Available online at: http://publikasi.mercubuana.ac.id/index.php/ijiem

IJIEM (Indonesian Journal of Industrial Engineering & Management)

ISSN (Print) : 2614-7327

A Systematic Literature Review of Failure Mode and Effect Analysis (FMEA) Implementation in Industries

Akhyar Zuniawan^{*}

Master of Industrial Engineering Program, Mercu Buana University, Jl. Meruya Selatan No. 1, Jakarta 11610, Indonesia

ARTICLE INFORMATION

Article history:

Received: 12 June 2020 Revised: 25 June 2020 Accepted: 27 June 2020

Category: Review paper

Keywords: FMEA RPN Type of industries Industries output

ABSTRACT

Failure mode and effects analysis (FMEA) is a risk assessment tool that mitigates potential failures in systems, processes, designs, or services and has been used in a wide range of industries. The conventional risk priority number (RPN) method has been criticized for having many shortcomings. Various risk priority models have been proposed in various literature to improve the performance of the FMEA itself. However, there has been no literature review on this topic. This study reviewed 50 FMEA papers published between 1998 and 2019 in international journals and categorized them according to various industry and industry output. The automotive and manufacturing industries dominated the implementation of FMEA. For the industry's production: goods and services, mostly dominated by interests in implementing FMEA in their industries. Hopefully, this finding will be useful for goods and services industries willing to implement FMEA, especially the services industry.

*Corresponding Author Akhyar Zuniawan E-mail: akhyar.zuniawan@gmail.com This is an open access article under the CC–BY-SA license.

© 2020 Some rights reserved

1. INTRODUCTION

Failure mode and effects analysis (FMEA), first developed as a formal design methodology in the 1960s by the aerospace industry, has proven to be a useful and powerful tool in assessing potential failures and preventing them from occurring. FMEA is a technique to analyze, identify, determine, and eliminate a known failure, problem, or error with the potential of a system, design, process, or service before they reach the customer. The primary purpose of FMEA is to identify potential failure modes, evaluate the causes of failure and the effects of various component failures. The analysis results can help analysts identify and correct the failure modes that have a detrimental effect on the system and improve its performance during the stages of design and production. And FMEA has been widely used in various industries, including aerospace, automotive, nuclear, electronics, chemical, mechanical, food and beverage, education, construction, medical technology, and other industries. It is frequently observed that productivity is related to guidelines for productivity improvements achieved through strategic planning (Gold, 1985). As a sector that contributes to more than 50% of Gross Domestic Product (GDP) in the global economy, the service sector's importance will grow in the future (Gecky et al., 2010). Currently, most FMEA is used for industrial production that produces the goods, and not much services industry using FMEA method.

2. LITERATURE REVIEW

FMEA is an important technique used to identify and eliminate known failures or have the potential to improve the reliability and security of complex systems and is intended to provide critical information for making decisions in risk management. To analyze a specific product or system, a cross-functional team should be established for carrying out FMEA first. The first step in FMEA is to identify all possible potential failure modes of the product or system by a session of systematic brainstorming. After that, critical analysis is performed on these failure modes taking into account the risk factors: occurrence (O), severity (S), and detection (D). The purpose of FMEA is to prioritize the failure modes of the product or system to assign limited resources to the most serious risk items. In general, the prioritization of failure modes for corrective actions is determined through the risk priority number (RPN), which is obtained by finding the multiplication of the O, S, and D of a failure. That is: $RPN = O \times S \times D$. FMEA is a structured technique that can help in identifying all failure modes within a system, assessing their impact, and planning for corrective actions, and to extend the application of FMEA to risk management in the construction industry (Abdelgawad & Fayek, 2010). In FMEA, component failures are linked to risk events, while each failure can become the object of detailed failure analysis and corrective action planning (Aboutaleb et al., 2019). Due to innovation in implementing and managing projects, effective use of Failure Modes and Effects Analysis (FMEA) technique has been proposed (Bahrami et al., 2012). FMEA aims to delight and satisfies the customer by preventing failures that may occur at all levels from product conception to its completion for delivery to ensure improved quality and reliability of product delivered in time for the user (Belu et al. 2013).

3. RESEARCH METHOD

This research aims to explore deeper into FMEA implementation in various industries. The study was carried out using the goals in mind. The terms' FMEA' and 'Implementation in Industries' were used to search for articles. The range of journals published for this research from year 1998 to 2019. This research was conducted by reviewing 80 papers found using FMEA. However, 30 journals did not meet the requirements and aspects discussed. So it can be concluded that there are only 50 journals left in accordance with this discussion. So the data used in the journal is data that has been implemented correctly in their respective industries.

In this study, the author reviewed several international journals, all of which were related to the implementation of FMEA. The review in this study is based on two aspects: (1) goods output; (2) services output (Fig. 1).

Fig 1. Study framework

4. RESULT AND DISCUSSION

The 50 journals of FMEA implementation in various industries were selected for review (Table 1). The selected journals or articles were analyzed from the aspect of FMEA methodologies, consist of FMEA basic concepts and FMEA enhancement, then also analyzed by research object and the result for following review of selected articles.

No.	Literature	Type of industries	Industries output	Result
1	Abdelgawad & Fayek (2010)	Construction	Goods	The result to obtain a value of RCN of 286. The RCA was then used to calculate the RCN and the required corrective actions for each risk event.
2	Aboutaleb et al. (2012)	Project Implementation	Services	Some safety analyses are performed using FTA and FMEA methods. But it represents just a small part of the IS026262 functional safety.
3	Angara (2012)	Oil and gas, Biofuel	Goods	From the charts, also the Pareto rule, the critical value for RPN is 200 and for risk the score is 35.
4	Arvanitoyannis & Varzakas (2009)	Food and beverage	Goods	The application for corrective action, the second calculation of the RPN value that has been done, leads to a much lower value compared to before the improvement (< 130).
5	Arvanitoyannis & Varzakas (2008)	Food and beverage	Goods	After applying corrective actions, the second calculation of RPN values was carried out, resulting in substantially lower values (below the acceptable upper limit of 130).
6	Azadeh et al. (2009)	Oil and gas, maintenance	Goods	Based on the FMEA, faults (failure causes) are ranked and prioritized and with regard to this analysis, the appropriate preventive maintenance actions can be scheduled to improve the RCM procedure and increase the overall system reliability and help maintenance managers to provide suitable preventive actions
7	Puvanasvaran & Jamibollah (2014)	Automotive	Goods	The reject was decreasing from 4% become 0,9%.
8	Bahrami et al. (2012)	Construction	Goods	Collapse one part of a total of excavation Vertical includes with RPN (504, 810, 280, 324, 800, 216).
9	Baykasoğlu & Gölcük (2017)	Manufacturing	Goods	The priorities of the FMs may differ considerably if the causal dependencies are taken into consideration, and the main advantage of the proposed model is that decision-makers can better understand cause and effect relationships among FMs and interpret the results.
10	Baynal at al. (2018)	Automotive	Goods	The implementation of corrective and preventive activities increases the doorstep assembly's 96 % improvement in the door seal cuts problem.
11	Belu et al. (2013)	Automotive	Goods	Thermo-forming requirements with the process function of potential failure mode for missing material have the biggest RPN with 240
12	Bevilacqua et al. (2015)	Medical, healthcare	Services	Failure to register failure mode and lack of transcription of urgent drug deliveries performed have the highest RPN 80.
13	Kumar & Parameshwaran (2018)	Manufacturing	Goods	The transportation is reduced from 42 meters to 10 meters approximately, hence reduces 76% of transportation activity. The time involved in total transportation activity also reduced from 2003 to 590 s; hence a saving of 70.5% is obtained. The number of labours required is reduced from 12 to 10.
14	Bluvband et al. (2004)	Electronic, communication device	Goods	Failed Product Due to Insufficient Strength for Change of process temperature (RPN 72), Change of raw material (RPN 45), Change of process pressure (RPN 29).
15	(Borković et al. 2017)	Media, newspaper	Goods	The production phase of time up to applying enough ink reaches the RPN of 96, the RPN of the production phase of time up to receive the first copy of the newspapers is 120, and the time of communication between foreman of the rotation and dispatch revealed two cases non- compliance is 100.
16	Braaksma et al. (2013)	Manufacturing, maintenance	Goods	PAFMEA expresses a new perception in the evaluation and prioritizes failure modes during failure analysis for maintenance, such as risk definition and resource availability, dealing with conflicting characteristics in a decision-making approach.

