo 31-45 yo 46-59 yo >60 yo 

1 Baru Ilir 68 120 139 91 43 

2 Baru Tengah 97 171 197 130 62 

3 Baru Ulu 99 174 201 132 63 

4 Marga Sari 45 79 91 60 29 

… … … … … … … 

59 Klinik Prodia 9 16 15 12 5 
 

 

Table 7. The optimal number of type 1 vaccine doses shipped to all age groups and each healthcare facility in 

period 1 (not shown in full due to page limitations) 

No. 
Healthcare 

facility 

Distribution center  

1 2 3 4 5 6 

RS 

Bersalin 

Sayang 

Ibu 

RS Medika 

Utama 

Manggar 

RSUD 

Kanujoso 

Djatiwibowo 

RS 

Restu 

Ibu 

RS 

Siloam 

Balikpapan 

RS 

Pertamina 

Balikpapan 

1 Baru Ilir 461 0 0 0 0 0 

2 Baru 

Tengah 

657 0 0 0 0 0 

3 Baru Ulu 669 0 0 0 0 0 

4 Marga Sari 0 304 0 0 0 0 

… … … … … … … … 

59 Klinik 

Prodia 

0 57 0 0 0 0 

https://ampl.com/
https://www.gurobi.com/
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Table 6 outlines the strategic distribution of 

COVID-19 vaccine doses across diverse age 

groups and health facilities over multiple time 

periods. It describes the allocation process to 

ensure each age group, including the initial 

cohort (12-18 years), receives an optimally 

calculated dosage. For example, the first health 

facility in this age group was allocated 68 doses 

of COVID-19 vaccine type 1 during the initial 

period. 

Furthermore, Table 7 provides a detailed insight 

into the logistics of vaccine distribution from 

centralized centers to various health facilities. 

The table elucidates the distribution process, 

facilitating efficient vaccine supply throughout 

each period. Notably, distribution center 1 

precisely delivered 461 doses of COVID-19 

vaccine type 1 to health facility 1 during the first 

period. 

Table 8 illustrates the critical inventory of 

COVID-19 vaccine doses stored at key 

distribution centers, essential for facilitating 

widespread distribution and mitigating the 

pandemic's impact on public health. 

Specifically, during the first period, healthcare 

facility 4 houses 304 doses of COVID-19 

vaccine type 1, as recorded based on shipments 

and allocations. 
 

Table 8. The optimal number of vaccine doses stored for each vaccine type in period 1 

No. Healthcare facility 

Age group 

1 2 3 4 5 

AstraZeneca Sinopharm Moderna Pfizer Sinovac 

4 Marga Sari 0 0 0 0 304 

7 Klinik Mulawarman 326 0 326 0 0 

11 Teritip 0 808 0 0 0 

12 Batu Ampar 0 0 0 1124 562 

16 Karang Joang 0 0 626 0 0 

17 Klinik Kimia Farma 

KM 5 

0 0 33 0 0 

26 Klinik Kimia Farma 

Karang Jati 

0 165 0 0 0 

29 RS Restu Ibu 0 0 746 0 0 

30 Sumber Rejo 0 0 542 542 0 

35 Klinik Mirabell 0 0 63 63 63 

42 RSIA Asih 0 0 369 0 0 

47 RS Medika 

Utama Permata 

0 0 0 0 96 

48 RS Pertamina 

Balikpapan 

0      0 0         208 0 

49 RS Dr. R. Hardjanto 0      0 0         0 199 

50 RSUD Kota  

Balikpapan 

0      0 0         0 336 

52 Prapatan 0       347 0         0 0 

53 RS Bhayangkara 

Balikpapan 

0      216 0          216 216 

54 Klinik Hesti  

Wira Sakti 

0      0 0          678 0 

57 BK Lanal  

Balikpapan 

0      0 0          383 0 
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Figure 1. The visualization of vaccine doses allocated to each age group and each vaccine type at healthcare 

facility 1 in periods 1-4 

 

Figure 1 illustrates the delivery of COVID-19 vaccine 

doses from various distribution centers to healthcare 

facility 1, specifically Baru Ulu, over four periods. The 

doses delivered were 2,305 in the first and second 

periods, 2,766 in the third period, and 1,844 in the 

fourth period. The 461 surplus doses from the third 

period were carried forward to the fourth period, 

resulting in healthcare facility 1 receiving a total of 

2,305 doses in that period. The vaccine allocation for 

healthcare facilities is divided into five types, each 

tailored to different age groups. During the third 

period, Health Facility 1 received an excess of type 1 

vaccine, leading to the transfer of 461 doses of type 1 

vaccine to the fourth period. 

