
  

International Journal of Innovation in  
Mechanical Engineering and Advanced Materials 
Vol. 7 (No. 3), 2025, pp. 116-127 
Journal homepage: publikasi.mercubuana.ac.id/index.php/ijimeam 
DOI: 10.22441/ijimeam.v7i3.31800 

 

Correlation Analysis of Battery Capacity, Range, and Charging Time in 
Electric Vehicles Using Pearson Correlation and MATLAB Regression 
Yasa Sanusi 1,*, Sri Pudjiwati 1, Kontan Tarigan 1, Dianta Ginting 1, Farrah Anis Fazliatun Adnan 2, Gerald E. Timuda 3, Nono Dar-
sono 4, Nuwong Chollacoop 5 and Deni Shidqi Khaerudini 1,6 
1Department of Mechanical Engineering, Universitas Mercu Buana, Meruya Selatan, Jakarta 11650, Indonesia 
2Small Islands Research Centre, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia 
3Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), KST BJ Habibie, Tangerang Selatan, Banten 15314, Indonesia 
4Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), KST BJ Habibie, Tangerang Selatan, Banten 15314, 

Indonesia  
5National Energy Technology Center, National Science and Technology Development Agency, Khlong Luang District, Pathum Thani 12120, Thailand 
6Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), KST BJ Habibie, Tangerang Selatan, Banten 15314, Indonesia 
*Corresponding Authors: yasa.sanusi@gmail.com (YS) 

Abstract 

The increasing adoption of electric vehicles (EVs) reflects growing global awareness of climate 
change and air pollution challenges. As a sustainable alternative to conventional internal com-
bustion vehicles, EVs produce zero tailpipe emissions and can significantly reduce carbon emis-
sions—particularly when powered by renewable energy sources. However, one of the primary 
barriers to widespread EV adoption remains the high cost of battery components, which are es-
sential to vehicle performance and energy storage. In Indonesia, two dominant battery types used 
in EVs are Lithium Ferro Phosphate (LFP) and Nickel Manganese Cobalt (NMC), each offering dis-
tinct advantages. LFP batteries are recognized for their thermal stability and longer life cycles, 
making them suitable for everyday use, while NMC batteries offer higher energy density and are 
preferred for performance-focused and long-distance applications. This study aims to evaluate 
the correlation between battery capacity, driving range, and charging time for LFP and NMC bat-
teries using Pearson correlation and regression analysis through MATLAB simulation. The results 
indicate a strong and statistically significant correlation among the key parameters, with a Pear-
son coefficient of 0.576 for battery capacity and range, and an R-square value of 0.99 for the re-
gression model, demonstrating high predictive accuracy. Furthermore, the analysis reveals that 
LFP batteries have a higher average energy efficiency of 7.53 km/kWh compared to 6.84 km/kWh 
for NMC batteries, indicating more consistent performance in energy usage. These findings offer 
valuable insights for optimizing battery selection in EV applications and contribute to strategic 
planning for the development of more efficient electric vehicle systems. The combination of sta-
tistical and simulation-based analysis provides a robust foundation for future research and pol-
icy-making in the field of electric mobility. 
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1. Introduction 
The global shift towards sustainable transportation has led to a significant increase in the adop-

tion of electric vehicles (EVs) [1]. Rising concerns over climate change and air pollution have pro-
pelled governments and consumers worldwide to seek alternatives to fossil fuel-powered vehicles 
[2]. EVs are a viable solution due to their zero tailpipe emissions and their potential to reduce green-
house gas emissions, especially when powered by renewable energy sources [3]. In Indonesia, the 
transportation sector is a major contributor to carbon emissions and urban air pollution [4]. The In-
donesian government has set ambitious targets to increase EV adoption as part of its commitment 
to reducing greenhouse gas emissions under the Paris Agreement. Despite these efforts, several 
challenges hinder the widespread adoption of EVs in Indonesia, particularly the high initial costs as-
sociated with battery technology [5], [6]. Additionally, the Indonesian government has issued policies 
promoting the use of electric vehicles—especially those based on LFP and NMC batteries—through 
Presidential Regulation Number 55 of 2019 to support the transition toward an electric-based 
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transportation system and to curb carbon emissions [7]. Carbon emissions are largely caused by fos-
sil fuel-powered vehicles, and most cars in Indonesia still rely on fossil fuels. Therefore, this step 
aligns well with global efforts to reduce carbon emissions, one of which is the use of electric power 
in battery-powered vehicles. 

