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Abstract 

In the automotive world, plastic products are components that cannot be separated. Almost all 
automotive products use plastic because it is easy to produce, and the price is relatively cheap 
compared to other materials. For applications such as covers, the demand for plastic surface 
quality is higher than for different uses. Therefore, a lot of costs are incurred to achieve this qual-
ity. However, ongoing efforts have decreased the time and expense of developing plastic molds. 
This Review reports many researchers have conducted studies to improve the quality of these 
products. This review consolidates several research articles on optimizing plastic injection pro-
cesses to reduce defects and improve product quality. Techniques such as Taguchi Method, Re-
sponse Surface Methodology (RSM), Artificial Neural Networks (ANN), and Finite Element Method 
(FEM) were evaluated in this research. This review highlights the importance of process parame-
ters such as melting temperature, injection pressure, and cooling time, as well as the role of dig-
ital simulation in designing efficient and sustainable molds. The results of the study show that in 
several studies, defects often occur in the product without carrying out the optimization process. 
Still, the Taguchi and ANOVA methods can reduce the weld line and sink after optimizing the pro-
cess parameters, such as melting temperature, injection pressure, cooling time, and injection 
speed. Mark up to 30%. These findings highlight the potential of these techniques to significantly 
improve product quality and support more sustainable manufacturing practices in the plastic in-
jection molding industry. 
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1. Introduction 
Injection molding is a widely used manufacturing process for producing plastic products with 

high precision and efficiency [1]. This process involves injecting molten plastic into a mold to form 
the desired product [2]. However, it often encounters defects such as shrinkage, warpage, and sink 
marks, as illustrated in Figure 1.  

 
 
 
 
 
  

(a)                  (b)          (c) 

Figure 1. (a) Shrinkage, (b) Warpage, (c) Sinkmark 

These defects can significantly affect the final product's quality and dimensional accuracy, 
which is critical in automotive, electronics, and medical devices. Consequently, extensive research 
has been conducted to address these issues in the injection molding process. 

Rizwan Mohd Khan and Gaurav Acharya (2016) concluded that sink marks can be mitigated by 
optimizing process parameters such as melt temperature, injection pressure, cooling time, and hold-
ing pressure [3]. Additionally, Mathivanan et al. found that the rib-to-gate distance also influences 
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sink mark severity, where greater distances increase the intensity of the defect [4]. Meanwhile, Ma-
satomo Inui (2018) identified product thickness variations as a primary cause of sink marks and sug-
gested improved rib designs to address this issue [5]. Warpage defects are another primary concern 
in injection molding. S.Q. Ch'ng et al. (2018) noted that packing pressure, packing time, cooling time, 
and melt temperature are four key parameters influencing warpage. Optimizing these parameters 
can effectively reduce warpage defects [6]. A similar approach was suggested by Chiwapon Nitnara 
et al., who added that filling time is also a critical factor in minimizing warpage [7]. Additionally, sev-
eral studies highlight the impact of gate design on product quality. According to Naveen Reddy 
Pothula (2019), using a single gate is more effective than two or three gates in reducing sink mark 
severity [8]. New technologies, such as External Gas-Assisted Injection Molding (EGAIM), have also 
been introduced to significantly reduce sink marks, as reported by Shaofei Jiang et al. (2020) and 
Yen-Chih Chen et al. (2020) [9], [10]. Cooling efficiency in the injection molding process is crucial in 
reducing shrinkage defects. G. Gumono et al. (2023) demonstrated that efficient cooling improves 
product quality [11]. Furthermore, Zhiguo Ma et al. (2021) recommended using diamond-shaped in-
serts in runners made from beryllium copper as a simple and effective solution for reducing sink 
marks near the gate area [12]. Indra Mawardi et al. (2019) emphasized that injection temperature is 
a critical parameter in the injection molding process. Higher temperatures above the material's melt-
ing point can reduce defects such as short shots and shrinkage. However, other parameters like in-
jection pressure and cooling time must also be optimized to address defects such as flashing and 
sink marks [13]. On the other hand, defects such as spots are often found in plastic products. One 
cause is corrosion in molds made of metal. Corrosion in metal molds, such as stainless steel or car-
bon steel, can be accelerated by high humidity or exposure to aggressive chemicals often found in 
injection molding. According to I Gusti Ayu Arwati et al. (2022), corrosion-resistant materials and 
protective coating methods are essential to prevent this damage [14]. In addition, the use of natural 
inhibitors, such as chitosan, has proven effective in reducing metal corrosion rates in various indus-
trial environments [15]. 

Given the numerous methods developed to address defects in the injection molding process, a 
comprehensive literature review is necessary to summarize these findings. Such a review aims to 
provide better guidance for optimally producing high-quality plastic products. 

2. Optimization Methods for Plastic Injection Process 
This method includes various methodologies, including the Taguchi method, Response Surface 

Methodology (RSM), Artificial Neural Networks (ANN), and Finite Element Method (FEM). Each article 
reviewed was selected based on its relevance and contribution to improving product quality and pro-
cess efficiency in the plastic injection industry. 

This approach enables the identification of critical process parameters and the development of 
models that can predict and reduce defects such as shrinkage, warpage and sink marks, short shots, 
jetting, flash, and bubbles. Using various optimization and simulation techniques, these studies pro-
vide practical guidance for optimizing process parameters and improving product quality. These di-
verse methodologies include variance analysis to determine key factors, numerical modeling to pre-
dict defects, and the application of machine learning algorithms to automate process optimization. 

