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Abstract 

Cars are a prevalent mode of transportation for both people and goods, with B-class hatchbacks 
being particularly popular in Indonesia. However, road traffic crashes remain a major concern, 
contributing millions of deaths annually, primarily due to human error. Autonomous vehicles offer 
a promising solution to mitigate these issues by reducing reliance on human control. In particular, 
Level 3 autonomous vehicles enhance road safety, enable independent mobility, reduce traffic 
congestion, and allow drivers to engage in non-driving tasks. This study proposes an autonomous 
vehicle model that employs a trajectory tracking approach using Model Predictive Control (MPC), 
a robust and widely adopted control strategy in autonomous systems. A three-degree-of-freedom 
(3-DOF) vehicle dynamic model was developed and analyzed through co-simulation using Car-
Sim and Simulink to evaluate its performance during a double-lane change maneuver. The simu-
lation results demonstrate that the vehicle accurately follows the reference trajectory and exhib-
its excellent dynamic performance. The roll angle remained consistently low, ranging between 
0.024 and 0.026 radians—well below the rollover threshold of 0.14 radians—demonstrating 
strong roll stability. The slip angle varied between –0.013 and 0.0135 radians, nearly 12 times 
lower than the critical limit, indicating optimal traction and directional control. Lateral accelera-
tion ranged from –3.59 m/s² to 3.41 m/s², and yaw rate remained within –7.78°/s to 7.25°/s, both 
well within safe operational bounds. These findings confirm that the proposed MPC-based con-
trol framework enables precise path tracking, robust stability, and reliable handling performance 
in dynamic driving scenarios. 
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1. Introduction 
Cars are a primary mode of transport for people and goods, with hatchbacks, particularly B-

class models such as Toyota Yaris and Honda Jazz, gaining popularity in Indonesia [1]. However, the 
rise in vehicle numbers also leads to safety concerns, as the World Health Organization reports ap-
proximately 1.35 million annual deaths from road traffic injuries, largely due to human error [2]. 

Autonomous vehicles (AVs) offer solutions for enhancing road safety and efficiency. SAE J3016 
Level 3 autonomous vehicles provide some benefits, such as increased mobility, reduced conges-
tion, and improved fuel efficiency [3]. Level 3 autonomous vehicles, also known as conditional auto-
mation, are mostly autonomous in specific conditions, such as highway driving, but still need a hu-
man driver to be present and ready to take over when the system encounters situations that it cannot 
manage. Path tracking is a crucial aspect of autonomous vehicle motion control that enables vehi-
cles to follow predefined routes accurately. One of the trajectories used to simulate critical driving 
conditions is the double lane change, which directly impacts vehicle stability and handling perfor-
mance. 

Model Predictive Control (MPC) is a promising approach to trajectory tracking. By predicting 
future vehicle states, MPC optimizes control inputs in real time and manages nonlinear dynamics 
and constraints [4]. MPC is a powerful and flexible control strategy for autonomous driving that offers 
optimal performance while handling complex constraints. Despite its advantages, including real-
time adaptation, optimality, and multi-objective optimization, challenges such as computational 
complexity and the requirement of a system model embedded in an MPC optimizer remain [5]. 
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Model Predictive Control is an optimization-based control strategy that is particularly well-
suited for autonomous driving applications due to its ability to account for vehicle dynamics, con-
straints, and predictions over a future horizon. The effectiveness of MPC in ensuring vehicle stability, 
particularly in yaw and roll, has been assessed through co-simulation environments like CarSim and 
Simulink. For instance, Lin et al. illustrate the utilization of MPC for maintaining vehicle yaw stability 
and tracking specific paths by considering vehicle dynamics parameters such as front wheel angle 
and sideslip angle during path tracking [6]. Similarly, Guo et al. demonstrate an adaptive MPC ap-
proach that enhances calculation efficiency and control accuracy, showcasing faster response 
times in handling maneuvers such as J-turn and fishhook tests [7]. 