17 Ignáczová (2016) Automotive, warehouse Goods Optimizing the storage space by 30% then beings advantages in the workfoad of warehouse equipment by 7% and increases employee' productivity by 25%. 18 Ioannis et al. (2013) Oil and gas Goods Air compressor RPN increases from 90 to 270. Loss of function, internal leakage of media RPN increase from 70 to 104, Air actuator fails to open fails to close the valve RPN increase from 36 to 108 fully. 19 Jahangoshai et al. (2017) Mining, stone processing Goods By using the FMEA method in the Parsian stone processing industry company, there were 2 alloures in the company that was identified and weighed, and the evaluation and priority of failures were carried out using the RPN obtained to work at an altitude hefore taking corrective action. (2014) 21 Kania et al. (2014) Manufacturing, fould'y Goods Considering this problem on the basis of similarity to quality management, one should introduce some systematics: principles of eco-management. The methodology of EFMEA is a part of the scope of the eco- management, nethods deficient causes of waste accounted for 71.3 percent foundry 22 Khorshidi et al. (2013) Automotive, car foundry Goods FMEA is not only used to select the high-risk processes but also is croppoed BPM- select weight and process consen is all a key process or not. 24 Kumar (2011) Manufacturing, foundry Goods FMEA is not only used to select the high-risk processes	No.	Literature	Type of industries	Industries output	Result
 warehouse advantages in the workload of warehouse equipament by (2013) Iaonnis et al. (2013) Jahangoshai et al. Mining, stone processing for advantages rom 36 to 108 fully. Jahangoshai et al. Mining, stone processing function, internal leakage of media RPN increase From 72 to 144, Air actuator fails to open or fails to close the valve RPN increase from 36 to 108 fully. Jahangoshai et al. Mining, stone processing function, internal leakage of media RPN increase from 36 to 108 fully. Jahangoshai et al. Mining, stone processing function, internal exace of media RPN increase From 72 to 144, Air actuator fails to open or fails to close the valve RPN increase from 36 to 108 fully. Kanagavari et al. (2015) Kania et al. (2014) Kania et al. Manufacturing, Goods (2014) Kania et al. (2018) Kunti et al. Automotive, car Goods battery corrective actions. Kuna et al. (2018) Kurt et al. (2018) Manufacturing, Goods (2013) Kurt et al. (2010) Manufacturing, Goods (2013) Manufacturing, Goods (2013) Kurt et al. (2010) Manufacturing, Goods (2013) Manufacturing, Goods (2013) Kurt et al. (2010) Manufacturing, Goods (2013) Kurt et al. (2016) Kurt & Ozilgen (2014) Yuma et al. (2016) Kurt & Ozilgen (2014) Services Kurt & Ozilgen (2014) Services Kurt & Ozilgen (2014) Steel Kurt & Ozilgen (2014) Yuma et al. (2016) Food and beverage Construction, Caladi add Parise (2014) Yuma et al. (2016) Kurt & Ozilgen (2014) Yuma et al. (2017) Kurt & Ozilgen (2014) Yuma et al. (2017) Kurt & Ozilgen (2014) 	17	Ignáczová (2016)	Automotive,	Goods	Optimizing the storage space by 30% then brings
18 Ioannis et al. (2013) Oil and gas Goods 7% and increases rom 90 to 270. Loss of function, internal leakage of modia RPN increase from 70 to 270. Loss of function, internal leakage of modia RPN increase from 70 to 270. Loss of function, internal leakage of modia RPN increase from 70 to 108 fully. 19 Jahangoshai et al. (2017) Mining, stone processing Goods By using the FMEA method in the Parsian stone processing industry company, there were 23 fullares in the evaluation and priority of failures were carried out using the RPN calculation. 20 Kangavari et al. (2015) Petrocemical (2016) Goods The RPN obtained to work at an altitude bfore taking significantly reduced (pc:001) by implementing the corrective actions. 21 Kania et al. (2014) Manufacturing, (2014) Goods Considering this problem on the basis of similarity to quality management, one should introduce some systematics: principles of co-emanagement, thedols of eco-management, none should introduce some systematics: principles of co-emanagement, thedols of eco-management methods decicated to the manufacturing processes; 22 Khorshidi et al. (2013) Automotive, car battery Goods FMEA is not only used to select the high-risk processes that also is employed as a process or not evaluate the process chash iffication and the reliability calculation is knowledgeable and potential for performing pragmatic preventive mainfamueat evaluation; foundry 24 Kumar (2011) Manufacturing, foundry Goods FMEA system (NTMEA), it ha			warehouse		advantages in the workload of warehouse equipment by
18 Jahangoshai et al. (2013) Oil and gas Goods Air compressor RPN increase from 72 to 14.4, Air actuator fails to open or fails to close the value processing distance of the close the value RPN increase from 36 to 108 fully. 19 Jahangoshai et al. (2017) Mining, stone processing Goods Perrocemical Goods 20 Kangavari et al. (2015) Perrocemical Goods The RPN obtaives of the value of the					7% and increases employees' productivity by 25%.
(2013) Innetion, internal leakage of media RFN micrase from 3/c 19 Jahangoshai et al. (2017) Mining, stone processing Goods 20 Kangavari et al. (2015) Perocemical (2015) Goods By using the FMEA method in the Parsian stone processing industry company, there were 23 failures in the evaluation and priority of failures were carried out using the RPN calculation. 21 Kania et al. (2014) Perocemical (2015) Goods Considering this problem on the basis of similarity to quality management, one should introduce some systematics: principles of eco-management, methods of calculated RPN for all processes was significantly reduced (p20001) by implementing the corrective actions. 21 Kania et al. (2014) Automotive, car (2014) Goods Considering this problem on the basis of similarity to quality management, one should introduce some systematics: principles of eco-management. The methodology of EFMEA is a part of the scope of the eco- management methods decitation is Anothysis, thas been found that the accuracy of the failure modes classification and the scaparators, absent NMEA, it has been found that the accuracy of the failure modes classification and the reliability calculation is Nonweldgeable and potential for methodology of EFMEA is not only used to select the high-risk processes on not. 24 Kumar & Kumar (2016) Manufacturing, foundry Goods Free the accumulated WPN not ecolatility eprocess, ammonia reactor, ammonia foundry 26 Kumar & Kumar (2013) Food and beverage	18	Ioannis et al.	Oil and gas	Goods	Air compressor RPN increase from 90 to 270, Loss of
19 Jahangoshai et al. (2017) Mining, stone processing Goods BVN increase from 36 to 108 fully. 20 Kangavari et al. (2015) Petrocemical Goods By using the FMEA method in the Parsian stone processing industry company, there were 23 failures in the company that was identified and weighed, and the evaluation and priority of failures were carried out using the RPN calculation. 20 Kangavari et al. (2015) Petrocemical Goods The RPN obtained to work at an altitude before taking corrective action. Sciulated RPN for all processes was significantly reduced (p:0.001) by implementing the corrective actions. 21 Kania et al. (2014) Manufacturing, tools Goods Considering this problem on the basis of similarity to quality management, noe should introduce some systematics: principles of eco-management. The methodology of EFMEA is a part of the scope of the con- management, tools 22 Ku et al. (2008) Manufacturing, foundry Goods FMEA is not only used to select the high-rick processes to also is employed as a process capability index to evaluate the process chosen is still a key process or not. 23 Ku et al. (2008) Manufacturing, foundry Goods FMEA is not only used to select the high-rick processes (2016) 24 Kumar (2011) Manufacturing, foundry Goods The FMEA and the offectively and the purchase (2013) 25 Kumar & Kumar (2013) Fe		(2013)			function, internal leakage of media RPN increase from 72
19 Jahangoshai et al. (2017) Mining, stone processing Goods 20 Kangavari et al. (2015) Petrocemical Goods Goods 21 Kangavari et al. (2015) Petrocemical Goods The Network at an altitude before taking corrective action was 120 and decreased to 96 after corrective action wasinterinting tabattery <t< td=""><td></td><td></td><td></td><td></td><td>RPN increase from 36 to 108 fully</td></t<>					RPN increase from 36 to 108 fully
 (2017) processing industry company, there were 23 failures in the company that was identified and weighed, and the evaluation and priority of failures were carried out using the RPN calculation. (2015) Rangavari et al. (2015) Petrocemical Goods The RPN Obtained to work at an altitude before taking corrective action. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective action. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective action. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective action. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced (pS0.001) by implementing the corrective actions. Calculated RPN for all processes was significantly reduced to the manufacturing transformer (partice) the process chosen is still a key process or not. The formiting transformer (19	Jahangoshai et al.	Mining, stone	Goods	By using the FMEA method in the Parsian stone
20 Kangavari et al. (2015) Petrocemical Goods Company that wis identified and weighed, and the evaluation and priority of failures were carried out using the RPN calculation. 21 Kania et al. (2014) Manufacturing, tools Goods The RPN obtained to work at an altitude before taking corrective action. Calculated RPN for all processes was significantly reduced (re20.001) by implementing the corrective action. 21 Kania et al. (2014) Manufacturing, tools Goods Considering this problem on the basis of similarity to quality management, noe should introduce some systematics: principles of eco-management, methods of eco-management, noels of eco-management, methods of eco-management, nools of eco-management, methods dedicated to the manufacturing processes. 22 Khorshidi et al. (2013) Automotive, car battery Goods FMEA is not only used to select the high-risk processes but also is employed as a process capability index to evaluate the process can sistil a key process or not. From the simulated experiments of the proposed BPN- based FMEA system (NTMEA), it has been found that the accuracy of the failure modes classification and the reliability calculation is knowledgeable and potential for performing ragmatic preventive maintenance activities. The three main causes of nailure ondes classification and the reliability calculation is knowledgeable and potential foundry 24 Kumar & Kumar (2016) Manufacturing, foundry Goods The FMEA method effectively and efficiently causes AC7, CL3, ST2, DR3 and NR3 heat exchangers, ecentrifugal compressors, and lood condenser racetors hav		(2017)	processing	0000	processing industry company, there were 23 failures in the
 20 Kangavari et al. (2015) 21 Kania et al. (2014) 22 Kania et al. (2014) 23 Kuria et al. (2014) 24 Kania et al. (2015) 25 Kurrat (2011) 26 Kurrat (2011) 27 Kurt & Curration (2014) 28 Kurrat (2011) 29 Kurrat & Kumar (2011) 20 Manufacturing, (2015) 20 Manufacturing, (2015) 20 Manufacturing, (2013) 20 Manufacturing, (2014) 21 Kania et al. (2013) 22 Khorshidi et al. (2013) 23 Ku et al. (2008) 24 Kurmar (2011) 25 Kumar & Kumar (2011) 26 Kumar & Kumar (2011) 27 Kurt & Curration 28 Kurrat & Kumar (2011) 29 Kurrat & Kumar (2011) 20 Kumar & Kumar (2011) 20 Kumar & Kumar (2011) 20 Kumar & Kumar (2011) 25 Kumar & Kumar (2011) 26 Kumar & Fertilizer 27 Kurt & Ozilgen (2013) 28 Kurt & Curration & Medical Services 29 Kurrat & Kumar (2011) 20 Kumar & Kumar (2011) 21 Kurt & Ozilgen (2013) 22 Kurt & Ozilgen (2013) 23 Steel 24 Kurat & Ozilgen (2013) 25 Kumanov et al. Manufacturing, (2013) 26 Kurrat & Kumar (2014) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. Manufacturing, (2013) 29 Layzell & (2013) 20 Lipol & Haq (Manufacturing, (2011)) 20 Lipol & Haq (Manufacturing, (2011)) 29 Lipol & Haq (Manufacturing, (2011)) 20 Kurt & Ozilgen (2013) 20 Kurt & Ozilgen (2013)			1 0		company that was identified and weighed, and the