The implementation of findings from these studies provides significant benefits, including re-
duced defect rates and enhanced production efficiency. 

Optimization methods commonly used in optimizing plastic injection process parameters are 
Taguchi Method, Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Finite 
Element Method (FEM).  

2.1. Taguchi method 
Taguchi Method is a statistical approach developed by Dr. Genichi Taguchi to improve product 

quality and manufacturing processes. That method uses signal-to-noise (S/N) ratio and analysis of 
variance (ANOVA) analysis techniques to identify process parameters that influence the quality of 
the final product, both qualitatively and quantitatively. 

Ramakrishnan and Mao (2017) applied that method to minimize shrinkage in the polymer gear 
injection process. Their study used five control parameters varied in five different levels as shown in 
Table 1. 
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Table 1. Experiment parameters and levels 

 
 

 

 

 

 

Based on ANOVA analysis, melting temperature contributed 95.12%, while packing pressure 
contributed 3.33%. Other parameters, such as mold temperature, packing time, and cooling time, 
do not significantly influence shrinkage [16]. Sreedharan and Jeevanantham (2018) identified that of 
27 experiments to minimize shrinkage in ABS products for automotive applications, melting temper-
ature had the most significant influence (95%). Meanwhile, injection pressure, packing pressure, and 
cooling time are insignificant [17]. Shuai Li et al. (2016) used six control parameters varied in three 
levels to minimize sink marks in the microcellular injection molding (MIM) process. From 18 experi-
ments, mold temperature was identified as the most influential parameter, while injection rate and 
melting temperature were insignificant [18]. N.M. Mehat et al. (2017) optimized shrinkage on plastic 
gear products using seven control parameters with three levels. From 18 experiments, injection pres-
sure, cooling time, and melting temperature were the parameters confirmed as the most influential, 
while packing time and injection time were not significant [19]. Qazi Muhammad Usman Jan et al. 
(2020) stated that of nine experiments carried out using four control parameters with three levels, 
injection pressure had the most significant influence on shrinkage, while injection speed and mold 
temperature were insignificant [20]. Fatma Hentati et al. (2019) studied the effect of four control pa-
rameters with three levels to minimize shear stress. From nine experiments, injection pressure was 
identified as the most significant parameter, while material and mold temperature had no significant 
effect [21]. E. Farotti and M. Natalini (2018) reported that mold temperature was the most significant 
parameter of 25 experiments using four control parameters with two levels to increase the mechan-
ical strength of PP plastic products [22]. S.M. Nasir et al. (2021) observed that packing pressure is 
the most significant parameter in minimizing sink marks based on experimental results with four con-
trol parameters at two levels [23]. Umer Abid et al. (2020) use four control parameters with three 
levels to minimize sink marks and warpages. Of the nine experiments, melting temperature had the 
most significant influence, while injection time was insignificant [24]. R. Jaafar et al. (2020) found 
that from 18 experiments with three control parameters at two levels, melting temperature had the 
highest influence of up to 86%, while injection pressure was insignificant [25]. D. Mathivanan et al. 
(2010) identified that from 27 experiments using six control parameters with three levels to minimize 
sink marks, the most influential factors were rib distance, rib-to-wall ratio, and melting temperature 
[4]. Padmakar Pachorkar et al. (2023) and Eko Ari Wibowo et al. (2022) concluded that from 27 ex-
periments using five control parameters with three levels, melting temperature was the most signifi-
cant parameter in minimizing shrinkage and sink marks [26], [27]. V.L. Trinh et al. (2023) reported 
that of 27 experiments using seven control parameters with three levels to minimize warpage and 
shrinkage in hot runner system molds, melting temperature was the most influential parameter while 
filling and cooling times were insignificant [28]. From the various studies above, the Taguchi combi-
nation method and statistical analysis are very effective for identifying and optimizing critical process 
parameters in injection molding. Melting temperature is often the dominant parameter in minimizing 
defects such as shrinkage, sink marks, and warpage. 

Meanwhile, other parameters, such as injection pressure, cooling time, and packing pressure, 
have varying contributions depending on the material used and the type of research. Optimization of 
these parameters plays a vital role in improving the quality of the final product and the efficiency of 
the manufacturing process. Complete optimization results using the Taguchi Method and ANOVA 
from several authors can be seen in Table 2. 

2.2. Response Surface Methodology (RSM) 
Response Surface Methodology (RSM) is a mathematical and statistical method used to ana-

lyze and optimize the relationship between process parameters (input variables) and responses (out-
put variables). That method helps identify optimal parameter combinations by modeling the re-
sponse as hyperbolic, linear, or quadratic surfaces. 

Control Factors 
Levels 

1 2 3 4 5 
Melt temperature (⁰C)  205 210 215 220 225 
Mold temperature (⁰C) 80 85 90 95 100 
Packing time (s) 10 20 30 40 50 
Packing pressure (MPa) 80 85 90 95 100 
Cooling time (s) 50 60 70 80 90 
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Table 2. Optimization results using the Taguchi Method from several authors 

No Author Optimized parameters Key results 

1 
Mathivanan et al. 

(2010) [4] 

Melt temperature, Mold temperature The optimal melt temperature of 240 °C and mold 
temperature of 60 °C minimized sink depth to 0.91 
mm. 