Batteries are the most critical component of EVs, significantly affecting their performance, 
range, and cost [8]. These batteries function as the main power source, supplying electric current to 
the motor, which drives the vehicle. Two types of battery materials are commonly used in electric 
vehicles in Indonesia: lithium iron phosphate (LFP) and nickel manganese cobalt (NMC). Among the 
various battery technologies, LFP and NMC are the most widely used, each with distinct characteris-
tics and advantages [9]. LFP batteries are known for their long lifespan, thermal stability, and safety. 
Although they offer lower energy density, they are more cost-effective and have a longer cycle life 
than other lithium-ion batteries [10]. In contrast, NMC batteries have higher energy density and pro-
vide longer driving ranges, but they are more expensive and pose concerns regarding thermal stability 
and the ethical sourcing of cobalt [11]. 

Previous research has explored the performance, efficiency, and longevity of both LFP and NMC 
batteries in electric vehicles. Studies by Tran et al. (2021), Long et al. (2020), and White et al. (2021) 
have examined the performance characteristics of LFP and NMC batteries, including their thermal 
behavior under various operating conditions, highlighting the importance of thermal management in 
EV applications. These studies found that LFP batteries offer better longevity but lower energy density 
[12]–[14]. Research conducted by Guo et al. (2021), Geisbauer et al. (2021), and Mishra et al. (2020) 
concluded that while LFP batteries offer relatively long life, NMC batteries have the advantage in 
terms of performance and range [15]–[17]. According to previous studies, electric vehicles can re-
duce gas emissions, and several findings indicate that LFP batteries are suitable for daily-use vehi-
cles, while NMC batteries are preferred for vehicles that prioritize performance and long-distance 
travel. 

Given these considerations, this study aims to evaluate the correlation between these two 
types of batteries in terms of capacity, range, and charging time using Pearson correlation and 
MATLAB regression analysis. Furthermore, it seeks to assess the efficiency of LFP and NMC batteries 
within the context of EV use in Indonesia. The objective is to provide insights into the advantages and 
limitations of each battery type, contributing to informed decision-making for consumers and policy-
makers in the promotion of sustainable EV adoption in Indonesia. 

2. Methods 
 This research employs numerical methods using Pearson correlation and MATLAB regression 

analysis simulations. The approach combines MATLAB-based simulations with mathematical mod-
eling to analyze the correlation between electric vehicle battery characteristics—specifically capac-
ity, range, and charging time. The following presents the methodology and data processing flow used 
to evaluate the efficiency of LFP and NMC batteries. 

Figure 1 illustrates a research methodology that begins with data collection and ends with con-
clusions. The data collection process involves gathering technical specifications of electric vehicles 
equipped with LFP and NMC batteries from various manufacturers. This includes battery capacity, 
driving range, and charging duration. These data serve as the foundation for comparing the charac-
teristics of LFP and NMC batteries in line with the study's objectives. 

The collected data were processed numerically using MATLAB to perform descriptive statistics, 
comparative analysis, and correlation/regression analysis. The correlation between variables is de-
termined using the Pearson correlation coefficient. The Pearson correlation formula is shown below 
[18]–[21]: 

𝑟 =  
∑(𝑥𝑖 −  𝑥  )(𝑦𝑖 − 𝑦   )

|√∑(𝑥𝑖 −  𝑥 )2∑(𝑦𝑖 − 𝑦  )2|
⁄   (1) 

The coefficient of determination (R-squared) is calculated using the following formula [20], 
[22], [23]: 

𝑅2 = 1 − 
𝑆𝑆𝑅 (𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝑆𝑆𝑇 (𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒)
  or   𝑅2 = 1 − 

∑(�̂�𝑖 − �̅�)2  

∑(𝑌𝑖 − �̅�)2  
 (2) 