However, most existing studies are limited to high-level simulations or simplified models that 
do not fully incorporate complex interactions between vehicle dynamics and control constraints un-
der rapid lane-changing scenarios, such as double lane change (DLC) maneuvers. There is still a lack 
of comprehensive evaluations that validate MPC’s performance in simultaneously managing yaw 
and roll stability using high-fidelity co-simulation tools. 

The novelty of this study lies in its integrated approach that combines MATLAB/Simulink and 
CarSim platforms to assess the effectiveness of MPC in path tracking and stability control during 
double lane change maneuvers. By utilizing co-simulation, this research provides more accurate and 
realistic assessments of MPC's control effectiveness, particularly in maintaining vehicle stability dur-
ing dynamic lane-change conditions. Additionally, this study emphasizes the importance of accurate 
dynamic modeling to enhance the predictive capability of MPC and minimize the risks posed by mod-
eling errors or unmodeled disturbances. 

This study focuses on investigating the effectiveness of MPC in improving vehicle stability and 
handling performance through co-simulation using MATLAB/Simulink and CarSim for clear model ac-
curacy. These platforms allow realistic evaluations of vehicle dynamics and control strategies [8]. By 
leveraging these tools, this study aims to develop a robust MPC framework capable of not only accu-
rately following desired trajectories but also offering optimal stability and handling. 

2. Methods 

2.1. Path tracking & model predictive control 
Path tracking has gained significant attention in current research on autonomous vehicles. Ac-

curately following a reference path is a fundamental aspect of the motion control system. However, 
current research often overlooks the integration of vehicle–steering systems. Model Predictive Con-
trol (MPC) is a popular method for managing autonomous vehicles; nevertheless, analyzing the sta-
bility of path-tracking systems using MPC remains challenging. 

MPC relies on optimal control principles, utilizing a dynamic model to predict system behavior 
and refine predictions to make optimal control decisions. The state estimation problem involves an-
alyzing past data and combining it with a model to determine the most likely current state, as illus-
trated in Figure 1. MPC encompasses various methods that generate control signals by minimizing 
an objective function. This results in controllers with a similar structure and high flexibility. 

MPC offers many advantages, including broad applicability, user-friendliness, ease of imple-
mentation, transparent methodology, straightforward constraint handling, and utility for future refer-
ence tracking [4],[8]. 

 
Figure 1. MPC general block diagram [9] 
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For Y(T +1)|T) and ∆U(T), which are the system output and input respectively, the model predic-
tion equation for T sample time can be expressed as: 

𝑌(𝑇 + 1)|𝑇) =  ѱ𝑡𝜉(𝑇) + 𝛩𝑡∆𝑈(𝑇)       (1) 
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In Equation (3), ξ represents the system state vector. The matrices At, Bt, and Ct denote the state 

transition matrix, input matrix, and measurement matrix, respectively. The control horizon is repre-
sented by Nc, while Np indicates the prediction horizon [10]. 

2.2. Co-simulation 
Co-simulation is an effective method for modeling and simulating complex systems by utilizing 

well-established simulation tools from various domains. It has been widely applied in engineering 
and computer science, although its impact on simulation accuracy and results is often not thor-
oughly analyzed. 

MATLAB and Simulink are seamlessly integrated, enabling users to analyze, simulate, and mod-
ify models within either environment at any time. These platforms provide a broad range of tools for 
designing and testing control systems, making them highly suitable for developing algorithms for au-
tonomous vehicle applications [11]. CarSim is a specialized software tool used to simulate 3D vehi-
cle dynamics and visualize vehicle responses under a variety of driving conditions. It enables re-
searchers to create detailed models of vehicle behavior and evaluate the performance of autono-
mous systems [12]. When used together, MATLAB/Simulink and CarSim provide a comprehensive 
framework for research and development in autonomous vehicle technology. 