2 
Ramakrishnan, Mao 

(2017) [16] 
Melt temperature, Mold temperature The optimal mold temperature of 100 °C minimized 

volumetric shrinkage to 1.9%. 

3 Sreedharan, Jeevanan-
tham (2018) [15] 

Melt temperature, Injection pressure,  Optimal melt temperature of 240 °C reduced shrink-
age by 14%. 

4 Shuai Li et al. (2016) 
[16] 

Mold temperature, Melt temperature, 
Injection rate 

Optimized parameters reduced sink mark depth by 
46.2%, from 4.87 mm to 2.62 mm. 

5 Mehat N et al. 
(2017)[19] 

Melting temperature, Mould tempera-
ture, Injection pressure 

Injection pressure significantly influenced shrinkage. 
Mold temperature (37.38%) and melting temperature 
(22.95%) most impacted tensile strength. 

6 Usman Jan QM et al. 
(2020) [20] 

Injection pressure, Mould temperature For PP: Injection pressure 60 MPa. 

7 Fatma Hentati et al. 
(2019) [21] 

Melt temperature, Injection pressure, 
Mold temperature 

Optimal shear stress achieved at melt temp. of 260 °C, 
injection pressure of 50 bar, and mold temp. of 60 °C. 

8 E. Farotti, M. Natalini 
(2018) [22] 

Melt temperature, Mold temperature Mold temperature significantly improved tensile 
strength by 15%. 

9 S. M. Nasir et al. (2021) 
[23] 

Injection pressure, Mould temperature, 
Melting temperature 

Injection pressure contributed the most (31.89% and 
30.69% 

10 Umer Abid et al. (2020) 
[24] 

Melt temperature, Mold temperature, 
Injection pressure 

Mold temperature contributed 85.37% and melt tem-
perature contributed 52.54% in the warpage and Sink 
mark part 

11 R. Jaafar et al. (2020) 
[25] 

Melt temperature, Mold temperature, 
Injection pressure  

Volumetric shrinkage was minimized to 0.956% using 
optimal melt and mold temperatures. 

12 Padmakar Pachorkar et 
al. (2022)[26] 

Melt temperature, Mold temperature,   Optimal melt temperature and mold temperature re-
duced sink mark depth by 11%, and improved cycle 
time by 9%. 

13 Eko Ari Wibowo et al. 
(2023) [27] 

Injection pressure Injection Pressure 135.4 MPa, Sinkmark Index 
0.6933%. 

14 V. L. Trinh et al. (2023) 
[28] 

Melt temperature, Injection pressure Optimal melt temperature reduced warpage by 16.6% 
and shrinkage by 2.45%. Main factors: Melt tempera-
ture (66.67%) 

Adel et al. (2024) minimized shrinkage on flat parts using the RSM approach. That research an-
alyzes four process parameters, namely packing pressure, cooling time, packing time, and melting 
temperature, with a range of parameter values obtained through simulation analysis, as shown in 
Table 3. 

Shrinkage values for melt flow direction and parallel melt flow direction were obtained from 
simulation analysis of the data generated by DOE. The results were tabulated with the shrinkage val-
ues for each run with the specified variable parameters obtained from the DOE. The specified varia-
bles parameters conditions were set and simulated in the AMI software. ANOVA was conducted to 
study the effect of process parameters on shrinkage and determine the significance contribution per-
centage as shown in Table 4. 

Table 3. Recommended values of process parameters and their range 

Process parameter Units 
Recommended 

value 
Range of parameters 

Minimum Maximum 
Packing pressure ( A ) ( MPa ) 49,15 40,09 60,62 
Cooling time ( B ) ( s ) 12,68 9,208 17,43 
Packing time ( C ) ( s ) 10,92 8,34 14,4 
Melt temperature ( D ) ( ° C ) 230 220 240 
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Table 4. Processing parameters contribution percentage on shrinkage 

Process parameters Shrinkage in melt 
flow direction 

Shrinkage in melt 
flow direction 

Packing pressure (A) 90,97% 90.92% 
Cooling time (B) 0.10% 0.01% 
Packing time (C) 0.04% 0.01% 

Melt temperature (D) 1.62% 6.63% 
 
In the research, the mathematical model has been gained by conducting the second-order pol-

ynomial regression model. The polynomial regression model, which related to the shrinkage in melt 
flow direction and parallel melt flow direction with all input parameters, which are packing pressure 
(A), cooling time (B), packing time (C), and melt temperature(D) was established by Design Expert 
software and represented in Equation 1. and Equation 2, respectively. Equations 1 and 2 were applied 
to calculate the prediction shrinkage values of the polynomial models in melt flow direction and par-
allel melt flow direction. Figures 2 and 3 show the comparison between the simulation result and the 
predicted result of shrinkage in the melt flow direction, respectively. 