The correlation between variables is interpreted based on the values of r and R². An r value close 
to -1 indicates a strong negative correlation, whereas an r value near 0 suggests no correlation. Con-
versely, an r value close to 1 indicates a strong positive correlation. 
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Figure 1. Research methodology 

Meanwhile, an R² value greater than 0.1 or approaching 1 signifies a strong and significant rela-
tionship between the variables. In addition to calculating the Pearson correlation coefficient numer-
ically, the analysis is also conducted using the MATLAB program. A correlation graph is generated 
between capacity, range, and battery charging time through MATLAB coding using scatterplots and 
heatmaps based on the collected data. 

 

Figure 2. MATLAB process  

Figure 2 depicts the data processing workflow using MATLAB. The initial dataset includes infor-
mation on battery capacity, driving range, and charging time from several electric vehicle manufac-
turers in Indonesia using LFP and NMC batteries. This data is analyzed in MATLAB through the gener-
ation of scatterplots and linear regression heatmaps based on the Pearson correlation formula. 
These visualizations display the linear regression relationships between capacity, range, and charg-
ing time for each battery type. The resulting graphs are then used to conduct regression correlation 
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analysis, which is compared against the minimum threshold values of the Pearson correlation coef-
ficient (r) and the coefficient of determination (R²). 

3. Results and Discussion 

3.1. Data collection 
The data comes from several electric vehicle manufacturers in Indonesia, especially sedans, 

starting from vehicle models, capacity, range, and charging time of LFP and NMC-type batteries. The 
following is a table of the data: 

Table 1. Lithium Iron Phosphate (LFP) battery data [24]-[27] 

Model Capacity Range Charging time 
1 76,9 kWh 605 km  30 minutes (DC Fast Charging) 
2 50.6 kWh 408 km  30 minutes (DC Fast Charging) 
3 61,4 kWh 450 km  30 minutes (DC Fast Charging) 
4 51 kWh 350 km 30 minutes (DC Fast Charging) 

Table 2. Nickel Manganese Cobalt (NMC) battery data [28]-[31]. 

Model Capacity Range Charging time 
1 72,6 kWh 430 km  18 minutes (DC Fast Charging) 
2 77,4 kWh 460 km  18 minutes (DC Fast Charging) 
3 62 kWh 560 km 30 minutes (Supercharger) 
4 71,4 kWh 460 km  30 minutes (DC Fast Charging) 

3.2. Pearson correlation analysis 
A. Pearson correlation analysis of capacity and range 

The Pearson correlation equation is used to calculate the correlation between battery capacity 
and range. Based on the data presented: 
• Variable X represents battery capacity: X = {76.9, 50.6, 61.4, 51.0, 72.76, 77.4, 62.0, 71,4} 
• Variable Y represents range: Y = {605, 408, 450, 350, 430, 460, 560, 460}  

From the data, the following values are obtained: 

�̅� =
∑𝑥

𝑛
= 65,41 (3) 

�̅� =
∑𝑌

𝑛
= 456,38 (4) 

∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�) = 6399,37 (5) 

∑(𝑋𝑖 − �̅�)2 = 1117,93 (6) 

∑(𝑌𝑖 − �̅�)2 = 110856,25 (7) 

The Pearson correlation coefficient is calculated as: 

𝒓 =  
∑(𝑥𝑖 −  𝑥  )(𝑦𝑖 − 𝑦   )

√∑(𝑥𝑖 −  𝑥 )2∑(𝑦𝑖 − 𝑦  )2
 =  

6399,37

√1117,93 − 110856,25
= 0,576 

This result indicates a positive correlation between battery capacity and range, with a value of 
0.576. A positive correlation implies that as battery capacity increases, the vehicle's range also in-
creases. Although the correlation is categorized as moderate, it still signifies a meaningful relation-
ship between the two variables. 
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This finding is consistent with studies by Y. Han et al. (2021) and H. Wang et al. (2022), which 
explain that the Pearson coefficient (r) ranges between –1 and 1. An r value close to –1 indicates a 
strong negative correlation, r = 0 implies no correlation, and r close to 1 indicates a strong positive 
correlation. According to W. Wu et al. (2024), a Pearson coefficient approaching 1 signifies an ideal 
correlation. Therefore, based on the calculation and previous studies, the correlation value of 0.576 
supports a moderate positive relationship between battery capacity and vehicle range for LFP and 
NMC batteries. 
B. Pearson correlation analysis battery capacity and charging time 