 20 Kangavari et al. (2015) 21 Kania et al. (2014) 22 Khorshidi et al. (2014) 22 Khorshidi et al. (2013) 22 Khorshidi et al. (2013) 23 Ku et al. (2008) 24 Kumar (2011) 25 Kumar & Kumar (2011) 26 Kumru & Kumru (2011) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2013) 29 Kumru & Kumru (2011) 20 Kumru & Kumru (2011) 21 Kurt & Ozilgen (2013) 22 Kurt & Ozilgen (2013) 23 Ku et al. (2013) 24 Kumar (2011) 25 Kumar (2011) 26 Kumru & Kumru (2011) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. Manufacturing, (2013) 29 Layzell & Leyberter (1998) 20 Lipol & Haq (2011) 20 Lipol & Kaq (2011) 20 Lipol &					evaluation and priority of failures were carried out using
 20 Kangavari et al. (2015) 21 Kania et al. (2014) 22 Kania et al. (2014) 23 Kania et al. (2014) 24 Kania et al. (2014) 25 Kurshidi et al. (2013) 25 Kur et al. (2008) 26 Manufacturing, (2013) 27 Kura (2011) 26 Kumar (2011) 27 Kurra & Kumar (2015) 28 Kuzmanov et al. (2013) 29 Kursu & Kumar (2016) 20 Kumru & Kumar (2017) 20 Kumru & Kumar (2016) 20 Kumru & Kumar (2017) 20 Kumru & Kumar (2016) 21 Kurt & Ozilgen (2017) 22 Kurt & Ozilgen (2017) 23 Kurt & Ozilgen (2017) 24 Kumar (2011) 25 Kumar & Kumar (2016) 26 Kumru & Kumar (2016) 27 Kurt & Ozilgen (2017) 28 Kuzmanov et al. (2017) 29 Layzell & (2017) 20 Lipol & Haq (2011) 20 Lipol & Kaq (2011) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011)<!--</td--><td></td><td></td><td></td><td></td><td>the RPN calculation.</td>					the RPN calculation.
 (2015) (2015) (2016) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2014) (2015) (2014) (2014) (2014) (2014) (2015) (2014) (2014) (2014) (2015) (2015) (2016) (2017) (2016) (2017) (2017) (2018) (2018) (2017) (2018) (2017) (2017) (2017) (2018) (2017) (2017) (2017) (2017) (2018) (2017) (2017) (2017) (2018) (2017) (2017) (2017) (2018) (2017) (2017) (2014) (2017) (2015) (2017) (2016) (2017) (2017) (2018) (2017) (2014) (2014) (2015) (2015) (2016) (2017) (2017) (2018) (2017) (2014) (2014) (2015) (2015) (2015) (2016) (2017) (2017) (2018) (2017) (2014) (2014) (2015) (2015) (2015) (2016) (2017) (2011) (2011	20	Kangavari et al.	Petrocemical	Goods	The RPN obtained to work at an altitude before taking
 21 Kania et al. (2014) 21 Kania et al. (2014) 22 Khorshidi et al. (2013) 23 Ku et al. (2008) 23 Ku et al. (2008) 24 Kumar (2011) 25 Kumar & Kumar (2011) 26 Kumar & Kumar (2011) 27 Kurt & Ozigen (2013) 28 Kurmu & Kumar (2016) 26 Kumar & Kumar (2017) 27 Kurt & Ozigen (2013) 28 Kuzmanov et al. (2013) 29 Kurt & Ozigen (2013) 20 Kurt & Ozigen (2013) 20 Kurt & Ozigen (2013) 27 Kurt & Ozigen (2013) 28 Kuzmanov et al. (2014) 29 Layzell & (2017) 29 Layzell & (2017) 20 Lipol & Haq (2011) 20 Lipol & Hap (2011) 2		(2015)			corrective action was 120 and decreased to 96 after
21 Kania et al. (2014) Manufacturing, tools Goods Considering this problem on the basis of similarity to corrective actions. 22 Khorshidi et al. (2013) Automotive, car battery Goods Considering this problem on the basis of similarity to comanagement, tools of eco-management. The methodology of EFMEA is a part of the eco- management methods deficitated to the manufacturing processes. 23 Ku et al. (2008) Manufacture, Maintenance Goods FMEA is not only used to select the high-risk processes or not. 24 Kumar (2011) Manufacture, foundry Goods FVEA is not only used to select the high-risk processes or not. 24 Kumar (2011) Manufacturing, foundry Goods From the simulated experiments of the proposed BPN- based FMEA system (NFMEA), it has been found that the accumated WPN. 25 Kumar & Kumar (2016) Fertilizer Goods The FMEA method effectively and efficiently causes AC7, CL3, ST2, DR3 and NR3 heat exchangers, centrifugal compressors, annonia reactors, annonia separators, and cold condenser reactors have been identified as the most critical causes of failure of the system under consideration. 26 Kumru & Kumru (2013) Manufacturing, Goods Goods 27 Kurt & Ozigen (2013) Food and beverage Goods 28 Kuzmanov et al. (2017) Manufacturing, Steel Goods<					significantly reduced $(n \le 0.001)$ by implementing the
21 Kania et al. (2014) Manufacturing, tools Goods Considering this problem on the basis of similarity to quality management, one should introduce some systematics: principles of eco-management, methods of eco-management, tools of eco-management, methods dedicated to the manufacturing processes. 22 Khorshidi et al. (2013) Automotive, car battery Goods FMEA is not only used to select the high-risk processes but also is employed as a process capability index to evaluate the process chosen is still a key process or not. 23 Ku et al. (2008) Manufacture, Maintenance Goods From the simulated experiments of the proposed BPM- based FMEA system (NFMEA), it has been found that the accumated the process chosen is still a key process or not. 24 Kumar (2011) Manufacturing, foundry Goods The three main causes of waste accounted for 71.3 percent of the accumated WPN. 25 Kumar & Kumar (2016) Medical Services The FMEA method effectively and efficiently causes AC7. CL3, ST2, DR3 and NR3 heat exchangers, centrifugal compressors, and nost critical causes of failure of the system under consideration. 26 Kumru & Kumru (2013) Medical Services With the implementation all dairy products share a common manufacturing tage. 27 Kurt & Ozi					corrective actions.
 (2014) tools (2015) tools (2013) tools (2014) tools (2013) tools (2014) tools (2015) tools (2016) tools (2017) tools (2013) tools (2014) tools (2013) tools (2013) tools (2014) tools (2015) tools (2016) tools (2016) tools (2013) tools (2014) tools (2013) tools (2014) tools (2015) tools (2016) tools (2017) tools (2018) tools (2019) tools (2011) tools<	21	Kania et al.	Manufacturing,	Goods	Considering this problem on the basis of similarity to
 systematics: principles of eco-management, methods of eco-management, tools of eco-management, methods of eco-management. The methodology of EFMEA is a part of the scope of the eco-management methods dedicated to the manufacturing processes. Khorshidi et al. (2008) Manufacture, Goods Maintenance Goods Maintenance Goods Maintenance Goods Maintenance Goods Maintenance Goods FMEA is not only used to select the high-risk processes but also is employed as a process chapen is still a key process or not. From the simulated experiments of the proposed BPN-based FMEA system (NFMEA), it has been found that the accuracy of the failure modes classification and the reliability calculation is knowledgeable and potential for performing pragmatic preventive maintenance activities. The three main causes of waste accounted for 71.3 percent of the accumulated WPN. Kumar & Kumar (2011) Manufacturing, Goods (2016) The FMEA method effectively and efficiently causes AC7, CL3, ST2, DR3 and NR3 heat exchangers, centrifugal compressors, annonia reactors, annonia separators, and cold condenser reactors have been identified as the most critical causes of failure of the system under consideration. Kurt & Ozilgen (2013) Food and beverage Goods Evices Maintenance (2013) Evod and beverage Goods Steel (2017) Steel Goods Steel (2017) Steel Goods To help a large number of dairy product manufacturers produce safe a common manufacturing stage. Kuzmanov et al. (2017) Construction, Cladding Construction, cladding complexel and anost al dairy products share a common manufacturing stage. Lipol & Haq Manufacturing, Goods (2011) valve weap Goods and beverage of losses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. RPN-Top 20% by Pareto and annoyance region [severity and cluting region shiph]. 		(2014)	tools		quality management, one should introduce some
 22 Khorshidi et al. (2013) 23 Ku et al. (2008) (2013) 24 Kurar (2011) 25 Ku et al. (2017) 25 Kurar & Kumar (2011) 26 Kurar & Kumar (2016) 26 Kurar & Kumar (2017) 27 Kurt & Ozilgen (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2013) 29 Layzell & Construction, Goods (2017) 29 Layzell & Construction, Cadding Supplex Construction, Cadding Contact, Cadding Contact					systematics: principles of eco-management, methods of
 22 Khorshidi et al. (2008) 23 Ku et al. (2008) 23 Ku et al. (2008) 24 Kumar (2011) 25 Kumar (2011) 26 Kumru & Kumar (2016) 27 Kurt & Ozilgen (2013) 26 Kumru & Kumru (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2013) 29 Layzell & (2017) 29 Layzell & Layzell & Construction, Ledbetter (1998) 29 Lipol & Haq Manufacturing, Goods (2011) 20 Lipol & Haq Manufacturing, Goods (2011) 21 Kumar (2011) 22 Kuman v et al. (2013) 23 Kuzmanov et al. (2013) 24 Kuzmanov et al. (2017) 25 Kuzmanov et al. (2017) 26 Kuzmanov et al. (2017) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2014) 29 Layzell & Construction, Construction, Ledbetter (1998) 20 Lipol & Haq Manufacturing, Goods (2011) 20 Lipol & Haq Manufacturing, (2014) 20 Lipol & Maq Manufacturing, (2014) 20 Lipol & Haq Manufacturing, (2014					eco-management, tools of eco-management. The
 Khorshidi et al. (2013) Automotive, car Goods battery Ku et al. (2008) Manufacture, Maintenance Ku et al. (2008) Manufacturing, Goods foundry Kumar (2011) Manufacturing, Goods (2016) Kumar & Kumar (2011) Manufacturing, Goods (2016) Kumar & Kumar (2016) Kumar & Kumar (2017) Manufacturing, Goods (2016) Kumar & Kumar (2016) Kumar & Kumar (2017) Manufacturing, Goods (2013) Kurt & Ozilgen (2013) Food and beverage Kurranov et al. (2017) Kurt & Ozilgen (2017) Steel Kurranov et al. (2017) Steel Steel Steel Construction, Cadading Goods (2017) Layzell & Ledbetter (1998) Lipol & Haq (Manufacturing, Goods (2011) Lipol & Haq (2011) Valve Kanarda Manufacturing, Goods (2017) Lipol & Haq (2011) Valve Kanarda Manufacturing, Goods (2017) Kurt & Ozilgen (2017) Lipol & Haq (Manufacturing, Coods (2017) Lipol & Haq (2011) Valve Kanarda Manufacturing, Goods (2017) Kurt Manufacturing, Coods (2017) Kurt & Ozilgen (2017) Kurt & Ozilgen (2017) Kurt & Ozilgen (2017) Kurt & Manufacturing, Goods (2017) Kurt & Manufacturing, Coods (2017) Kurt & Ozilgen (2017)<					methodology of EFMEA is a part of the scope of the eco-
 22 Khorshidi et al. (2013) 23 Ku et al. (2008) 23 Ku et al. (2008) 24 Kumar (2011) 25 Kumar (2011) 26 Kumar & Kumar (2016) 27 Kumar & Kumar (2016) 26 Kumru & Kumru (2016) 26 Kumru & Kumru (2016) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2013) 29 Layzell & L2077) 29 Layzell & L2077) 29 Layzell & L2077) 29 Layzell & L2077) 20 Lipol & Haq (2011) 30 Lipol & Haq (2011)					management methods dedicated to the manufacturing
 (2013) battery (2013) battery (2013) battery (2013) Construction, Can (2014) Construction, Construction, Cools (2015) Construction, Cools (2016) Construction, Cools (2017) Construction, Cools (2018) Construction, Cools (2011) Co	22	Khorshidi et al	Automotive car	Goods	processes. EMEA is not only used to select the high risk processes.
 Ku et al. (2008) Manufacture, Maintenance Ku et al. (2008) Manufacture, Maintenance Ku et al. (2008) Manufacturing, Goods foundry Kumar (2011) Manufacturing, Goods (2016) Kumar & Kumar Fertilizer Goods Kumru & Kumar Fertilizer Goods Kumru & Kumru Medical Services Kumru & Kumru (2013) Medical Services Kurt & Ozilgen (2013) Food and Goods (2013) Food and Goods (2013) Kurt & Ozilgen (2013) Kurzmanov et al. (2017) Kurzmanov et al. (2017) Kuzmanov et al. (2017)<!--</td--><td>22</td><td>(2013)</td><td>hattery</td><td>Goods</td><td>but also is employed as a process capability index to</td>	22	(2013)	hattery	Goods	but also is employed as a process capability index to