Shrinkage in melt flow direction = 1.71024 − 169.36 × 10−4 𝐴 − 48.52 × 10−4 𝐷 +

1.1 × 10−4𝐴𝐷 −      1.3 × 10−4A2 

 (1) 

Shrinkage in parallel melt flow direction = 1.39834 − 208.07 × 10−4𝐴 −

141.26 × 10−4 𝐵 + 129.44 ×      10−4 𝐶 − 24.63 × 10−4𝐵𝐷 − 0.53 × 10−4𝐶𝐷 +

0.28 × 10−4𝐴2 

 (2) 

 
Figure 2. Simulation and predicted shrinkage results in a melt flow direction 

  
Figure 3. Simulation and predicted shrinkage results in a parallel melt flow direction 

It was concluded that packing pressure was the most significant parameter influence in shrink-
age for both melt flow direction and parallel melt flow direction, with 90.97% and 90.92 % contribu-
tion, respectively [29]. Mohd Amran Md Ali et al. (2020) analyzed the effect of melting temperature, 
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mold temperature, injection time, and number of gates on filling time using RSM. From 27 experi-
ments, it was concluded that the parameter that had the most influence on filling time was injection 
time, with a contribution reaching 99% [30]. M.U. Rosli et al. (2019) studied the effect of melting tem-
perature, cooling time, and injection pressure on shrinkage and warpage using RSM. From 20 exper-
iments carried out, it was concluded that these three parameters had a significant influence in min-
imizing shrinkage and warpage defects [31] Ashish Goyal et al. (2020) and their team analyzed the 
effect of melting temperature, packing pressure, and injection pressure on tensile modulus and 
product elongation using RSM. From 20 experiments, they concluded that melting temperature and 
packing pressure significantly influenced elongation, while tensile modulus was mainly influenced 
by melting temperature [32]. Huei Ruey Ong et al. (2020) and their research group analyzed the effect 
of mold temperature, melting temperature, and injection pressure on the rejection rate using RSM. 
From 17 experiments, they concluded that these three parameters had a significant influence in min-
imizing the rejection rate, with the optimal settings being a mold temperature of 70 °C, melting tem-
perature of 220 °C, and injection pressure of 98 MPa [33]. S.Q. Ch'ng et al. (2018) and their team 
studied the effect of packing pressure, packing time, cooling time, and melting temperature on warp-
age using RSM. From 30 experiments, they concluded that these four parameters significantly influ-
enced minimizing warpage up to 14.27% [6]. Sreedharan J. and A.K. Jeevanantham (2018) and their 
collaborative group analyzed the effect of injection time, holding time, filling time, and mold closing 
time on cycle time using RSM. From 31 experiments, they found that injection time was the most 
significant parameter, contributing to 86.46% in minimizing cycle time [34]. Trifenaus Prabu Hidayat 
et al. (2024) and their team optimized melt temperature, holding pressure, and injection pressure 
using RSM. From 15 experiments, they concluded that the optimal settings in the form of a melting 
temperature of 260 °C, holding pressure of 30 Bar, and injection pressure of 62 Bar were able to re-
duce rejects to almost zero [35].  

Table 5. Optimization results using Response Surface Methodology (RSM) from several authors 

No Author Optimized parameters Key results 

1 
S Q Ch’ng et al. (2018) 

[6] 
Melt temperature, mold tem-
perature, injection time 

Warpage reduced by optimizing parameters; results validated 
through ANOVA. 

2 Adel et al. (2024) [29] 
Melt temperature Reduced shrinkage from 0.68% to 0.60% (parallel flow direc-

tion) and from 0.60% to 0.53% (normal flow direction). 

3 Md Ali et al. (2021)[30] 
Melt temperature, mold tem-
perature 

The optimal mold temperature of 60 °C improved fill time to 
4.281 seconds. 

4 
M.U. Rosli, et al. (2019) 

[31] 

Melt temperature, injection 
pressure 

The optimal melt temperature of 315.98 °C and injection pres-
sure of 62 MPa resulted in a volumetric shrinkage error of 0.27% 
and a warpage error of 0.19%. 

5 
Ashish Goyal et al. 

(2020)[32] 
Melt temperature, injection 
pressure 

Elongation is affected by melt temperature (87.04%) and ten-
sile modulus by melt temperature (85.35%). 

6 
Huei Ruey Ong et al. 

(2020) [33] 
Melt temperature, mould tem-
perature, injection pressure 

Optimal settings: Melt temperature 220 °C, Mould temperature 
70 °C, Injection pressure 98%. Reduced rejection rate to 0% 

8 
Trifenaus Prabu Hi-

dayat et al. (2024) [34] 
Melting temperature, injection 
pressure 

Optimized settings: Melting temperature 260 °C, Injection pres-
sure 62 bar. Reduced defective products. 

9 
M. Hikam Muddin 

, M. Mas’ud (2023) [35] 

Melt temperature  Optimized parameters: Melt temperature 285 °C, Short shot de-
fects reduced to -0.0128 with desirability of 1.0. 

10 
Yenny Sari et al. 

(2023)[36] 
Injection pressure Optimum settings: Injection pressure 35 bar, Increased sigma 

level from 3.64 to 3.90 

11 
Asif, Muhammad 

(2022) [37] 
Injection pressure, melt tem-
perature 

Reduced defects (flow marks, air bubbles) and improved effi-
ciency by 50%; rejection rate reduced from 35% to 16%. 

 
M. Hikam Muddin and M. Mas’ud (2023) discovered novel ways to optimize melting tempera-

ture, holding pressure, and cooling time using RSM. From 15 experiments, it was concluded that the 
optimal settings in the form of a melting temperature of 282.5 °C, holding pressure of 70 Bar, and 
cooling time of 1.8 seconds significantly reduced short shot defects by up to 61.47% [36]. Yenny Sari 
et al. (2023) also uncovered new insights by optimizing barrel temperature, injection pressure, and 
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injection speed using RSM. From the analysis of product defect data, it was concluded that the opti-
mal settings in the form of a barrel temperature of 180 °C, injection pressure of 35 Bar, and injection 
speed of 41% resulted in optimal product quality [37]. Asif Muhammad (2022) optimized melt tem-
perature, injection pressure, injection speed, screw speed, flow rate, and viscosity using RSM. From 
16 experiments, it was concluded that melting temperature had the greatest influence, namely 
20.45%, in reducing defects such as flow marks, air bubbles, black dots, and hard fittings [38].  