The Pearson correlation equation is also used to evaluate the relationship between battery ca-
pacity and charging time. The data used are: 
• Variable X: Battery capacity = {76.9, 50.6, 61.4, 51.0, 72.76, 77.4, 62.0, 71.4} 
• Variable Y: Charging time = {30, 30, 30, 30, 18, 18, 30, 30} 

Using the Pearson formula: 

𝑏1 = 
∑(𝑥𝑖 −  𝑥  )(𝑦𝑖 − 𝑦   )

∑(𝑥𝑖 −  𝑥 )2
 (8) 

The computed values are: 

�̅� =
∑𝑥

𝑛
= 65,41              

�̅� =
∑𝑌

𝑛
= 27              

∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�) = −57,68          

∑(𝑋𝑖 − �̅�)2 = 1117,93           

So the slope (regression coefficient) is:   

𝑏1 = 
∑(𝑥𝑖− 𝑥  )(𝑦𝑖−𝑦   )

∑(𝑥𝑖− 𝑥 )
2  = −57,68

1117,93
= −0,0516  

Then, the y-intercept is calculated as: 
Regression coefficient value can be determined by calculating the slope of b1: 

𝑏0 = �̅� − 𝑏1. �̅� = 27 − (−0,0516 𝑥 65,41) = 30,38 

Substituting into the regression formula: 

𝑌 = 𝑏0 + 𝑏1. 𝑋 (9) 

𝑌 = 30,38 − 0,0516. 𝑋  

Next, the regression performance is evaluated: 
Based on X and Y data, we get the values: 

𝑆𝑆𝑅 =  ∑(�̂�𝑖 − �̅�)2  = 2,14        

𝑆𝑆𝑇 =  ∑(𝑌𝑖 − �̅�)2  = 216         

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
= 

2,14

216
= 1 − 0,010 = 0,99      

The results show a weak negative correlation between battery capacity and charging time, with 
a slope of –0.0516. This suggests that for every 1 kWh increase in battery capacity, the charging time 
decreases slightly by approximately 0.0516 minutes. However, the R-squared value of 0.99 indicates 
that 99% of the variation in charging time is explained by battery capacity, implying a very strong re-
gression relationship. The remaining 1% may be influenced by other factors such as charging tech-
nology and efficiency. 

This finding is in line with research by Wu et al. (2024), which states that an R-squared value 
greater than 0.8 indicates a strong and reliable model [20]. Similarly, Chen et al. (2023) noted that 
an R-squared value of 1 denotes a perfect regression fit [22], while Zhou et al. (2023) stated that an 
R-squared value above 0.1 qualifies a regression model as good [23]. Therefore, with an R-squared 
value of 0.99, the regression correlation between battery capacity and charging time is considered 
highly significant and close to ideal. 
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C. Pearson correlation analysis of range and charging time 
The Pearson correlation equation is used to calculate the correlation between range (R) and 

charging time (T). Based on the available data: 
• RLFP : LFP battery range, [605, 408, 450, 350] 
• TLFP : LFP battery charging time, [30, 30, 30, 30] 
• RNMC : NMC battery range, [430, 460, 560, 460] 
• TNMC : NMC battery charging time, [18, 18, 30, 30] 

The Pearson correlation formula is: 

𝑟 =  
∑(𝑅𝑖 − �̅� )(𝑇𝑖 − �̅�  )

√∑(𝑅 − �̅�)2∑(𝑇𝑖 − �̅�)2
 (10) 

For LFP batteries, the calculations yield: 

�̅�𝐿𝐹𝑃𝐶 =
∑𝑅

𝑛
= 453,25     �̅�𝐿𝐹𝑃 =

∑𝑇

𝑛
= 30 

�̅�𝑁𝑀𝐶 =
∑𝑅

𝑛
= 477,5      �̅�𝑁𝑀𝐶 =

∑𝑇

𝑛
= 24 

For LFP batteries, the calculations yield: 