 Ku et al. (2008) Manufacture, Maintenance Goods Maintenance Goods Maintenance Goods Maintenance Goods Maintenance Maintenance Goods Maintenance Maintenan		(2010)	sullery		evaluate the process chosen is still a key process or not.
Maintenancebased FMEA system (NFMEA), it has been found that the accuracy of the failure modes classification and the reliability calculation is knowledgeable and potential for performing pragmatic preventive maintenance activities.24Kumar (2011)Manufacturing, foundryGoods (2016)The three main causes of waste accounted for 71.3 percent of the accumulated WPN.25Kumar & Kumar (2016)FertilizerGoodsThe FMEA method effectively and efficiently causes AC7, CL3, ST2, DR3 and NR3 heat exchangers, centrifugal compressors, ammonia reactors, ammonia separators, and cold condenser reactors have been identified as the most critical causes of failure of the system under consideration.26Kumru & Kumru (2013)MedicalServicesWith the implementation of all measures, it is expected to decline about 20% in procurement time and 15% in time spent by the workforce. Besides, the competition will increase among suppliers, and the purchases will be made more transparent.27Kurt & Ozilgen (2013)Food and beverageGoodsTo help a large number of dairy product manufacturers product since the study provides comprehensive real data collected from 75 audits carried out in thirty dairy factories, and almost all dairy product share a common manufacturing stage.28Kuzmanov et al. (2017)Manufacturing, SteelGoodsFoods29Layzell & Ledbetter (1998)Construction, claddingGoodsForcess level and maps the cladding supply chain and cladding related decision-making. The level of knowledge of losses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. <td>23</td> <td>Ku et al. (2008)</td> <td>Manufacture,</td> <td>Goods</td> <td>From the simulated experiments of the proposed BPN-</td>	23	Ku et al. (2008)	Manufacture,	Goods	From the simulated experiments of the proposed BPN-
 Kumar (2011) Manufacturing, foods foundry Goods (2016) Kumar & Kumar (2016) Kumar & Kumar & Kumar & Medical & Services Kumar & Kumar & Medical & Services Kumar & Ozilgen (2013) Food and & Goods (2013) Food and & Goods (2013) Kurt & Ozilgen (2013) Kurt & Manufacturing, Goods Kurt & Ozilgen (2011) Kurt & Manufacturing, Goods Kurt & Ozilgen (2011) <			Maintenance		based FMEA system (NFMEA), it has been found that the
 Kumar (2011) Manufacturing, Goods foundry Kumar & Kumar (2016) Kumar & Kumar & Fertilizer Goods (2016) Kumar & Kumar & Fertilizer Goods (2016) Kumru & Kumru & Medical Services Kumru & Kumru & Medical Services Kumru & Kumru & Medical Services Kurt & Ozilgen (2013) Food and Goods (2017) Kurt & Ozilgen (2013) Food and Goods (2017) Kuzmanov et al. Manufacturing, Goods (2017) Kuzmanov et al. (2017) Kuzmanov et al. (2017) Kuzel & Construction, cladding Construction, cladding					accuracy of the failure modes classification and the
 24 Kumar (2011) Manufacturing, Goods foundry 25 Kumar & Kumar (2016) Fertilizer Goods 26 Kumru & Kumru (2016) Fertilizer Goods 26 Kumru & Kumru (2013) Medical Services 26 Kumru & Kumru (2013) Medical Services 27 Kurt & Ozilgen (2013) Food and beverage Food and beverage Goods 28 Kuzmanov et al. (2017) Steel Manufacturing, Goods (2017) Steel Construction, Calding et al. (2017) Steel Construction, (2018) Construction, (2019) Con					reliability calculation is knowledgeable and potential for
 Kunta (2011) Manufacturing, Goods for the accumulated wPN. Kumar & Kumar (2016) Kumru & Kumru (2016) Kumru & Kumru Medical Services (2013) Kurt & Ozilgen (2013) Food and Goods beverage Kurt & Ozilgen (2013) Kurt & Ozilgen (2013) Food and Goods (2013) Kurt & Ozilgen (2013) Kuzmanov et al. (2017) Kuel (2018) Kurt (2019) Kurt (2011) K	24	V_{umar} (2011)	Monufooturing	Coode	performing pragmatic preventive maintenance activities.
 25 Kumar & Kumar (2016) 26 Kumru & Kumru (2016) 26 Kumru & Kumru Medical Services 27 Kurt & Ozilgen (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. Manufacturing, (2017) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Calding 20 Construction, Calding 20 Construction, Calding 29 Layzell & Construction, Calding 20 Lipol & Haq Manufacturing, (2011) 30 Lipol & Haq (2011) 30 Lipol & Warehouse har (2012) 30 Lipol & Li	24	Kullial (2011)	foundry	Goods	of the accumulated WPN
 (2016) (2016) (2016) (2016) (2017) (2017	25	Kumar & Kumar	Fertilizer	Goods	The FMEA method effectively and efficiently causes
 26 Kumru & Kumru Medical Services 26 Kumru & Kumru Medical Services 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. Manufacturing, Seel 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Cladding 29 Layzell & Construction, Cladding 20 Construction, Cladding 20 Construction, Cladding 20 Construction, Cladding 29 Layzell & Cladding 20 Construction, Cladding 20 Construction, Cladding 20 Construction, Cladding 20 Lipol & Haq (2011) 20 Lipol & Haq		(2016)			AC7, CL3, ST2, DR3 and NR3 heat exchangers,
 26 Kumru & Kumru (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Calding 20 Construction, Calding 29 Layzell & Construction, Calding 20 Lipol & Haq (2011) 20 Lipol & Haq (20					centrifugal compressors, ammonia reactors, ammonia
 26 Kumru & Kumru (2013) 26 Kumru & Kumru (2013) 27 Kurt & Ozilgen (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Construction, Ledbetter (1998) 29 Layzell & Construction, Cladding 20 Lipol & Haq (2011) 30 Lipol & Haq (separators, and cold condenser reactors have been
 26 Kumru & Kumru (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Ledbetter (1998) 29 Layzell & Construction, Ledbetter (1998) 20 Lipol & Haq (2011) 20 Lipol & Lipol					identified as the most critical causes of failure of the
 26 Kumru & Kumru (2013) 27 Kurt & Ozilgen (2013) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. Manufacturing, (2017) 29 Layzell & Construction, Ledbetter (1998) 29 Layzell & Construction, Cladding 20 Lipol & Haq (2011) 30 Kumru & Medical (2013) 30 Kumru & Medical (2011) 30 Kumru & Medical (2011) 30 Kumru & Manufacturing, (2011) 30 Kumru & Manuf	26	V	Matter	C	system under consideration.
 (2013) 27 Kurt & Ozilgen (2013) 27 Kurt & Ozilgen Food and beverage 28 Kuzmanov et al. Manufacturing, Goods 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Construction, Cadding 29 Layzell & Construction, Construction, Construction, Cadding 29 Layzell & Construction, Constru	26	(2012)	Medical	Services	dealing about 20% in procurement time and 15% in time
 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Goods 29 Layzell & Construction, Goods 29 Layzell & Construction, Goods 29 Layzell & Construction, Construction, Goods 29 Layzell & Construction, Construct		(2013)			spent by the workforce. Besides, the competition will
 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Cadding 29 Layzell & Construction, Cadding 20 Lipol & Haq (2011) 30 Lipol & Haq (2011					increase among suppliers, and the purchases will be made
 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Ledbetter (1998) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011) 21 Kurt & Manufacturing, Goods (2011) 27 Kurt & Ozilgen (2013) 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Goods (2011) 20 Lipol & Haq (2011) 20 Lipol & Haq (2011) 20 Kuzmanov et al. (2013) 20 Lipol & Haq (2011) 20 Kuzmanov et al. (2011) 20 Kuzmanov et al. (2013) 20 Kuzmanov et al. (2013) 20 Kuzmanov et al. (2013) 20 Kuzmanov et al. (2014) 20 Kuzmanov et al. (2015) 20 Kuzmanov et al. (2014) 20 Kuzmanov et al. (2015) 20 Kuzmanov et al. (2014) 20 Kuzmanov et al. (2015) 20 Kuzmanov et al. (2014) 20 Kuzmanov et al. (more transparent.
 (2013) beverage produce safe products since the study provides comprehensive real data collected from 75 audits carried out in thirty dairy factories, and almost all dairy products share a common manufacturing stage. 28 Kuzmanov et al. Manufacturing, Goods (2017) Steel Process for Transferring the done pieces into the warehouse has a potential failure for a Damaged piece (RPN 48), Long time for transfer (RPN 70), and Not appropriate conditions into the warehouses (RPN 72). Investigates cladding failures on a system, component, and process level and maps the cladding supply chain and cladding related decision-making. The level of knowledge of losses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. 30 Lipol & Haq (2011) valve 	27	Kurt & Ozilgen	Food and	Goods	To help a large number of dairy product manufacturers
 28 Kuzmanov et al. Manufacturing, Goods (2017) 29 Layzell & Construction, Ledbetter (1998) 30 Lipol & Haq (2011) 30 Lipol & Haq (2011)<td></td><td>(2013)</td><td>beverage</td><td></td><td>produce safe products since the study provides</td>		(2013)	beverage		produce safe products since the study provides
 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Cladding 29 Layzell & Construction, Cladding 30 Lipol & Haq (2011) 30 Lip					comprehensive real data collected from 75 audits carried
 28 Kuzmanov et al. (2017) 29 Layzell & Construction, Goods Ledbetter (1998) 30 Lipol & Haq (2011) 30 Lipol & Haq (2011) 30 Lipol & Haq (2011) 30 Kuzmanov et al. Manufacturing, Goods (2011) 30 Kuzmanov et al. Manufacturing, Kuzmanov et al. Manufacturing (2011) 30 Kuzmanov et al. Manufacturing, Kuzmanov et al. Manufacturing (2011) 30 Kuzmanov et al. Manufacturing, Kuzmanov et al. Manufacturing (2011) 30 Kuzmanov et al. Manufacturing (2					out in thirty dairy factories, and almost all dairy products
 (2017) Steel (2018) Steel (2018) Steel (2019) Steel (2011) Steel (2011	28	Kuzmanov et al	Manufacturing	Goods	Process for Transferring the done pieces into the
 (2017) (2017)	20	(2017)	Steel	Goods	warehouse has a potential failure for a Damaged piece
 29 Layzell & Construction, Ledbetter (1998) 30 Lipol & Haq (2011) 30 Lipol & Haq ((= • - ·)			(RPN 48), Long time for transfer (RPN 70), and Not
 29 Layzell & Construction, Goods Ledbetter (1998) 30 Lipol & Haq (2011) 30 Lipol &					appropriate conditions into the warehouses (RPN 72).
Ledbetter (1998) cladding and process level and maps the cladding supply chain and cladding related decision-making. The level of knowledge of losses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. 30 Lipol & Haq Manufacturing, Goods (2011) valve RPN- Top 20% by Pareto and annoyance region [severity are low, but occurrence ranking is high].	29	Layzell &	Construction,	Goods	Investigates cladding failures on a system, component,
 30 Lipol & Haq (2011) 30 valve 30 cladding related decision-making. The level of knowledge of losses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. 30 RPN- Top 20% by Pareto and annoyance region [severity are low, but occurrence ranking is high]. 		Ledbetter (1998)	cladding		and process level and maps the cladding supply chain and
30Lipol & Haq (2011)Manufacturing, valveGoodsof Iosses and the fragmented industry structure prevents rigorous use of FMEA exemplified by other industries. RPN- Top 20% by Pareto and annoyance region [severity are low, but occurrence ranking is high].					cladding related decision-making. The level of knowledge
30Lipol & Haq (2011)Manufacturing, valveGoodsRPN- Top 20% by Pareto and annoyance region [severity are low, but occurrence ranking is high].					or respectively of EMEA examplified by other inductries
(2011) valve are low, but occurrence ranking is high].	30	Lipol & Hag	Manufacturing	Goods	RPN- Top 20% by Pareto and annovance region [severity
	50	(2011)	valve	20005	are low, but occurrence ranking is high].