 

4.2   Sensitivity Analysis 

The sensitivity analysis conducted in this study 

investigates the allocation of budget resources 

concerning the distribution of COVID-19 vaccine 

doses. This detailed analysis involves varying budget 

inputs within the programming model, documented 

in Table 9. Through systematic adjustments to 

financial parameters, the study explores the effects of 

different budgetary allocations on the effective 

distribution of COVID-19 vaccine doses, offering 

critical insights into optimizing resource allocation 

strategies for vaccination programs.

Table 9. Several scenarios for sensitivity analysis 

Scenario Budget (in billion IDR) Total number of vaccine doses purchased 

S1 120 531,297 

S2 130 542,433 

S3 140 566,879 

S4 (existing) 150 574,748 

S5 160 698,222 

S6 170 731,807 

S7 180 793,020 

 

In Table 9, scenarios S1, S2, and S3 illustrate 

cases where the total budget is lower than in 

scenario S4, which represents the actual situation. 

Conversely, scenarios S5, S6, and S7 depict 

instances where the total budget exceeds that of 

scenario S4. Therefore, it is clear that reducing 

the total budget results in a decrease in the 

allocated number of vaccine doses, while 

increasing the total budget leads to an increase in 

the number of vaccine doses allocated.
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Figure 2. The total number of vaccine doses purchased for each scenario 

 

Figure 2 illustrates how the government's budget 

allocation impacts the distribution of COVID-19 

vaccines within the community. It influences both 

the quantity of vaccine doses allocated to various 

age groups and the distribution of different types 

of COVID-19 vaccines. Optimally, activating all 

five distribution centers would utilize a total 

budget of IDR 150 billion to procure 574,748 

doses of COVID-19 vaccines across five distinct 

types. Increasing the budget by IDR 10 billion 

would enable an additional distribution of 

123,474 doses throughout the chain, thereby 

raising the objective function from 0.049 to 

0.056. 

 

5. DISCUSSION 

The results from our MINLP model provide a 

framework for optimizing COVID-19 vaccine 

distribution, corroborating previous research. 

Our optimal delivery ratio demonstrates an 

effective allocation process that fulfills demand, 

consistent with findings from Wen et al. (2023), 

which highlight the importance of strategic 

distribution in pandemic response. In contrast, 

our results differ from those of Ariyarajah et al. 

(2022), who identified logistical constraints and 

regional disparities as barriers to equity. This 

discrepancy underscores the need for continuous 

evaluation and adjustment of distribution 

strategies to ensure equitable access across 

different demographics. 

 

The managerial implications for public health 

authorities are significant, as our model 

categorizes the population by age groups, 

allowing for the development of vaccination 

strategies tailored to different risk profiles. The 

data suggest that prioritizing certain 

demographics can improve resource utilization 

and increase vaccination rates. We recommend 

that the government develop guidelines based on 

these findings to ensure data-driven vaccination 

distribution that is adaptive to changing 

circumstances. 

 

Our sensitivity analysis shows that variations in 

budget allocation and resource availability 

significantly affect the effectiveness of vaccine 

distribution strategies. These findings 

emphasize the importance of proactive planning 

to manage resource fluctuations, especially 

during public health emergencies. The vaccine 

delivery-to-demand ratio serves as an important 

indicator, reflecting the proportion of demand 

met at each point and highlighting the need for 

governments to prioritize resource allocation in 

developing an efficient logistics infrastructure 

for crisis response and ensuring equitable 

vaccine distribution Abila et al. (2020) and 

Georgiadis & Georgiadis (2021). 

 

We recommend that reducing the budget for 

vaccine purchases decreases the percentage of 

public health needs met, underscoring the 
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importance of strategic resource allocation. A 

limited budget reduces the supply-to-demand 

ratio, while an increased budget facilitates the 

procurement of additional doses, thereby 

enhancing the minimum supplied-to-demand 

ratio. These findings emphasize that the 

government should create contingency plans 

that allow for flexible resource allocation during 

health emergencies. Adjusting budgets based on 

demand fluctuations will enable public health 

authorities to optimize overall distribution. 