∑(𝑅𝑖 − �̅�)(𝑇𝑖 − �̅�) = 0  

∑(𝑅𝑖 − �̅�)2 = 35.764,25         

∑(𝑇𝑖 − �̅�)2 = 0          

For NMC batteries, the calculations yield: 

∑(𝑅𝑖 − �̅�)(𝑇𝑖 − �̅�) = 780  

∑(𝑅𝑖 − �̅�)2 = 9675         

∑(𝑇𝑖 − �̅�)2 = 144          

From the calculations above, we get LFP battery correlation value is ∑(𝑇𝑖 − �̅�)2 = 0, rLFP = 0, 

and NMC battery correlation value is 𝑟 =  
∑(𝑅𝑖− �̅� )(𝑇𝑖−�̅�  )

√∑(𝑅− �̅�)2∑(𝑇𝑖−�̅�)
2
 =  

780

√9675.144
= 0,661. 

The Pearson correlation analysis shows no relationship between range and charging time for 
LFP batteries due to the constant charging time (r = 0). However, for NMC batteries, the correlation 
value of 0.661 indicates a moderate positive relationship, meaning vehicles with longer charging 
times tend to have a higher range. This result emphasizes that LFP batteries, with their stable charg-
ing duration, do not show variation in range with charging time. In contrast, NMC batteries demon-
strate a clearer relationship between these two factors, suggesting that higher range performance 
may come at the cost of longer charging durations. 

These findings align with those of Y. Han et al. (2021) and H. Wang et al. (2022), who explained 
that Pearson correlation coefficients range from –1 to 1, with values close to –1 indicating a strong 
negative correlation, values near 0 indicating no correlation, and values close to 1 indicating a strong 
positive correlation. W. Wu et al. (2024) similarly noted that correlation values near 1 signify an ideal 
correlation. Therefore, the calculated Pearson coefficients confirm that LFP batteries have no corre-
lation between range and charging time (r = 0), while NMC batteries exhibit a meaningful, moderate 
correlation (r = 0.661). 
D. Battery efficiency  
Based on the available data: 

• CLFP : LFP capacity, [76.9, 50.6, 61.4, 51.0] 
• RLFP : LFP battery range, [605, 408, 450, 350] 
• CNMC : NMC battery capacity, [72.6, 77.4, 62.0, 71.4] 
• RNMC : NMC battery range, [430, 460, 560, 460] 

 
The energy efficiency of batteries is calculated using the formula: 

𝐸𝑖 =
𝑅𝑖
𝐶𝑖

 (11) 
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�̅� =
∑𝐸𝑖
𝑛

 (12) 

where Ei is the energy efficiency in km/kWh, Ri is the range, and Ci is the battery capacity. 
LFP battery calculations: 

𝐸1 =
𝑅1

𝐶1
= 

605

76.9
= 7.87  𝐸3 =

𝑅3

𝐶3
= 

450

61.4
= 7.33 

𝐸2 =
𝑅2

𝐶2
= 

408

50.6
= 8,06  𝐸4 =

𝑅4

𝐶4
= 

350

6.86
= 6.86 

Average LFP battery efficiency: 

�̅� =
∑𝐸𝑖
𝑛

=  
7.87 + 8.06 + 7.33 + 6.86

4
= 7.53 𝑘𝑚/𝐾𝑤ℎ 

NMC battery calculations: 

𝐸1 =
𝑅1

𝐶1
= 

430

72.6
= 5.92  𝐸3 =

𝑅3

𝐶3
= 

560

62.0
= 9.03 

𝐸2 =
𝑅2

𝐶2
= 

460

77.4
= 5,94  𝐸4 =

𝑅4

𝐶4
= 

460

71.4
= 6.44 

Average NMC battery efficiency: 

�̅� =
∑𝐸𝑖
𝑛

=  
5.92 + 5.94 + 9.03 + 6.44

4
= 6.83 𝑘𝑚/𝐾𝑤ℎ 

The results show that vehicles equipped with LFP batteries have a higher average energy effi-
ciency (7.53 km/kWh) compared to NMC batteries (6.83 km/kWh). This indicates that LFP batteries 
deliver more consistent performance in terms of energy usage. Moreover, the variation in energy ef-
ficiency among LFP batteries is smaller than that of NMC batteries, suggesting that LFP technology 
offers more reliable and predictable performance. 