No.	Literature	Type of industries	Industries output	Result
31	Mozaffari et al.	Electronic, GEO	Services	System complications can increase the initial increase of
	(2013)	satellite		79.15% rise to 97.52% for the specified life that can meet
				the desired requirements.
32	Namdari et al.	Agriculture	Goods	After implementing the results suggested by the FMEA,
	(2011)	C		fuel consumption decreased by 16.40%.
33	Nauman & Bano	Medical,	Goods	QRM increases awareness about risk and accelerates the
	(2014)	pharmaceutical		detection of a potential problem by analyzing and
				comparing existing data from a quality perspective to
				manage a product's quality, manufacturing process, and
				compliance in a risk-based Quality Management System.
34	Özyazgan (2014)	Textile	Goods	The company's critical failures are weft runs, warp runs,
				basket, oil stain, slay, taras, leg failures, double weft and
				weft pile, and it was determined that those failures are
				caused by weaving machine and personnel.
35	Paciarotti et al.	Manufacturing,	Goods	The revised FMEA allows to study the products' criticality
	(2014)	bathroom		from a quality control point of view and organize specific
		equipment		corrective actions to reduce the risk and improve the
			a .	efficiency and efficacy of quality control tasks.
36	Panchal et al.	Fertilizer,	Goods	The causes CL4, CL6 with the same set of linguistic terms
	(2018)	maintenance		(Very High, High, Fair) and (High, Medium, Medium)
				produce different RPN score (216 and 189) and are ranked
				unterently. Suil, fuzzy FMEA and GRA approach to
				5.70 and 0.5522 5.28) which antails that both these
				5.79 and 0.5525, 5.58), which entails that both these
27	Pantazonoulos &	Steel	Goods	The use of an EMEA can also be applied successfully in
57	Tainazopoulos &	Steel	Clous	various other business sectors (a.g. supplies seles
	(2005)			financial) leading to continual improvement and
	(2005)			increasing the bottom-line results
38	Pareek (2012)	Manufacturing	Goods	After implementing FMEA to the core manufacturing
50	1 urbon (2012)	foundry	Goods	process, core rejections and subsequent losses were
		roundry		reduced to 4.2% of total rejections.
39	Su et al.(2010)	Automotive.	Goods	The results show that the new risk priority model can help
		maintenance		analysts find high-risk failure modes and create
				appropriate maintenance strategies.
40	Popović et al.	Maintenance,	Goods	Our efforts are new and, in our opinion, improved
	(2010)	Automotive		approach to vehicle failure analysis, which gives a new
				dimension to the entire process.
41	Ramli & ARffin	Automotive	Goods	The RCM framework can only be produced when Class A
	(2012)			equipment is above the monthly maintenance frequency
				priority, followed by Class B equipment and Class C
				equipment, which has a lower critical value.
42	Rękas et al.	Manufacturing,	Goods	It results in low RPN for more than 85% of the failures
	(2014)	beverage can		defined for a process of forming a can on a Bodymaker.
43	Renu et al. (2016)	Automotive	Goods	The tool is used to identify and review quality issues
				within a complete vehicle. The top ten issues identified
				from the FMEA are submitted to design and
	D 0 D 1		G 1	manufacturing engineers for detailed evaluations.
44	Parsana & Patel	Manufacturing	Goods	For each specific process, the precautions suggested in the
	(2014)			table can reduce losses to the manufacturing industry both
15	Coinioni et el	Food and	Casda	in terms of time and cost.
43	(2002)	rood and	Goods	different production phases. Their simultaneous
	(2002)	beverage		application allowed them to study and applying survey
				single step of production cycle and achieve every
				knowledge and improvement of products and processes
46	Selim et al	Food and	Goods	Electrical and mechanical breakdowns decrease by about
10	(2016)	heverage	20040	15% and 53%, mean recovery times for the electrical and
	()			mechanical breakdowns decrease by 32% and 21%.