Each process parameter significantly influences certain types of defects or quality in the injec-
tion molding process. Parameters such as packing pressure, melting temperature, and injection time 
are often the dominant factors in minimizing defects such as shrinkage, sink marks, warpage, and 
others. Optimization with RSM proved effective in identifying optimal parameter settings, which con-
tributed to increasing production efficiency and product quality. Complete optimization results with 
RSM from several authors can be seen in Table 5. 

2.3. Artificial Neural Networks (ANN) 
Artificial Neural Network (ANN) is a computational model inspired by biological neural net-

works. It is designed to recognize patterns and relationships in data. ANNs consist of layers of inter-
connected artificial neurons, enabling parallel and adaptive information processing. 

Junhan Lee et al. (2023) used the ANN method in their research, with 6 optimized parameters, 
such as melting temperature, mold temperature, injection speed, packing pressure, packing time, 
and cooling time, and 3 levels, which were compared as in Table 6. 

Table 6. Process conditions and levels for the injection-molding experiment 

Conditions Level 1 Level 2 Level 3 
Melt temperature (◦C)  200 220 240 
Mold temperature (◦C) 40 50 60 
Injection speed (mm/s) 40 70 100 
Packing pressure (bar) 150 200 250 
Packing time (s) 6.0 12.0 18.0 
Cooling time (s) 38 48 58 

 
            

  

 

 

       (a) 

  

 

  (b) 

 

 

     

     (c) 

Figure 4. (a) Network #1: structure in which the input parameters are connected into a single layer. (b) Network 
#2: structure where input parameters are simultaneously applied through layers that are differentiated accord-
ing to the injection-molding process stages. (c) Network #3: structure where input parameters are differentiated 
according to the injection- molding process stages and described through continuous sequence layers 
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The experiment was carried out with 50 conditions, consisting of 27 experiments using the L27 
orthogonal array and 23 random experiments. Next, three network models were built to link process 
parameters with product quality, as shown in Figure 4. 

The data processing process shows that Figure 3 provides the most accurate prediction results, 
with packing time as the most influential parameter [38]. Chihun Lee et al. (2020) used an Artificial 
Neural Network (ANN) to recommend optimal process parameters based on product geometry in 
injection molding. Research data was obtained from 3600 simulations (36 molds) and 476 experi-
ments (11 molds). The five process parameters used include filling time, melting temperature, mold 
temperature, packing pressure, and packing time. In addition, 15 geometric features are used as in-
put, including the number of cavities, number of gates, overall volume, cavity volume, overall surface 
area, cavity surface area, XY plane projection area, YZ plane projection area, ZX plane projection 
area, maximum thickness, thickness average, standard thickness deviation, maximum flow length, 
maximum flow length to thickness ratio, and minimum diameter of the hydraulic gate. The data was 
processed using the min-max normalization method to equalize the scale between parameters, then 
divided into three groups: training set (80%), validation set (10%), and test set (10%). The ANN model 
is designed with hyper-parameter tuning using a random search method to determine the optimal 
structure, including the number of layers, nodes, learning rate, and dropout rate. In addition, a trans-
fer learning approach is applied, where the model is first trained with simulated data and then con-
tinues with experimental data to improve prediction accuracy. The research results show a low aver-
age relative error (RE): 0.63% for experimental data and 0.73% for simulated data. It was concluded 
that geometric features' volume and surface area are the parameters that most influence product 
weight. At the same time, process parameters such as melting temperature and packing pressure 
are also significant in influencing final product quality [39]. H. Lee et al. (2018) used ANN to optimally 
set process parameters based on actual data from machines and molds to reduce production de-
fects such as warpage and shrinkage. Mold temperature data is obtained using a mold sensor, while 
product defects such as warpage and shrinkage are analyzed via a vision sensor. Controlled param-
eters include melting temperature, packing pressure, and cooling time. The ANN model was built 
using the Backpropagation Neural Network (BPNN) approach and trained with actual production 
data to study the relationship between process parameters and product quality. That system also 
uses real-time data to adjust process parameters during production, thereby preventing defects and 
improving product quality. As a result, ANN successfully predicted warpage defects (in mm) and 
shrinkage (in %) with high accuracy, reducing product defects significantly. That approach allows 
fast and adaptive decision-making regarding production conditions, making it an innovation com-
pared to conventional optimization methods only applied before production [40]. J. Lee et al. (2022) 
used ANN to predict the relationship between process parameters and product quality in injection 
molding, especially for bowl-shaped products. Experimental data was obtained with polypropylene 
(PP) material over a specific range of process parameters, such as melting temperature, mold tem-
perature, packing time, and cooling time. The data are divided into linear relationships (packing time 
6-18 seconds) and non-linear relationships (packing time extended to 39 seconds). An ANN model 
with a Multi-Input Multi-Output (MIMO) structure is used to map the relationship between process 
parameters (input) and product quality attributes (mass, diameter, height). Hyper-parameter optimi-
zation uses hyper-band techniques, including setting the number of hidden layers, learning rate, and 
activation function. The data is divided into training, validation, and test sets. To evaluate perfor-
mance, the ANN model was compared with linear and polynomial regression using Root Mean 
Square Error (RMSE) values . Research results show that ANN can handle complex (non-linear) rela-
tionships better, making it a superior method for injection molding with a wide variation of parame-
ters [41]. 