 

6.  CONCLUSION 

We have developed a MINLP model to address 

the challenge of COVID-19 vaccine distribution. 

The model includes five different vaccine types 

and categorizes the population into five age 

groups: adolescents, young adults, middle-aged 

adults, older adults, and seniors. Validation was 

conducted through a case study in one of 

Indonesia's major cities, demonstrating that the 

model can be practically applied in real-world 

scenarios. The results indicate that, with 

sufficient budget allocation, the government can 

effectively procure a large number of vaccine 

doses and distribute them evenly across different 

vaccine types. The optimized objective function 

reflects a favorable delivery-to-demand ratio, 

highlighting the model's efficiency in resource 

allocation. Additionally, the sensitivity analysis 

shows the impact of budget adjustments on 

vaccine distribution across age groups, 

underscoring the importance of strategic financial 

planning in vaccination efforts.  

 

Our research demonstrates that the development 

of this model can accommodate different types of 

vaccines and age groups, producing efficient and 

practical vaccine distribution strategies in real-

world scenarios. However, to increase 

complexity and improve the accuracy of case 

study results, future research should consider 

adding more urgent constraints, such as variations 

in storage temperatures between vaccine types 

that require different cooling facilities, limited 

vaccine storage capacity in healthcare facilities, 

and the risk of vaccine degradation due to 

temperature fluctuations during transportation. 

Additionally, future research could take into 

account the varying expiration times of vaccines 

and optimize delivery schedules to ensure doses 

arrive on time and remain viable, contributing 

significantly to the model's improvement. 

 

ACKNOWLEDGEMENT 

Alvin Muhammad ‘Ainul Yaqin and Ghina 

Salsabila Rosyid contributed equally to this work 

and are designated as co-first authors. 

 

FUNDING 

This research did not receive any specific grant 

from any funding agency in the public, 

commercial, or not-for-profit sectors. 

 

REFERENCES 

Abbasi, B., Fadaki, M., Kokshagina, O., Saeed, 

N., & Chhetri, P. (2020). Modeling vaccine 

allocations in the COVID-19 pandemic: A 

case study in Australia. SSRN Electronic 

Journal, 1-34. 

https://doi.org/10.2139/SSRN.3744520  

Abila, D. B., Dei-Tumi, S. D., Humura, F., & 

Aja, G. N. (2020). We need to start thinking 

about promoting the demand, uptake, and 

equitable distribution of COVID-19 

vaccines now!. Public Health in Practice, 1, 

100063. 

https://doi.org/10.1016/j.puhip.2020.10006

3  

Alam, S. T., Ahmed, S., Ali, S. M., Sarker, S., 

Kabir, G., & Ul-Islam, A. (2021). 

Challenges to COVID-19 vaccine supply 

chain: Implications for sustainable 

development goals. International Journal of 

Production Economics, 239, 108193. 

https://doi.org/10.1016/J.IJPE.2021.108193  

Alizadeh, M., Paydar, M. M., Hosseini, S. M., & 

Makui, A. (2021). Influenza vaccine supply 

chain network design during the COVID-19 

pandemic considering dynamical demand. 

Scientia Iranica, 1-31. 

https://doi.org/10.24200/SCI.2021.58365.5

694  

Ariyarajah, A., Berry, I., Haldane, V., Loutet, M., 

Salamanca-Buentello, F., & Upshur, R. E. 

G. (2022). Identifying priority challenges 

and solutions for COVID-19 vaccine 

delivery in low- and middle-income 

countries: A modified Delphi study. PLOS 

Global Public Health, 2(9), e0000844. 

https://doi.org/10.1371/journal.pgph.00008

44 

Bertsimas, D., Digalakis, V., Jacquillat, A., Li, M. 

L., & Previero, A. (2022). Where to locate 

https://doi.org/10.2139/SSRN.3744520
https://doi.org/10.1016/j.puhip.2020.100063
https://doi.org/10.1016/j.puhip.2020.100063
https://doi.org/10.1016/J.IJPE.2021.108193
https://doi.org/10.24200/SCI.2021.58365.5694
https://doi.org/10.24200/SCI.2021.58365.5694
https://doi.org/10.1371/journal.pgph.0000844
https://doi.org/10.1371/journal.pgph.0000844


IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 6 No 1 February 2025, 38-51 

49 

 

COVID-19 mass vaccination facilities? 