Table 1. Existing literature review of FMEA (continued)

No.	Literature	Type of industries	Industries output	Result
47	Shahin & Ravichandran (2011)	Oil and gas	Goods	After taking corrective actions, the percentage of waste oil is reduced from 1 to 0.08%, and the rate of canned canisters has been reduced from initially 50,000 to 5,000
48	Sinthavalai & Memongkol (2008)	Education	Services	ppm CRM is considered a wise solution that can be applied to improve process efficiency and also to improve relations with these organizations. Other failures were analyzed as a result of the students' lack of preparation. As such, QFD is a support tool for designing intensive courses for student's practice.
49	Somsuk & Pongpanich (2008)	Electronic	Goods	By implementing FMEA, the defective parts could be reduced from 6,294.36 DPPM to 3,788.27 DPPM.
50	Su et al. (2014)	Electronic	Goods	The average failure time has increased from 1867 hours to 4852 hours, and the development period has been shortened to more than half a year.

Table 1. Existing literature review of FMEA (continued)

4.1. Type of Industries

At the previous Table 1. Above, showing the most dominant implementation FMEA mostly in the manufacture and automotive industries. Of 50 papers collected in table 1, above mentioned 11 papers are discussions about the implementation of FMEA in manufacturing industries, and ten papers also talk about the implementation of FMEA in automotive industries. The classification articles based on the implementation of FMEA in various industries can see in Fig.2 below.