While LFP batteries tend to provide stable charging durations and consistent efficiency, NMC 
batteries display a stronger correlation between charging time and range, implying that their perfor-
mance may vary more due to other influencing factors such as temperature sensitivity, energy den-
sity, and fast-charging compatibility. 

These results support previous research indicating that electric vehicles can significantly re-
duce greenhouse gas emissions. Furthermore, the findings reinforce that LFP batteries are well-
suited for everyday vehicles that prioritize reliability and efficiency, whereas NMC batteries are more 
appropriate for vehicles that emphasize performance and extended range. 

3.3. MATLAB analysis 
A. MATLAB program 

Based on Tables 1 and 2, which present data on the capacity, range, and charging time for LFP 
and NMC batteries, regression correlation analysis can be performed using MATLAB programming. 
The following is the MATLAB code used in this study:  

%Comparation battery capacity with range,  
% FP dan NMC battery data: 
lfp_battery_capacity = [76.9, 50.6, 61.4, 51.0]; % kWh 
lfp_range = [605, 408, 450, 350]; % km 
nmc_battery_capacity = [72.6, 77.4, 62.0, 71.4]; % kWh 
nmc_range = [430, 460, 560, 460]; % km 
 
% Regresi linier LFP 
p_lfp = polyfit(lfp_battery_capacity, lfp_range, 1); 
fit_lfp = polyval(p_lfp, lfp_battery_capacity); 
 
% Regresi linier NMC 
p_nmc = polyfit(nmc_battery_capacity, nmc_range, 1); 
fit_nmc = polyval(p_nmc, nmc_battery_capacity); 
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% Plot regresi value 
figure; 
hold on; 
scatter(lfp_battery_capacity, lfp_range, 'bo', 'DisplayName', 'LFP Actual Data'); 
scatter(nmc_battery_capacity, nmc_range, 'ro', 'DisplayName', 'NMC Actual Data'); 
plot(lfp_battery_capacity, fit_lfp, 'b--', 'DisplayName', 'LFP Linear Fit'); 
plot(nmc_battery_capacity, fit_nmc, 'r--', 'DisplayName', 'NMC Linear Fit'); 
% Regresi linier graph 
text(mean(lfp_battery_capacity), mean(fit_lfp), sprintf('y = %.2fx + %.2f', p_lfp(1), p_lfp(2)), 
'Color', 'blue', 'FontSize', 10); 
text(mean(nmc_battery_capacity), mean(fit_nmc), sprintf('y = %.2fx + %.2f', p_nmc(1), 
p_nmc(2)), 'Color', 'red', 'FontSize', 10); 
xlabel('Battery Capacity (kWh)'); 
ylabel('Range (km)'); 
title('Capacity Battery and Range correlation according battery tipe'); 
legend('show'); 
grid on; 
hold off; 

B. Regression correlation analysis of capacity and range 
In general, Figure 3 shows that an increase in battery capacity typically corresponds to an in-

crease in the driving range of an electric vehicle. 

 

Figure 3. Correlation regression analysis of capacity and range: (a) Correlation matrix, (b) Correlation regression 

(a) 

(b) 
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However, this correlation is not perfectly strong, indicating that other factors—such as energy 
efficiency, vehicle condition, and driving behavior—also play significant roles in determining range. 
Despite this, the correlation values confirm that battery capacity remains a key factor when aiming 
to improve electric vehicle range performance. An increase in battery capacity allows for greater en-
ergy storage, thereby enhancing the overall driving range. The regression analysis further suggests 
that a linear model can effectively represent this relationship, where an increase in battery capacity 
leads to a notable increase in driving range. 