Naval Research Logistics, 69(2), 179–200. 

https://doi.org/10.1002/NAV.22007  

Bluth, M. H., Apostolopoulos, V., Ksi, R., A˙ 

Zek., Kapłan, R., Gdowska, K., & 

Łebkowski, P. (2022). Vaccination schedule 

under conditions of limited vaccine 

production rate. Vaccines, 10(1), 116. 

https://doi.org/10.3390/VACCINES100101

16  

Bravo, F., Hu, J., & Long, E. (2022). Optimal 

COVID-19 vaccination facility location. 

SSRN Electronic Journal. 1-30. 

https://doi.org/10.2139/SSRN.4008669  

Davahli, M. R., Karwowski, W., & Fiok, K. 

(2021). Optimizing COVID-19 vaccine 

distribution across the United States using 

deterministic and stochastic recurrent neural 

networks. PLoS ONE, 16. 

https://doi.org/10.1371/journal.pone.02539

25  

de Boeck, K., Decouttere, C., & Vandaele, N. 

(2019). Vaccine distribution chains in low- 

and middle-income countries: A literature 

review. Omega, 97, 102097. 

https://doi.org/10.1016/j.omega.2019.08.00

4  

Deroo S, Pudalov N. J., & Fu LY. (2020). 

Planning for a COVID-19 vaccination 

program. JAMA, 323(24): 2458–2459. 

https://doi.org/10.1001/JAMA.2020.8711 

East Kalimantan Provincial Department of 

Population, Women’s Empowerment, and 

Child Protection. (2017, February 1). Data 

Agregat Kependudukan. Retrieved 

December 1, 2022, from 

https://dkp3a.kaltimprov.go.id/e-infoduk/ 

Duijzer, L. E., van Jaarsveld, W., & Dekker, R. 

(2018). Literature review: The vaccine 

supply chain. European Journal of 

Operational Research, 268(1), 174–192. 

https://doi.org/10.1016/J.EJOR.2018.01.01

5  

Enayati, S., & Özaltın, O. Y. (2020). Optimal 

influenza vaccine distribution with equity. 

European Journal of Operational Research, 

283(2), 714–725. 

https://doi.org/10.1016/J.EJOR.2019.11.02

5  

Georgiadis, G. P., & Georgiadis, M. C. (2021). 

Optimal planning of the COVID-19 vaccine 

supply chain. Vaccine, 39(37), 5302–5312. 

https://doi.org/10.1016/J.VACCINE.2021.0

7.068  

Golan, M. S., Trump, B. D., Cegan, J. C., & 

Linkov, I. (2021). The vaccine supply chain: 

A call for resilience analytics to support 

COVID-19 vaccine production and 

distribution. Systemic Risk and Resilience: 

Risk, Systems and Decisions, 389–437. 

https://doi.org/10.1007/978-3-030-71587-

8_22 

Jahani, H., Chaleshtori, A. E., Khaksar, S. M. S., 

Aghaie, A., & Sheu, J.-B. (2022). COVID-

19 vaccine distribution planning using a 

congested queuing system—A real case 

from Australia. Transportation Research 

Part E: Logistics and Transportation 

Review, 163, 102749. 

https://doi.org/10.1016/J.TRE.2022.102749  

Kementerian Kesehatan Republik Indonesia. 

(2022). Profil Direktorat Jenderal 

Pencegahan dan Pengendalian Penyakit 

Tahun 2021. Kementerian Kesehatan 

Republik Indonesia. Accessed October 20, 

2024, from https://p2p.kemkes.go.id 

Kim, S., & Jung, E. (2019). Prioritization of 

vaccine strategy using an age-dependent 

mathematical model for 2009 A/H1N1 

influenza in the Republic of Korea. Journal 

of Theoretical Biology, 479, 97–105. 

https://doi.org/10.1016/J.JTBI.2019.07.011  

Leithäuser, N., Schneider, J., Johann, S., 

Krumke, S. O., Schmidt, E., Streicher, M., & 

Scholz, S. (2021). Quantifying COVID-19 

vaccine location strategies for Germany. 