Fig. 2. Implementation FMEA in various industries.

The advantages of FMEA have resulted in its implementation into nearly every branch of modern industry, both for unitary and mass production and the example of application of FMEA in mass production is a production process of beverage cans (Rekas et al. 2014). Failure mode and effect analysis (FMEA) is methodologies that

facilitate process improvement and manufacturing capabilities (Puvanasvaran & Jamibollah 2014). The classification based on percentage of implementation FMEA in various industries we can see at Fig.3 as below.

Fig. 3. Percentage implementation FMEA in various industries.

From the fig.3 above, it is showing that the percentage of comparison each industries in implementing FMEA, founded the big 3 are manufacture dominated 22% with the first rank, next the second rank is by automotive industries with 20% and the third is by food and beverage with 5% of implementing FMEA. This phenomenon indicated that most industries that produce goods implementing FMEA to assess the potential failure and improve, so the Severity, Occurrence, Detection, and RPN will be reduced. FMEA helps the SPC implementation either in process selection or output analysis. Also, this integration has been applied in a car battery industry that is less-developed (Khorshidi et al., 2013). FMEA method (Failure Modes and Effects Analysis), which is widely used in the motor vehicles industry (Popović et al. 2010).

4.2 Year of Publication

The distribution of final samples per year of publishing is shown in Figure 4. Some articles published online that have been included in this review can be seen from the following Fig. 4.

Fig. 4. Year of publication

From the data collected above, most researchers publish the article for implementation FMEA in the industry in year 2014, then followed in 2013. This also indicated that in those years, the researcher found some industrial problems that have been solved using FMEA.

4.3 Industries Output

Fig. 5. is the result of a journal review that has implemented FMEA of industries output. From 50 journals, showed 90% (around 45 journals) the output produce is goods and the rest only 5% showing the output produce is services.

Fig. 5. Goods and services output produce in implementing FMEA

4.4 Research Challenge in Implementing of FMEA in Industries produces output

For service industries, providing error-free services is even more challenging because their intangible nature renders subjective perceptions of quality. Equally troublesome is the uncontrollable element of customer participation in the service process because production and consumption occur as simultaneous processes. Despite these challenges, however, service quality and customer satisfaction are closely related constructs. When service providers continuously strive to develop error-free strategies, customer satisfaction is sure to follow. And what potential rewards can FMEA provide? Does the Service Company that will conduct FMEA experience the following:

- a. Minimized customer defection or increased customer satisfaction?
- b. Increased consistency in service quality?
- c. Reduction of costly design changes?
- d. Reduced transaction costs/increased profits?
- e. Reduced reliability?

5. CONCLUSION

Although many endeavors have been dedicated to utilizing FMEA in various industries sectors, driven by the challenges in modern business and the escalation of global disastrous events, the implementation of FMEA in services sector gaps is still left for future study. As this study is merely based on limited literature, we encourage future research to extend our initial survey using more databases and incorporating other references such as book chapters, dissertations, and literature. Moreover, we also suggest that other researchers to widen the discussion on the role of FMEA in enhancing six sigma-oriented service systems and its role in creating value within a collaborative business framework.

REFERENCES

- A.P. Puvanasvaran, N. Jamibollah, N. N. and R. A. F. (2014). Poka-Yoke Integration into Process FMEA. Australian Journal of Basic and Applied Sciences, 66–73. http://www.ajbasweb.com/old/ajbas/2014/M ay/66-73-May14.pdf
- Abdelgawad, M., & Fayek, A. R. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management, 136(9), 1028–1036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210
- Aboutaleb, H., Bouali, M., Adedjouma, M., & Suomalainen, E. (2012). An integrated approach to implement system engineering and safety engineering processes : SASHA Project. 1–6. https://hal.archivesouvertes.fr/hal-02263460/

- Angara, R. A. (2012). Implementation of Risk Management Framework in Supply Chain: A Tale from a Biofuel Company in Indonesia. *SSRN Electronic Journal*, 44(614). https://doi.org/10.2139/ssrn.1763154
- Arvanitoyannis, I. S., & Varzakas, T. H. (2008). Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for industrial processing of salmon: A case study. *Critical Reviews in Food Science and Nutrition*, 48(5), 411–429. https://doi.org/10.1080/10408390701424410
- Arvanitoyannis, I. S., & Varzakas, T. H. (2009). Application of failure mode and effect analysis (FMEA) and cause and effect analysis for industrial processing of common octopus (Octopus vulgaris) - Part II. *International Journal of Food Science and Technology*, 44(1), 79–92. https://doi.org/10.1111/j.1365-2621.2007.01640.x
- Azadeh, A., Ebrahimipour, V., & Bavar, P. (2009). A Pump FMEA Approach to Improve Reliability Centered Maintenance Procedure : The Case of Centrifugal Pumps in Onshore Industry. *Proceedings of the 6th WSEAS International Conference on FLUID MECHANICS (FLUIDS'09)*, 38–45. http://www.wseas.us/elibrary/conferences/2009/ningbo/CD-FLUIDS/FLUIDS06.pdf
- Bahrami, M., Bazzaz, D. H., & Sajjadi, S. M. (2012). Innovation and Improvements In Project Implementation and Management; Using FMEA Technique. *Procedia - Social* and Behavioral Sciences, 41, 418–425. https://doi.org/10.1016/j.sbspro.2012.04.050
- Baykasoğlu, A., & Gölcük, İ. (2017). Comprehensive fuzzy FMEA model: a case study of ERP implementation risks. In *Operational Research*. https://doi.org/10.1007/s12351-017-0338-1
- Baynal, K., Sari, T., & Akpinar, B. (2018). Risk management in automotive manufacturing process based on FMEA and grey relational analysis: A case study. Advances in Production Engineering And Management, 13(1), 69–80. https://doi.org/10.14743/apem2018.1.274
- Belu, N., Akbar, A., & Rahim, P. (2013).
 Implementation of Failure Mode, Effects and Criticality Analysis in the Production of Automotivr Parts.

https://www.srac.ro/calitatea/en/arhiva/2013 /2013-04-Contents.pdf

- Bevilacqua, M., Mazzuto, G., & Paciarotti, C. (2015). A combined IDEF0 and FMEA approach to healthcare management reengineering. *International Journal of Procurement Management*, 8(1–2), 25–43. https://doi.org/10.1504/IJPM.2015.066286
- Bhuvanesh Kumar, M., & Parameshwaran, R. (2018). Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organisation. *Production Planning and Control*, 29(5), 403–417. https://doi.org/10.1080/09537287.2018.1434 253
- Bluvband, Z., Grabov, P., & Nakar, O. (2004). Expanded FMEA (EFMEA). *Proceedings of the Annual Reliability and Maintainability Symposium*, 31–36. https://doi.org/10.1109/rams.2004.1285419
- Borković, J., Milčić, D., & Donevski, D. (2017). Implementation of differentiated quality management system and FMEA method in the newspaper production. *Tehnicki Vjesnik* -*Technical Gazette*, 24(4), 1203–1211. https://doi.org/10.17559/tv-20160222082713
- Braaksma, A. J. J., Klingenberg, W., & Veldman, J. (2013). Failure mode and effect analysis in asset maintenance: A multiple case study in the process industry. *International Journal of Production Research*, 51(4), 1055–1071. https://doi.org/10.1080/00207543.2012.6746 48
- Ignáczová, K. (2016). Fmea (Failure Mode and Effects Analysis) and Propos Al of Risk Minimizing in Storage Processes for Automotive Client. *Acta Logistica*, 3(1), 15– 18. https://doi.org/10.22306/al.v3i1.54
- Ioannis, D., Theodoros, L., & Nikitas, N. (2013). Application of FMEA to an offshore desalination plant under variable environmental conditions. *International Journal of Performability Engineering*, 9(1), 97–108. http://www.ijpeonline.com/EN/Y2013/V9/I1/97
- Jahangoshai Rezaee, M., Salimi, A., & Yousefi, S. (2017). Identifying and managing failures in stone processing industry using cost-based FMEA. International Journal of Advanced Manufacturing Technology, 88(9–12), 3329– 3342. https://doi.org/10.1007/s00170-016-9019-0