Table 7. Optimization results using Artificial Neural Network (ANN) from several authors 

No Author Optimized parameters Key results 

1 
Junhan Lee et 
al. (2023) [38] 

Melt temperature, Mold temperature. Multi-task learning architecture improved prediction accu-
racy by two orders of magnitude. 

2 
Chihun Lee, et 
al. (2020)[39] 

Melt temperature, Mold temperature Root mean square error (RMSE) was reduced to 0.846 us-
ing ANN; weight prediction error was reduced to 0.662%. 

3 
H Lee et al. 
(2018) [40] 

Melting temperature Proposed a smart injection molding framework; real-time 
data reduced defects and improved system reliability. 

4 
J. Lee et al. 
(2022) [41] 

Melt temperature, Mold temperature ANN prediction accuracy surpassed linear and polynomial 
regression for both linear and nonlinear datasets. 
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Artificial Neural Network (ANN) has proven to be an effective method for optimizing injection 
molding processes. Its accurate prediction capabilities, adaptability to real-time production condi-
tions, and proficiency in handling complex data relationships make it a valuable asset. By leveraging 
ANN, product quality can be improved, production defects minimized, and overall injection molding 
process efficiency achieved. The comprehensive optimization results using the ANN method from 
various authors are detailed in Table 7. 

2.4. Finite Element Method (FEM) 
Finite Element Method (FEM) is a highly precise numerical method used to solve engineering 

and physics problems, especially those involving partial differential equations (PDE). That method 
works by dividing the problem domain into small elements (finite elements) so that calculations are 
carried out on these elements to produce an accurate solution. 

L. Chen et al. (2022) conducted research utilizing a three-dimensional transient finite element 
method (FEM) to simulate the cooling process in injection molding molds. The research primarily 
aimed at optimizing the mold cooling system to reduce cycle times and enhance product quality by 
minimizing defects such as warpages and sink marks. The researchers conducted experimental val-
idation by comparing simulation results to real injection molding trials at initial melt temperatures of 
320 °C, 305 °C, and 290 °C. The results demonstrated high accuracy, with a maximum error of less 
than 4% and an average error below 1%, affirming the reliability of the simulation method, as shown 
in Table 8. 

Table 8. Simulation accuracy for initial melt temperatures 320, 305, and 290 degrees. 

Initial melt temperature (℃) Maximum error (%) Average error (%) 
320 3.79 0.95 
305 3.64 0.91 
290 3.22 0.84 

The simulation employed realistic boundary conditions, including mold-polymer (2500 
W/m²K), mold-mold (30,000 W/m²K), mold-air (10 W/m²K), and mold-coolant (calculated using 
Reynolds and Prandtl numbers). Figures 5 and 6 illustrate the measurement points and the temper-
ature differences at these interfaces during the injection cycle, showing the influence of different 
heat transfer coefficients on temperature distribution. 

The mold geometry, initially comprising 142 components, was simplified into 12 key compo-
nents for efficient meshing and analysis, using a three-dimensional tetrahedral mesh as shown in 
Figure 7. 

Material properties considered included the plastic material (SABIC Polycarbonate OQ2720) 
with a specific heat of 1880 J/kg·K and thermal conductivity ranging from 0.22–0.27 W/m·K, and the 
mold material characterized by a specific heat of 460 J/kg·K, thermal conductivity of 29 W/m·K, and 
density of 7800 kg/m³. Several assumptions were applied in this simulation, including neglecting the 
filling stage due to its significantly shorter duration compared to the cooling phase, thus ignoring 
convective heat transfer during filling. Imperfect thermal contact was also assumed at mold-mold 
interfaces, considering potential gaps or insulation effects. Moreover, the transient (unsteady-state) 
analysis method was employed instead of a steady-state analysis to accurately capture dynamic 
temperature variations throughout injection cycles. The transient FEM simulation provided superior 
accuracy compared to traditional steady-state methods, particularly for complex geometries and dy-
namic temperature conditions. This approach effectively improved mold cooling efficiency, product 
quality, and reduced production cycle times [42]. R. Achmaed Pratama et al. (2021) used FEM to 
analyze the effect of coolant temperature and injection time on product quality. The research was 
carried out with three variations of coolant temperature (18 °C, 22 °C, and 24 °C) and three variations 
of injection time (1.4 seconds, 1.6 seconds, and 1.8 seconds). Mesh was made in the cavity, and 
thermal conditions were analyzed using ANSYS software, while product quality was analyzed using 
Autodesk Moldflow Adviser R2 2017. It was concluded that coolant temperature had the most signif-
icant influence in reducing shrinkage and bubbles, while injection times that were not optimal could 
cause defects such as short shots. The combination of a cooling temperature of 24 °C and an injec-
tion time of 1.4 seconds produces the best product quality, with a quality level of 79.5% and a prod-
uct weight of 0.415 grams [43]. Florian Zwicke et al. (2017) used FEM to predict shrinkage and warp-
age in the injection molding process and developed a cavity mold shape optimization method. The 
material is treated as viscoelastic in the liquid phase and elastic during solidification. The simulation 
uses the laws of non-linear elasticity and thermodynamics to describe changes in temperature and 
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density during solidification to create a mold design that automatically produces a suitable final 
product after cooling. The simulation is carried out in two stages: calculating material changes during 
cooling and analyzing the final condition of the product. The results show that uneven temperature 
distribution during cooling causes significant shrinkage and warpage. The final product shows shape 
deviations due to different temperature distributions in other mold parts. The use of FEM allows au-
tomatic optimization of mold cavity shapes, improving shrinkage and warpage predictions [44]. 