2.3. Vehicle dynamic model 
This study employs a three-degree-of-freedom (3-DOF) vehicle dynamic model, as illustrated 

in Figure 2. The model effectively describes vehicle motion within a plane through three principal 
components: longitudinal, lateral, and yaw motion.  

 
Figure 2. Three DOF vehicle dynamic model 
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Several simplified assumptions are made in the modeling process: longitudinal and lateral aer-
odynamic forces are neglected; only lateral dynamics are considered without any coupling between 
longitudinal and lateral tire forces; vehicle roll and pitch motions are disregarded; and the vehicle is 
assumed to use front-wheel steering only [13]. 

According to Newton’s second law of motion, the longitudinal, lateral, and yaw dynamics of the 
vehicle can be expressed by the following equations: 

𝑚�̈� =  𝑚�̇��̇� + 2𝐹𝑥𝑓 + 2𝐹𝑥𝑟    (4) 

𝑚�̈� =  −𝑚�̇��̇� + 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟  (5) 

𝐼𝑧Ø̈ =  2𝑎𝐹𝑦𝑓 + 2𝑏𝐹𝑦𝑟  (6) 

Here, mmm is the vehicle mass, and Iz is the moment of inertia. The variables ẋ and ẏ repre-
sent longitudinal and lateral velocities, while ẍ and ÿ represent longitudinal and lateral accelera-
tions. φ̇ is the yaw rate, and Ø̈ is the yaw angular acceleration. Fxf, Fxr, Fyf , and Fyr denote the longi-
tudinal and lateral forces on the front and rear wheels, respectively. These can be further defined as: 

𝐹𝑥𝑓 = 𝐹𝑙𝑓𝑐𝑜𝑠𝛿𝑓 − 𝐹𝑐𝑓𝑠𝑖𝑛𝛿𝑓   (7) 

𝐹𝑥𝑟 = 𝐹𝑙𝑟𝑐𝑜𝑠𝛿𝑟 − 𝐹𝑐𝑟𝑠𝑖𝑛𝛿𝑟  (8) 

𝐹𝑦𝑓 = 𝐹𝑙𝑓𝑠𝑖𝑛𝛿𝑓 − 𝐹𝑐𝑓𝑐𝑜𝑠𝛿𝑓  (9) 

𝐹𝑦𝑟 = 𝐹𝑙𝑟𝑠𝑖𝑛𝛿𝑟 − 𝐹𝑐𝑟𝑐𝑜𝑠𝛿𝑟  (10) 

Here, δf and δr are the front and rear steering angles. The longitudinal and lateral tire forces 
are determined by the tire side-slip angle α\alphaα, and the respective longitudinal and lateral veloc-
ities (vl and vc), defined as: 

𝛼 = 𝑡𝑎𝑛−1 (
𝑣𝑐

𝑣𝑙
)   (11) 

𝑣𝑐 = 𝑣𝑦𝑐𝑜𝑠𝛿 − 𝑣𝑥𝑠𝑖𝑛𝛿  (12) 

𝑣𝑙 = 𝑣𝑦𝑠𝑖𝑛𝛿 − 𝑣𝑥𝑐𝑜𝑠𝛿  (13) 

Based on the relationship between speed and angular velocity, the transformation of longitudi-
nal and lateral velocities at the front and rear tires is described by: 

𝑣𝑦𝑓 = �̇� +  𝑎�̇�  (14) 

𝑉𝑦𝑟 = �̇� −  𝑏�̇�  (15) 

𝑉𝑥𝑓 = �̇�  (16) 

𝑉𝑦𝑟 = �̇�  (17) 

To simplify calculations, it is necessary to transform the vehicle’s coordinate system velocities 
Ẋ and Ẏ and φ, and the yaw angle ϕ, using the following equations: 

�̇� = �̇�𝑠𝑖𝑛𝜑 − �̇�𝑐𝑜𝑠𝜑  (18) 

�̇� = �̇�𝑐𝑜𝑠𝜑 − �̇�𝑠𝑖𝑛𝜑  (19) 