- Kangavari, M., Salimi, S., Nourian, R., Omidi, L., & Askarian, A. (2015). An application of failure mode and effect analysis (FMEA) to assess risks in petrochemical industry in Iran. *Iranian Journal of Health, Safety & Environment, 2*(2), 257–263. http://www.ijhse.ir/index.php/IJHSE/article/ view/75
- Kania, A., Roszak, M., & Spilka, M. (2014). Evaluation of FMEA methods used in the environmental management. Archives of Material Sciences and Engineering, 65(1), 37–44. http://www.amse.acmsse.h2.pl/vol65 1/651

4.pdf

- Khorshidi, H. A., Gunawan, I., & Esmaeilzadeh, F. (2013). Implementation of SPC with FMEA in less-developed industries with a case study in car battery manufactory. *International Journal of Quality and Innovation*, 2(2), 148. https://doi.org/10.1504/ijqi.2013.057003
- Ku, C., Chen, Y. S., & Chung, Y. K. (2008). An intelligent FMEA system implemented with a hierarchy of back-propagation neural networks. International 2008 IEEE Conference on Cybernetics and Intelligent CIS 2008. 0-5.Systems, https://doi.org/10.1109/ICCIS.2008.4670758
- Kumar, A. (2011). FMEA: Methodology, Design and Implementation in a Foundry. International Journal of Engineering Science and Technology, 3(6), 5288–5297. http://idconline.com/technical_references/pdfs/civil_e ngineering/FMEA%20Methodology.pdf
- Kumar, P., & Kumar, A. (2016). Methods for Risk Management of Mining Excavator through FMEA and FMECA. *The International Journal of Engineering And Science*, 5(6), 57–63. http://www.theijes.com/papers/v5i6/J0506057063.pdf
- Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a public hospital. *Applied Soft Computing Journal*, *13*(1), 721–733. https://doi.org/10.1016/j.asoc.2012.08.007
- Kurt, L., & Ozilgen, S. (2013). Failure mode and effect analysis for dairy product manufacturing: Practical safety improvement action plan with cases from Turkey. *Safety Science*, 55, 195–206. https://doi.org/10.1016/j.ssci.2013.01.009

Kuzmanov, I., Pasic, R., & Slivoski, O. (n.d.).

Implementing Fmea Methodology Into Industrial Capacity From Macedonia. (January 2017), 2–5.

- Layzell, J., & Ledbetter, S. (1998). FMEA applied to cladding systems - Reducing the risk of failure. *Building Research and Information*, 26(6), 351–357. https://doi.org/10.1080/096132198369689
- Lipol, L. S., & Haq, J. (2011). Risk analysis method: FMEA / FMECA in the organizations. *International Journal of Basic* & *Applied Sciences*, 11(5), 1–9. http://ijens.org/Vol_11_I_05/117705-3535-IJBAS-IJENS.pdf
- Mozaffari, F., Eidi, A., Mohammadi, L., & Alavi, Z. (2013). Implementation of FMEA to improve the reliability of GEO satellite payload. *Proceedings - Annual Reliability* and Maintainability Symposium, 2–7. https://doi.org/10.1109/RAMS.2013.651767 9
- Namdari, M., Sh, R., & Jafari, A. (2011). Using the FMEA method to Optimize fuel consumption in Tillage by Moldboard Plow 1 Introduction. *International Journal of Applied Engineering Research*, 1(4), 734– 742. http://www.ipublishing.co.in/jarvol1no1201

http://www.ipublishing.co.in/jarvol1no1201 0/EIJAER2040.pdf

- Nauman, D. M., & Bano, R. (2014). Implementation of Quality Risk Management (QRM) In Pharmaceutical Manufacturing Industry. *IOSR Journal of Pharmacy and Biological Sciences*, 9(1), 95–101. https://doi.org/10.9790/3008-091495101
- Özyazgan, V. (2014). FMEA Analysis and implementation in a textile factory producing woven fabric. *Tekstil ve Konfeksiyon*, 24(3), 298–302.

https://dergipark.org.tr/en/pub/tekstilvekonfe ksiyon/issue/23645/251875

- Paciarotti, C., Mazzuto, G., & D'Ettorre, D. (2014). A revised FMEA application to the quality control management. *International Journal of Quality and Reliability Management*, 31(7), 788–810. https://doi.org/10.1108/IJQRM-02-2013-0028
- Panchal, D., Mangla, S. K., Tyagi, M., & Ram, M. (2018). Risk analysis for clean and sustainable production in a urea fertilizer industry. *International Journal of Quality* and Reliability Management, 35(7), 1459–

1476. https://doi.org/10.1108/IJQRM-03-2017-0038

- Pantazopoulos, G., & Tsinopoulos, G. (2005). Process failure modes and effects analysis (PFMEA): A structured approach for quality improvement in the metal forming industry. *Journal of Failure Analysis and Prevention*, 5(2), 5–10. https://doi.org/10.1361/15477020522933
- Pareek, P. K., Nandikolmath, T. V., & Gowda, P. (2012). FMEA implementation in a foundry in bangalore to improve quality and reliability. *Mechanical Engineering and Robotics Search*, 1(2), 82-87. http://www.ijmerr.com/v1n2/ijmerr_v1n2_8 1-87.pdf
- Popović, V., Vasić, B., & Petrović, M. (2010). The possibility for FMEA method improvement and its implementation into bus life cycle. *Strojniski Vestnik/Journal of Mechanical Engineering*, 56(3), 1–7. https://doi.org/10.5545/93
- Ramli, R., & ARffin, M. N. (2012). Reliability Centered Maintenance in Schedule Improvement of Automotive Assembly Industry. American Journal of Applied Sciences, 9(8), 1232–1236. https://doi.org/10.3844/ajassp.2012.1232.12 36
- Rękas, A., Kurek, M., Latos, T., & Milczanowska, K. (2014). Implementation of FMEA into mass production process to identify and eliminate causes of defects. *Key Engineering Materials*, 641, 266–277. https://doi.org/10.4028/www.scientific.net/K EM.641.266
- Renu, R., Visotsky, D., Knackstedt, S., Mocko, G., Summers, J. D., & Schulte, J. (2016). A Knowledge Based FMEA to Support Identification and Management of Vehicle Flexible Component Issues. *Procedia CIRP*, 44(December), 157–162. https://doi.org/10.1016/j.procir.2016.02.112
- S. Parsana, T., & T. Patel, M. (2014). A Case Study: A Process FMEA Tool to Enhance Quality and Efficiency of Manufacturing Industry. Bonfring International Journal of Industrial Engineering and Management Science, 4(3), 145–152. https://doi.org/10.9756/bijiems.10350
- Scipioni, A., Saccarola, G., Centazzo, A., & Arena, F. (2002). FMEA methodology

design, implementation and integration with HACCP system in a food company. *Food Control*, *13*(8), 495–501. https://doi.org/10.1016/S0956-7135(02)00029-4

- Selim, H., Yunusoglu, M. G., & Yilmaz Balaman, Ş. (2016). A Dynamic Maintenance Planning Framework Based on Fuzzy TOPSIS and FMEA: Application in an International Food Company. *Quality and Reliability Engineering International*, 32(3), 795–804. https://doi.org/10.1002/gre.1791
- Shahin, A., & Ravichandran, N. (2011). The application of FMEA in the oil industry in Iran: The case of four litre oil canning process of Sepahan Oil Company. *African Journal of Business Management*, 5(7), 3019–3027. https://doi.org/10.5897/AJBM10.1248
- Sinthavalai, R., & Memongkol, N. (2008). A case of FMEA implementation in the educational sector and integration with CRM and QFD concepts. *IEMC-Europe 2008 - 2008 IEEE International Engineering Management Conference, Europe: Managing Engineering, Technology and Innovation for Growth*, 1–5. https://doi.org/10.1109/IEMCE.2008.46180 36
- Somsuk, N., & Pongpanich, P. (2008). The application of FMEA in defect reduction for the spindle motor assembly process for hard disk drives. *Proceedings of the 4th IEEE International Conference on Management of Innovation and Technology, ICMIT*, 704– 709.

https://doi.org/10.1109/ICMIT.2008.465445 1

- Su, C. T., Lin, H. C., Teng, P. W., & Yang, T. (2014). Improving the reliability of electronic paper display using FMEA and Taguchi methods: A case study. *Microelectronics Reliability*, 54(6–7), 1369–1377. https://doi.org/10.1016/j.microrel.2014.02.0 15
- Su, H.-C. L. J.-X. Y. X.-F. D. Q. (2010). Improving risk evaluation in FMEA with a hybrid multiple criteria decision making method. *International Journal of Quality & Reliability Management*, (Unit 07), 1–5. https://doi.org/10.1108/IJQRM-10-2013-0169