BMC Health Services Research, 21(1), 1–

18. https://doi.org/10.1186/S12913-021-

06587-X/FIGURES/12  

Li, X., Pan, Y., Jiang, S., Huang, Q., Chen, Z., 

Zhang, M., & Zhang, Z. (2021). Locate 

vaccination stations considering travel 

distance, operational cost, and work 

schedule. Omega, 101. 

https://doi.org/10.1016/j.omega.2020.10223

6  

Lim, J., Norman, B. A., & Rajgopal, J. (2019). 

Redesign of vaccine distribution networks. 

International Transactions in Operational 

Research, 29(1), 200–225. 

https://doi.org/10.1111/ITOR.12758  

Ma, Q., Liu, Y.-Y., & Olshevsky, A. (2021). 

Optimal vaccine allocation for pandemic 

stabilization. arXiv. 

https://doi.org/10.48550/arxiv.2109.04612 

Marie, J., Minoza, A., Bongolan, V. P., & Rayo, 

https://doi.org/10.1002/NAV.22007
https://doi.org/10.3390/VACCINES10010116
https://doi.org/10.3390/VACCINES10010116
https://doi.org/10.2139/SSRN.4008669
https://doi.org/10.1371/journal.pone.0253925
https://doi.org/10.1371/journal.pone.0253925
https://doi.org/10.1016/j.omega.2019.08.004
https://doi.org/10.1016/j.omega.2019.08.004
https://doi.org/10.1001/JAMA.2020.8711
https://dkp3a.kaltimprov.go.id/e-infoduk/
https://doi.org/10.1016/J.EJOR.2018.01.015
https://doi.org/10.1016/J.EJOR.2018.01.015
https://doi.org/10.1016/J.EJOR.2019.11.025
https://doi.org/10.1016/J.EJOR.2019.11.025
https://doi.org/10.1016/J.VACCINE.2021.07.068
https://doi.org/10.1016/J.VACCINE.2021.07.068
https://doi.org/10.1007/978-3-030-71587-8_22
https://doi.org/10.1007/978-3-030-71587-8_22
https://doi.org/10.1016/J.TRE.2022.102749
https://p2p.kemkes.go.id/
https://doi.org/10.1016/J.JTBI.2019.07.011
https://doi.org/10.1186/S12913-021-06587-X/FIGURES/12
https://doi.org/10.1186/S12913-021-06587-X/FIGURES/12
https://doi.org/10.1016/j.omega.2020.102236
https://doi.org/10.1016/j.omega.2020.102236
https://doi.org/10.1111/ITOR.12758
https://doi.org/10.48550/arxiv.2109.04612


IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 6 No 1 February 2025, 38-51 

 

50 

 

J. F. (2021). COVID-19 agent-based model 

with multi-objective optimization for vaccine 

distribution. arXiv. 

https://doi.org/10.48550/arxiv.2101.11400 

Matrajt, L., Eaton, J., Leung, T., & Brown, E. R. 

(2020). Vaccine optimization for COVID-19: 

Who to vaccinate first? MedRxiv. 

https://doi.org/10.1101/2020.08.14.2017525

7  

Ng, C. T., Cheng, T. C. E., Tsadikovich, D., 

Levner, E., Elalouf, A., & Hovav, S. (2018). 

A multi-criterion approach to optimal 

vaccination planning: Method and solution. 

Computers & Industrial Engineering, 126, 

637–649. 

https://doi.org/10.1016/J.CIE.2018.10.018  

Ocampo, L., & Yamagishi, K. (2020). Modeling 

the lockdown relaxation protocols of the 

Philippine government in response to the 

COVID-19 pandemic: An intuitionistic fuzzy 

DEMATEL analysis. Socio-Economic 

Planning Sciences, 72. 

https://doi.org/10.1016/J.SEPS.2020.100911  

Rastegar, M., Tavana, M., Meraj, A., & Mina, 

H. (2021). An inventory-location 

optimization model for equitable influenza 

vaccine distribution in developing countries 

during the COVID-19 pandemic. Vaccine, 

39(3), 495–504. 

https://doi.org/10.1016/J.VACCINE.2020.12

.022  

Shim, E. (2021). Optimal allocation of the 

limited COVID-19 vaccine supply in South 

Korea. Journal of Clinical Medicine, 10(4), 

591. https://doi.org/10.3390/JCM10040591  

Shiri, M., & Ahmadizar, F. (2022). An equitable 

and accessible vaccine supply chain network 

in the epidemic outbreak of COVID-19 under 

uncertainty. Journal of Ambient Intelligence 

and Humanized Computing, 1–25. 

https://doi.org/10.1007/s12652-022-03865-2  

Soria-Arguello, I., Torres-Escobar, R., Pérez-

Vicente, H. A., & Perea-Rivera, T. G. (2021). 