 
 



Yamin et al., Handling and stability analysis of an autonomous vehicle using model predictive control… 102 

 

2.4. Vehicle stability and handling performance 
In the context of autonomous vehicles, roll and slip angles are critical parameters related to 

vehicle dynamics and stability. The roll angle refers to the tilt of the vehicle’s body around its longitu-
dinal axis. This angle becomes particularly important during maneuvers such as cornering, braking, 
or driving on uneven surfaces. A significant roll angle can compromise vehicle stability, increasing 
the risk of rollover. Therefore, maintaining the roll angle within safe limits is essential to ensure pas-
senger safety and effective vehicle handling [14]. Figure 3 illustrates the basic concept of vehicle 
motion. 

 
Figure 3. Vehicle motion [13] 

The slip angle is defined as the angle between the direction in which the wheel is pointed and 
the actual direction of the vehicle’s movement. It occurs when the vehicle turns and the tires experi-
ence lateral forces. While a small slip angle is normal during cornering, a large slip angle can result 
in loss of traction and instability [16]. Previous studies have suggested that the roll angle should not 
exceed 8° (0.14 rad), as exceeding this limit increases the likelihood of rollover [15]. Similarly, the 
slip angle should remain below 8.91° (0.156 rad) to maintain vehicle stability [17]. 

Lateral acceleration and yaw rate are also essential metrics for evaluating the handling and sta-
bility of autonomous vehicles. Lateral acceleration refers to the horizontal acceleration of the vehi-
cle, especially during cornering, and indicates how quickly the vehicle can change direction. While 
high lateral acceleration suggests good handling characteristics, excessive values can cause a loss 
of traction or vehicle instability, increasing the risk of rollover [18], [19]. The yaw rate, defined as the 
rate at which a vehicle rotates about its vertical axis, indicates how quickly the vehicle is turning. High 
yaw rates may suggest aggressive turning behavior, which can lead to skidding if safety thresholds 
are exceeded. Autonomous vehicles use yaw rate data to make real-time adjustments to maintain 
stability during navigation [20]. According to industry standards, the acceptable range for lateral ac-
celeration is between –13.73 m/s² and 9.81 m/s², which indicates good handling performance. For 
yaw rate, the acceptable range is between –35°/s and 35°/s [21]. 

2.5. Vehicle parameter and maneuver procedure 
This study uses a B-class hatchback vehicle model from the CarSim database, as shown in Fig-

ure 4. The detailed parameters of the vehicle are provided in Table 1. The double-lane change (DLC) 
maneuver is a critical test procedure for evaluating autonomous vehicles because it replicates emer-
gency or high-speed avoidance scenarios. The ISO 3888-2 standard specifies the parameters and 
setup for this maneuver, as shown in Figure 5. The procedure begins once the vehicle reaches the 
target speed. The driver accelerates and then releases the accelerator pedal. Subsequently, the 
driver turns the steering wheel to move into the left lane and then steers back to the right lane. During 
this maneuver, vehicles may exhibit different dynamic responses, including understeering due to tire 
force saturation in the front axle, oversteering during counter-steering maneuvers, or even rollover 
effects due to excessive lateral acceleration. These dynamics are especially critical in vehicles with 
a higher center of gravity. By simulating these responses, the DLC maneuver provides valuable in-
sight into the agility and lateral stability of autonomous vehicles [22]. 
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Figure 4. CarSim B-Class hatchback 

Table1. CarSim B-Class hatchback vehicle parameters 

Parameter  Value  

Vehicle Mass (kg) 1110 
Roll Inertia (kgm2) 440.6 
Pitch Inertia (kgm2) 1343.1 
Yaw Inertia (kgm2) 1343.1 
Distance of CG to Front Axle (m) 1.04 
Distance of CG to Rear Axle (m) 1.56 
Front Steering Damping Coefficient (Ns/m) 4.5 
Wheelbase Length (m) 2.6 
Width (m) 1.695 
Height (m) 1.535 
 