Figure 3(a) displays a correlation matrix between two key parameters: battery capacity and driv-
ing range. The dominant yellow hue along the diagonal axis indicates a strong positive correlation 
between these variables. The calculated correlation coefficient value of 0.5676 further supports this 
observation, reinforcing the finding that vehicles with higher battery capacity tend to achieve longer 
ranges. Figure 3(b) provides a visual representation of this relationship through a scatter plot and 
regression lines for both battery types. Both LFP and NMC battery regression lines follow a positive 
trend, consistent with the matrix analysis. 

However, the slope of the regression line for LFP batteries is flatter, indicating that increases in 
LFP battery capacity led to relatively modest gains in range. In contrast, the steeper slope observed 
in the NMC battery regression line implies that range increases more significantly with greater battery 
capacity in NMC systems. This suggests that the relationship between capacity and range is more 
sensitive and potentially more complex in NMC batteries compared to LFP batteries. 

 

Figure 4. Correlation regression analysis of capacity and charger time; (a) LFP, (b) NMC 

(a) 

(b) 



Sanusi et al., Correlation analysis of battery capacity, range, and charging time in electric vehicles… 125 

 

Moreover, the slight negative deviation observed in the NMC regression curve may indicate the 
influence of additional variables such as battery technology, vehicle mass, or energy management 
strategies, which should be considered in the design of NMC-equipped electric vehicles. 
C. Correlation analysis of capacity and charging time 

Figure 4 shows that increasing battery capacity does not significantly impact charging duration. 
Therefore, it is important to consider additional factors, such as fast-charging technology, to improve 
the efficiency of electric vehicle (EV) charging times. This analysis confirms that factors beyond bat-
tery capacity play a more substantial role in determining charging duration. Although charging time 
is influenced by capacity, batteries with larger capacities generally require longer charging times—
depending on the charging level. 

In Figure 4(a), the horizontal regression line indicates that there is no significant correlation be-
tween LFP battery capacity and charging time. This implies that changes in LFP battery capacity do 
not affect how long it takes to fully charge the battery. The LFP battery system appears to be opti-
mized so that charging time remains relatively constant, regardless of capacity. On the other hand, 
Figure 4(b) displays a downward-sloping regression line for NMC batteries, indicating a negative cor-
relation between battery capacity and charging time. This means that as the NMC battery capacity 
increases, the time required for full charging decreases. This may be attributed to the fact that larger-
capacity ternary (NMC) batteries often support higher charging efficiency and benefit from more ad-
vanced fast-charging technologies. As such, NMC batteries with higher capacities tend to charge 
faster, making them more suitable for applications that demand quick turnaround times. 
D. Correlation analysis of range and charging time 

Figure 5 presents a comparison between the driving range of electric vehicles and the time re-
quired to charge their batteries. The results reveal distinct differences between lithium iron phos-
phate (LFP) and ternary (NMC) batteries. LFP batteries do not exhibit a clear correlation between 
driving distance and charging time, indicating that charging durations remain consistent regardless 
of how far the vehicle can travel on a full charge. Conversely, NMC batteries show a positive correla-
tion—the longer the distance traveled, the longer it takes to charge. This implies that vehicles de-
signed for longer ranges are equipped with larger batteries, which naturally require more time to re-
charge. 

These findings are crucial for selecting the appropriate battery type and for designing EV charg-
ing infrastructure. Vehicles with longer driving ranges may require extended charging times. How-
ever, with the availability of faster charging rates—particularly in NMC batteries—users can reduce 
the time spent charging, even for long-range vehicles. The analysis also indicates that while NMC 
batteries provide greater driving range, their rapid charging capability makes them more practical for 
daily use, especially where time efficiency is a priority. 

Moreover, the charging efficiency between LFP and NMC batteries differs. Empirical analysis 
reveals that NMC batteries offer a superior charging rate of 20.86 km/min, compared to 15.11 
km/min for LFP batteries. This suggests that, despite potentially larger capacities, NMC batteries 
achieve faster overall charging times, making them a more efficient choice for high-performance or 
long-distance electric vehicles. 