 

Figure 5. Mold-mold/mold-polymer temperature difference check points  

 
Figure 6. Mold-mold/mold-polymer temperature difference plot 

 
Figure 7. The model of the validation mold 
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X. Sun et al. (2019) developed a procedure to predict sink marks on thermoplastic products 
using FEM via Abaqus software, with pressure and temperature data from Moldflow as input. Two 
subroutines, UEXPAN (for thermal expansion) and UMAT (for constitutive relations) are implemented 
in Abaqus to improve the accuracy of the simulation. The simulation results were compared with ex-
perimental data using a Coordinate Measuring Machine (CMM) to measure the depth of sink marks. 
The simulation predicts a sink mark depth of 0.07 mm, lower than the experimental result of 0.22 
mm, but still shows a significant increase in accuracy compared to Moldflow. Abaqus can also pre-
dict sink marks in areas with complex geometric designs, such as bosses and ribs. That procedure 
increased the accuracy of predicting sink marks in injection molding [45]. Hani Mizhir Magid et al. 
(2021) used FEM to analyze the main factors influencing mass production in the injection molding 
process. The research focuses on the distribution of pressure, temperature, and stress within the 
mold to improve product quality and process efficiency. The mold model with 20 cavities was de-
signed using CATIA V5R20 software, with PVC as the polymer material. Simulations were performed 
using ABAQUS/CAE to predict the mechanical and thermal behavior of the mold during the filling, 
holding, and product release processes. The mesh uses medial axis elements in the cavity and ejec-
tor areas to model pressure and temperature distribution well. The simulation results show uneven 
pressure distribution in several cavities, especially those far from the injection center. Adjustment of 
runner and gate dimensions is recommended to reduce thermal stress. That research highlights the 
importance of balanced mold design, including optimization of runners, gates, and cooling systems 
to improve product efficiency and quality [46]. Bikram Singh Solanki et al. (2022) used FEM to evalu-
ate the effect of injection molding process parameters on shrinkage and sink marks on gears made 
from polypropylene (PP). That research uses three control parameters, which vary at five levels. The 
mesh is created on the gear, with the number of elements reaching 162,415. It was concluded that 
packing pressure and packing time were the most significant parameters in reducing shrinkage and 
sink marks on gear. Melting temperature also affects shrinkage, but its contribution is lower [47].  

Research shows that the Finite Element Method (FEM) is an efficient approach to analyzing and 
optimizing various aspects of the injection molding process, including temperature distribution, 
pressure, mold cavity design, and other process parameters. That method has been proven to in-
crease the accuracy of predictions of defects such as shrinkage, sink marks, and warpage, which are 
significant challenges in production. With the application of FEM, not only the quality of the final 
product can be improved, but also production efficiency, making it an essential tool in the modern 
manufacturing industry. Complete optimization results using the FEM method from several authors 
can be seen in Table 9. 

Table 9. Optimization results using Finite Element Method (FEM) from several authors 

No Author Optimized parameters Key results 
1 L. Chen et al. 

(2022)[42]  
Mold temperature Reduced cycle time by 15%; maximum temperature error 

<4%. 
2 R. Achmaed Pratama, 

et al. (2021)[43] 
Mold temperature Best product quality at 24 °C mold temperature and 1.4 s in-

jection time with 79% quality prediction. 
3 Zwicke F et al. 

(2017)[44] 
Mold temperature Automated cavity shape optimization reduced warpage by 

12%. 
4 X Sun et al. (2019) 

[45] 
Melt temperature, Mold tempera-
ture 

Sink mark depth was reduced by 33% using optimized condi-
tions. 

5 Hani Mizhir Magid et 
al. (2021)[46] 

Mold temperature Optimal mold temperature: 55-65 °C, Reduced stress and im-
proved product quality. 

6 Bikram Singh Solanki 
et al. (2022)[47] 

Melt temperature Minimum diametric shrinkage of 0.562% in numerical analy-
sis; sink marks reduced by optimizing parameters. 