 
Figure 5. Double lane change trajectory as defined by ISO3888-2 

The Driving Scenario Designer used in this study incorporates three main components. First, 
the road elements are defined, including their width and length. Second, the actors—in this case, the 
vehicle—are placed into the simulation. Third, sensors are added to monitor these actors. In this 
study, the sensors are configured to record the vehicle’s lateral position and yaw angle. Once the 
scenario setup is complete, it is exported to Simulink, where the models are further integrated and 
refined into a unified co-simulation environment with CarSim. 

The target vehicle speed was selected based on regulations from the Indonesian Ministry of 
Transportation, which specifies a minimum speed of 60 km/h and a maximum of 100 km/h on toll 
roads, with a limit of 80 km/h for inner-city toll roads [23]. Therefore, the target speed in this study 
was set at 80 km/h, representing the maximum allowed speed on inner-city toll roads. 

2.6. Trajectory tracking model 
The path trajectory was created in MATLAB using the Driving Scenario Designer from the Auto-

mated Driving Toolbox. This trajectory serves as a reference input for the Model Predictive Control 
(MPC) controller, enabling it to accurately track the desired path and successfully perform the dou-
ble-lane change maneuver. The driving scenario design and the co-simulation model used in this 
study are illustrated in Figures 6 and 7, respectively. 
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Figure 6. Trajectory driving scenario design 

 
Figure 7. Carsim-Simulink block diagram model 

3. Results and Discussion 

3.1. Lateral tracking 
As the primary objective of this research is to develop an autonomous vehicle capable of track-

ing a trajectory using Model Predictive Control (MPC), it is essential to compare the target lateral po-
sition with the vehicle’s actual lateral position. The results show that the target trajectory and the 
autonomous vehicle exhibit similar patterns, indicating that the proposed vehicle model effectively 
tracks the path and performs the double-lane change maneuver. 

 
Figure 8. Lateral tracking graph 
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Although some deviation in the lateral position of the autonomous vehicle is observed com-
pared to the target trajectory, the deviation is minimal and remains within acceptable limits, as illus-
trated in Figure 8. According to ISO 3888-2, the double-lane change procedure allows a lateral path 
width tolerance of 1.1b+0.25 m, where b is the vehicle width. For a vehicle width of 1.695 m, this 
results in a total tolerance of 2.1145 m, with a lateral tolerance of approximately 1.057 m on each 
side. 

3.2. Vehicle stability analysis 
This study emphasizes the importance of maintaining the vehicle’s roll angle as close to zero 

degrees as possible for optimal stability. During the lane-change maneuver, the measured roll angles 
consistently range between 0.024 and 0.026 radians, as shown in Figure 9. These values indicate that 
the vehicle demonstrates a commendable ability to maintain stability under dynamic conditions. The 
slight deviation from zero suggests that the vehicle’s design and control algorithms are effective in 
managing lateral forces. 

When compared with the critical rollover threshold of 0.14 radians, it is evident that the vehicle 
maintains a substantial safety margin. This is especially relevant for autonomous vehicles, which are 
expected to navigate complex driving scenarios with minimal human intervention. The ability to main-
tain such a narrow roll angle range during dynamic maneuvers highlights the effectiveness of the con-
trol algorithms in predicting and mitigating potential instability. 

 
Figure 9. Roll angle graph 

The analysis of the slip angle further supports the vehicle’s stability. The slip angle should not 
exceed 0.156 radians, as exceeding this limit may lead to vehicle instability due to a loss of traction. 
The proposed autonomous vehicle maintains a slip angle ranging from –0.013 radians to 0.0135 ra-
dians, as shown in Figure 10. This range is well within the safe limit and is approximately 12 times 
smaller than the critical threshold. These results indicate excellent traction control, suggesting that 
the vehicle effectively maintains grip and stability throughout the maneuver. Overall, the low slip an-
gles confirm that the vehicle is designed to handle dynamic driving conditions safely and reliably. 