A proposal mathematical model for the 

vaccine COVID-19 distribution network: A 

case study in Mexico. Mathematical 

Problems in Engineering, 1-11. 

https://doi.org/10.1155/2021/5484101  

Sripada, S., Jain, A., Ramamoorthy, P., & 

Ramamohan, V. (2021). A decision support 

framework for optimal vaccine distribution 

across a multi-tier cold chain network. arXiv. 

https://doi.org/10.48550/arxiv.2109.04204 

Su, Z., McDonnell, D., Cheshmehzangi, A., Li, 

X., Maestro, D., Šegalo, S., Ahmad, J., & 

Hao, X. (2021). With great hopes come great 

expectations: Access and adoption issues 

associated with COVID-19 vaccines. JMIR 

Public Health Surveill, 7(8), e26111. 

https://doi.org/10.2196/26111   

Tang, L., Li, Y., Bai, D., Liu, T., & Coelho, L. C. 

(2022). Bi-objective optimization for a multi-

period COVID-19 vaccination planning 

problem. Omega, 110, 102617. 

https://doi.org/10.1016/J.OMEGA.2022.102

617  

Wen, Z., Yue, T., Chen, W., Jiang, G., & Hu, B. 

(2023). Optimizing COVID-19 vaccine 

allocation considering the target population. 

Frontiers in Public Health, 10, 1015133. 

https://doi.org/10.3389/fpubh.2022.1015133 

World Health Organization. (2020, March 8). 

WHO coronavirus (COVID-19) dashboard 

with vaccination data. Retrieved December 1, 

2022, from https://covid19.who.int/table  

Yang, Y., Bidkhori, H., & Rajgopal, J. (2021). 

Optimizing vaccine distribution networks in 

low and middle-income countries. Omega, 

99, 102197. 

https://doi.org/10.1016/J.OMEGA.2020.102

197   

Yang, Y., & Rajgopal, J. (2020). An iterative 

cyclic algorithm for designing vaccine 

distribution networks in low- and middle-

income countries, Proceedings of the 2019 

25th International Joint Conference on 

Industrial Engineering and Operations 

Management (IJCIEOM 2019). 

https://doi.org/10.1007/978-3-030-43616-

2_54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.48550/arxiv.2101.11400
https://doi.org/10.1101/2020.08.14.20175257
https://doi.org/10.1101/2020.08.14.20175257
https://doi.org/10.1016/J.CIE.2018.10.018
https://doi.org/10.1016/J.SEPS.2020.100911
https://doi.org/10.1016/J.VACCINE.2020.12.022
https://doi.org/10.1016/J.VACCINE.2020.12.022
https://doi.org/10.3390/JCM10040591
https://doi.org/10.1007/s12652-022-03865-2
https://doi.org/10.1155/2021/5484101
https://doi.org/10.48550/arxiv.2109.04204
https://doi.org/10.2196/26111
https://doi.org/10.1016/J.OMEGA.2022.102617
https://doi.org/10.1016/J.OMEGA.2022.102617
https://doi.org/10.3389/fpubh.2022.1015133
https://covid19.who.int/table
https://doi.org/10.1016/J.OMEGA.2020.102197
https://doi.org/10.1016/J.OMEGA.2020.102197
https://doi.org/10.1007/978-3-030-43616-2_54
https://doi.org/10.1007/978-3-030-43616-2_54


IJIEM (Indonesian Journal of Industrial Engineering & Management) Vol 6 No 1 February 2025, 38-51 

51 

 

APPENDIX A. CALCULATION OF MINIMUM 

DELIVERY-TO-DEMAND RATIO 

 
Minimum delivery-to-demand ratio indicates the lowest 

proportion of vaccine demand that is met at each demand 

point, based on the delivery-to-demand ratio by age group. 