2.5. Combined Method 
The combined method is an approach to optimizing process parameters by combining two 

methods: Taguchi and Artificial Neural Network (ANN). Abdul R. et al. (2020) analyzed the prediction 
and optimization of shrinkage in products made from High-Density Polyethylene (HDPE) produced 
through injection molding using a combination of the Taguchi and ANN methods. That research 
tested three main parameters, namely injection speed, holding time, and cooling time, which were 
varied in three levels. Taguchi's experimental data was used to train, test, and validate the ANN 
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model using MATLAB. The ANN model was trained using the backpropagation method, and its perfor-
mance was evaluated using the Root Mean Square Error (RMSE) value. The ANN prediction results 
are compared with experimental results to ensure model accuracy. Compared to initial conditions 
(baseline), length shrinkage was reduced by 5.06%, and width shrinkage was decreased by 20.4% 
[48]. Mehdi Moayyedian et al. (2021) analyzed the optimization of the injection molding process for 
thin-walled products made from polypropylene (PP) using a combination of Taguchi and ANN meth-
ods. That research tested five main parameters, namely gate design, filling time, cooling time, pres-
sure holding time, and melting temperature, which varied in three levels. Simulations were carried 
out on circular products (diameter 100 mm, thickness 1 mm) to measure defects such as short 
shots, shrinkage, and warpage. The ANN model uses a backpropagation algorithm to predict the re-
lationship between process parameters and defects. The ANN was trained with Taguchi's experi-
mental data and used for further optimization. Based on the ANN results, the best combination of 
parameters is: Filling time: 1 second, Cooling time: 3 seconds, pressure holding time: 3 seconds, 
Melting temperature: 230 °C. That combination produces the lowest defect values for short shot, 
shrinkage, and warpage [49]. Kefan Yang et al. (2022) analyzed the optimization of injection molding 
process parameters for polypropylene (PP) car door panels using a combined Taguchi and ANN 
method. The five main parameters tested were mold temperature, melt temperature, cooling time, 
holding pressure, and holding time, which varied in four levels. Simulations are carried out for each 
parameter combination to calculate shrinkage and warpage. A three-layer ANN model was devel-
oped to map the relationship between process parameters (input) and shrinkage/warpage (output). 
The model is trained using experimental data and verified to ensure prediction accuracy. The optimal 
parameter combination is: Mold temperature: 76 °C, Melting temperature: 205 °C, Cooling time: 23.8 
seconds, Holding pressure: 54.7 MPa, Holding time: 22.1 seconds, which results in a shrinkage of 
13.32 % and warpage of 4.315 mm [50]. Mohamed ELGhadoui et al. (2023) developed a hybrid opti-
mization approach for plastic injection molding using a combined Taguchi and ANN method. That 
research tested seven process parameters, namely melting temperature, injection speed, injection 
pressure, cooling time, holding time, holding pressure, and displacement position, which were var-
ied in three levels. Data from experiments are trained on an ANN model to map the relationship be-
tween process parameters and product quality, such as weight, cycle time, dimensional deviation, 
and energy consumption. As a result, the ANN approach can Reduce raw material consumption by 
up to 2%, Reduce cycle time by up to 12%, and Reduce energy consumption by up to 16% while main-
taining product quality according to customer standards [51]. 

The combined Taguchi and Artificial Neural Network (ANN) method has proven effective for op-
timizing injection molding. By combining the Taguchi method's systematic experimental approach 
with the ANN's predictive capabilities, the research succeeded in improving product quality, reduc-
ing defects, and significantly increasing process efficiency. The results show that that approach pro-
vides better results than traditional methods, making it a handy tool for the modern manufacturing 
industry. Complete optimization results using a combined method from several authors can be seen 
in Table 10. 

Table 10. Optimization results using Combined Method from several authors 

No Author Optimized parameters Key results 
1 Abdul R. et al. 

(2020) [48] 
Injection speed, holding time, cool-
ing time 

Achieved minimum shrinkage of 1.25% in the flow direction 
and 1.37% in the cross-flow direction. 

2 Mehdi Moayyedian 
et al. (2019) [49] 

Melt temperature Optimal conditions: melt temperature 230 °c. improved prod-
uct quality with a margin of error of 1.5%. 

3 Kefan Yang et al. 
(2022) [50] 

Mold temperature, melt temperature Volume shrinkage: 13.32%, warpage deformation: 4.315 mm. 
Optimized mold temperature: 76 °C. 

4 Mohamed 
ELGhadoui et al. 
(2023) [51] 

Melt temperature, injection pressure Reduced raw material consumption by 2%, cycle time by 
12%, and energy consumption by 16%. 

3. Conclusions 
Optimizing parameters in the plastic injection process is crucial to improve product quality and 

reduce defects, such as shrinkage, warpage, and sink marks. This study highlights the effectiveness 
of modern approaches, such as Taguchi, Response Surface Methodology (RSM), Artificial Neural 
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Networks (ANN), and Finite Element Method (FEM), in minimizing defects by controlling key param-
eters, such as melt temperature, injection pressure, cooling time, and injection speed. These ap-
proaches improve product quality and support process efficiency and resource savings. In particular, 
the combination of Taguchi and ANN methods shows excellent potential in dealing with complex 
non-linear relationships between process parameters. This provides a more accurate and adaptive 
solution than conventional methods, making it a highly relevant tool for modern industries prioritizing 
precision and efficiency. Beyond the technical benefits, the use of digital simulation methods and 
mathematical modeling also significantly contributes to industrial sustainability. By supporting en-
ergy savings, raw material reduction, and minimizing environmental footprint, this approach is rele-
vant for automotive, electronics, medical, and other manufacturing sectors that prioritize sustaina-
bility. Future research must integrate advanced technologies, such as machine learning, big data an-
alytics, and the Internet of Things (IoT), to encourage automation and intelligence in optimization. In 
addition, exploring the use of recycled materials and developing more environmentally friendly pro-
duction methods can strengthen the plastic manufacturing industry's contribution to global sustain-
ability. By combining experimental approaches, digital simulation, and technological innovation, 
plastic injection processes can be continuously improved, creating high-quality products that meet 
market demands while significantly reducing environmental impact. 
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