 
Figure 10. Slip angle graph 

The evaluation of both the roll angle and slip angle confirms that the proposed autonomous 
vehicle exhibits strong stability control and remains well within safe thresholds for both parameters. 
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3.3. Vehicle handling performance analysis 
The vehicle’s handling performance was further evaluated through the analysis of lateral accel-

eration and yaw rate. The results show a minimum lateral acceleration of –3.59 m/s² and a maximum 
of 3.41 m/s², as illustrated in Figure 11. These values are well below the typical limits for lateral ac-
celeration in vehicles, indicating that the proposed model demonstrates excellent handling perfor-
mance. 

The relatively low lateral acceleration values imply that the vehicle can change direction and 
navigate turns with a high degree of stability and control. Negative lateral acceleration during decel-
eration maneuvers indicates the vehicle’s ability to maintain grip and avoid skidding. Conversely, 
positive acceleration during cornering reflects responsive handling without generating excessive lat-
eral forces that could compromise stability. 

By maintaining safe acceleration limits, the proposed autonomous vehicle not only enhances 
passenger comfort but also significantly reduces the risk of losing control during maneuvers. These 
findings support the vehicle’s capability for safe and efficient operation under real-world driving con-
ditions, contributing to the broader goal of advancing autonomous driving technologies. 

 
Figure 11. Lateral acceleration graph 

Yaw rate analysis is another critical metric for evaluating the handling performance of the pro-
posed autonomous vehicle. Ideally, the yaw rate should remain within the range of –35°/s to 35°/s, 
as values outside this range may indicate poor handling behavior. According to the data presented in 
Figure 12, the yaw rate for the proposed vehicle ranges from –7.78°/s to 7.25°/s, which is well within 
the acceptable limits and significantly below the maximum threshold. These results confirm that the 
vehicle maintains stable handling during dynamic maneuvers such as a double-lane change. 

 
Figure 12. Yaw rate graph 

Overall, the comprehensive evaluation of lateral acceleration and yaw rate confirms that the 
proposed vehicle model exhibits effective handling performance, making it a reliable and safe option 
for navigation in dynamic driving environments. 

4. Conclusions 
This study successfully developed and evaluated an autonomous vehicle model equipped with 

Model Predictive Control (MPC) for trajectory tracking and dynamic maneuvering. The simulation re-
sults, obtained through co-simulation using MATLAB/Simulink and CarSim, confirm that the 
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proposed model exhibits excellent stability and handling performance during double-lane change 
maneuvers. The roll angle remained consistently low and significantly below the rollover threshold 
of 0.14 radians, demonstrating strong roll stability. Similarly, the slip angle was well within safe lim-
its, with values nearly 12 times lower than the critical threshold, indicating that the vehicle main-
tained optimal traction and directional control throughout the maneuvers. Furthermore, the lateral 
acceleration values ranged between –3.59 m/s² and 3.41 m/s², confirming that the vehicle can navi-
gate turns and directional changes without compromising passenger comfort or vehicle control. The 
yaw rate also remained within the safe range of –35°/s to 35°/s, reflecting the model's ability to per-
form rapid directional changes without sacrificing stability. In summary, the integration of MPC with 
a co-simulation environment enabled accurate trajectory tracking, effective stability control, and re-
liable handling under dynamic driving conditions. These findings affirm the potential of the proposed 
control framework for practical implementation in autonomous vehicle systems. For future research, 
efforts could be directed toward enhancing the vehicle’s adaptability in more complex traffic envi-
ronments. Integrating vehicle-to-everything (V2X) communication technologies may further improve 
situational awareness, enabling real-time adjustments based on surrounding vehicles, infrastruc-
ture, and road conditions. This advancement could significantly elevate the safety, responsiveness, 
and overall efficiency of autonomous driving systems. 
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