 

Figure 5. Correlation regression analysis of range and charger time 
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3.4. Correlation analysis of Pearson coefficient and MATLAB operations 
Based on the results of the Pearson correlation coefficient, regression analysis, scatterplots, 

and heatmaps generated through MATLAB, it can be concluded that there is a reasonably strong cor-
relation between battery capacity and driving range for both LFP and NMC batteries. This is evidenced 
by the correlation value of 0.567, as well as the visual representation in MATLAB. However, for NMC 
batteries, an inverse trend is observed—greater capacity is sometimes associated with a shorter 
range. This suggests the influence of additional factors such as battery technology, vehicle design, 
and weight. 

The correlation between capacity and charging time also shows a strong positive regression 
value for both battery types in numerical calculations, with coefficients well above 0.8, indicating a 
high degree of predictability. Despite this, MATLAB visualizations reveal inconsistencies—particu-
larly with LFP batteries, where all capacity values correspond to the same charging duration (30 
minutes). As a result, no real variation is present, making correlation in the graph appear weak or 
nonexistent. In contrast, NMC batteries demonstrate an inverse correlation, where increased capac-
ity corresponds with shorter charging times. This supports the conclusion that NMC batteries benefit 
from faster charging technologies and improved efficiency compared to LFP batteries. 

When analyzing the correlation between driving range and charging time, LFP batteries again 
show no correlation due to their consistent charging time. Meanwhile, NMC batteries display a mod-
erate correlation with a Pearson coefficient of 0.661. This suggests that in NMC-equipped vehicles, 
longer charging times are generally associated with longer driving ranges. MATLAB visualizations re-
inforce these findings, showing that while LFP batteries have weak or negligible correlation due to 
uniform charging times, NMC batteries clearly exhibit a trend: as charging time increases, so does 
the distance the vehicle can travel. 

4. Conclusions 
This study concludes that the selection of battery type significantly influences the performance 

characteristics of electric vehicles (EVs), particularly in terms of driving range, charging time, and 
energy efficiency. Lithium Iron Phosphate (LFP) batteries are more suitable for daily use, where cost-
effectiveness, safety, and long cycle life are key priorities. In contrast, Nickel Manganese Cobalt 
(NMC) batteries are better suited for applications that demand high performance and longer driving 
distances. The correlation and regression analyses revealed a strong and statistically significant re-
lationship between key parameters, including battery capacity, range, and charging time. The Pear-
son correlation coefficient and MATLAB-based regression models consistently demonstrated these 
relationships. First, a positive correlation was found between battery capacity and driving range, with 
a coefficient of 0.576, indicating that higher battery capacity enables longer travel distances. Sec-
ond, the relationship between battery capacity and charging time was found to be very weak and 
slightly negative, with a correlation coefficient of –0.0516. This implies that increasing battery capac-
ity can slightly reduce charging duration, particularly in NMC batteries with fast-charging capability. 
The correlation between range and charging time varied depending on the battery type. For LFP bat-
teries, no correlation was observed due to the constant charging duration across different capacities 
and ranges. However, NMC batteries exhibited a moderate positive correlation, indicating that vehi-
cles capable of longer ranges generally require more time to charge, likely due to the presence of 
larger batteries. In terms of energy efficiency, LFP batteries performed better, with an average of 7.53 
km/kWh compared to 6.84 km/kWh for NMC batteries. This highlights LFP’s consistent performance 
in optimizing energy use, making it highly suitable for energy-conscious applications. In summary, 
the results of this study confirm that electric vehicles, regardless of battery type, offer considerable 
potential for reducing greenhouse gas emissions. However, selecting the appropriate battery type 
should be aligned with the intended usage of the vehicle. LFP batteries are ideal for urban commuting 
and daily driving due to their reliability and energy efficiency, while NMC batteries are better suited 
for long-distance or performance-intensive applications. The use of statistical analysis methods, in-
cluding Pearson correlation and MATLAB regression modeling, has proven effective in quantifying 
these relationships and provides a valuable foundation for future research and development in elec-
tric vehicle battery systems. 

Supplementary Documentation 
More detailed MATLAB coding has been provided in the Supplementary Document. To access 

the Supplementary Document, please visit the article homepage. 
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