This study identifies that the minimum delivery-to-demand 

ratio is 0.049. The process to calculate this value is 

illustrated as follows. 

 

The objective function is to maximize Z, which defined as 

the minimum ratio of vaccine deliveries (𝑝𝑣𝑔ℎ𝑡) to demand 

(𝐷𝐺𝑔ℎ) across all age groups (𝑔), health facilities (ℎ), and 

time periods (𝑡). The ratio is calculated as 

maximize Z = min {
𝑝𝑣𝑔ℎ𝑡

𝐷𝐺𝑔ℎ
}. (8) 

Here, 𝑝𝑣𝑔ℎ𝑡 represents the integer decision variable denoting 

the number of doses of vaccine 𝑣 alloocated to age group 𝑔 at 

health facility ℎ during period 𝑡. 𝐷𝐺𝑔ℎ represents the demand 

for vaccines by age group 𝑔 at healt facility ℎ. For multiple 

scenarios, example calculation is demonstrated as follows 

  

= min {
𝑝𝑣=1,   𝑔=1 ℎ=1 𝑡=1

𝐷𝐺𝑔=1,   ℎ=1
} , … , … , {

𝑝𝑣=5,   𝑔=5,   ℎ=5,   𝑡=5

𝐷𝐺𝑔=5,   ℎ=5
}   (9) 

where, in this calculation, each fraction represents the 

delivery-to-demand ratio for different combinations of 

vaccines, age groups, health facilities, and time periods. For 

instance, the calculation for the ratio includes 

 

= min {
68

1385
} , {

97

1979
} , {

99

2008
} … , {

5

92
}  

= 0.049.   
(10) 

The value of 0.049 in the above calculation is obtained by 

determining the minimum ratio of demand that can be met 

across different vaccine types, age groups, health facilities, 

and time periods. This ratio indicates the percentage of 

vaccine demand that can be fulfilled with the available 

budget in each scenario. In particular, this ratio represents 

the real-world scenario (S4) as shown in Table A1. 

 

Table A1 presents the results for scenarios S1, S2, and S3, 

where the total allocated budgets are smaller compared to 

S4 (the real-world scenario with a budget of IDR 150 

billion). As the budget decreases in these scenarios, the 

number of vaccine doses that can be purchased also 

decreases, resulting in a lower percentage of demand being 

met. Consequently, the minimum ratio in these scenarios is 

lower than in scenario S4. In contrast, scenarios S5, S6, and 

S7 show an increase in the total budget compared to S4. 

With a higher budget, the number of vaccine doses that can 

be purchased and distributed also increases.

 

Table A1. Calculation of minimum delivery-to-demand ratio

No. Scenario 
Budget  

(in billion IDR) 

Total number  

of vaccines  

doses purchased 

The difference  

in purchasable 

doses 

Delivery-to-demand ratio 

1 S1 120 531,297 43,451 0.042 

2 S2 130 542,433 32,315 0.041 

3 S3 140 566,879 7,869 0.035 

4 S4 150 574,748 0 0.049 

5 S5 160 698,222 -123,474 0.056 

6 S6 170 731,807 -157,059 0.037 

7 S7 180 793,020 -218,272 0.048 

This results in a higher minimum ratio between the    number 

of doses distributed and demand, meaning that a larger 

proportion of vaccine needs can be met. For example, in S4, 

with a budget of IDR 150 billion, the number of vaccine 

doses that can be purchased is 574,748, and the minimum 

ratio value is 0.049. If the budget is increased by IDR 10 

billion in S5, the number of doses that can be purchased 

rises to 698,222, and the minimum ratio increases to 0.056. 

This illustrates that an increase in budget directly correlates 

with a higher proportion of vaccine needs being met. These 

scenarios demonstrate how changes in the budget impact the 

number of vaccine doses that can be allocated and the value 

of the minimum ratio, which reflects the efficiency of 

vaccine distribution in meeting demand. The number of 

doses allocated decreases if the total budget is reduced (as 

in scenarios S1 to S3) and, conversely, increases if the total 

budget is raised (as in scenarios S5 to S7). The ratio is 

calculated using a predefined formula, and the results vary 

based on the allocated budget. Table A1 provides the ratio 

calculations for each scenario with different budgets and 

delivery-to-demand ratio.

 


