Vol. 16. No. 02, Mei 2025: 66-71

http://publikasi.mercubuana.ac.id/index.php/jtep-ISSN: 2086-9479 e-ISSN: 2621-8534

Rancang Bangun Alat Pengukur Tekanan Darah Untuk Deteksi Tingkat Risiko Cardiovascular Disease Dengan Metode Fuzzy Logic Mamdani Berbasis IoT

Rizka Zulfiyani^{1*}, Akhmad Wahyu Dani¹, Fadli Sirait¹

¹Teknik Elektro, Universitas Mercu Buana, Jakarta *rizka.zulfiyani37@gmail.com

Abstrak- Hampir 3 dari 4 kematian yang terjadi di dunia disebabkan oleh penyakit tidak menular (WHO, 2022). Sekitar 73% kematian di Indonesia disebabkan oleh penyakit tidak menular dan cardiovascular disease menyumbang angka tertinggi sebesar 35% (WHO,2018). Cardiovascular disease merupakan penyakit tidak menular namun penderita penyakit tidak menular seringkali tidak menyadari dirinya mengidap penyakit hingga tanda, gejala, dan komplikasi muncul. Penelitian ini bertujuan merancang sistem Pengukur Tekanan Darah untuk Deteksi Tingkat Risiko Cardiovascular disease dengan Metode Fuzzy logic Mamdani Berbasis IoT. Prinsip kerja dari prototipe ini adalah mengukur tekanan darah menggunakan sensor tekanan MPX5050GP kemudian dengan keypad 4x4 digunakan untuk menginputkan parameter-parameter yang turut menjadi sebab dalam meningkatkan risiko cardiovascular disease vaitu tingkat kolesterol dan indeks massa tubuh. Data yang diperoleh selanjutnya akan ditampung kemudian diolah dengan fuzzy logic menggunakan metode mamdani untuk mendapatkan nilai tingkat risiko cardiovascular disease kemudian hasilnya akan ditampilkan pada LCD 16x2 dan dikirim secara wireless serta ditampilkan pada Platform IoT ThingSpeak. Pengolah data menggunakan Mikrokontroler ATMega328 yang sudah tertanam pada Arduino Uno serta ESP32 sebagai internet of things. Berdasarkan analisa dan pengujian yang telah dilakukan didapatkan hasil akurasi pengukuran tekanan darah pada rancang bangun adalah sebesar 98,2% untuk pengukuran tekanan darah sistol dan 97,83% untuk pengukuran tekanan darah diastol. Waktu tunda rata-rata ketika ESP32 mengirim data dan IoT Platform ThingSpeak menampilkan data sebesar 15,6 detik. Hasil akurasi untuk memprediksi risiko cardiovascular disease pada rancang bangun yang dibandingkan dengan perhitungan fuzzy logic dengan metode Mamdani pada Matlab adalah sebesar 99,69%.

Kata Kunci—Cardiovascular disease, Fuzzy logic Mamdani, IoT, Sensor Tekanan MPX5050GP, Tekanan Darah.

DOI: 10.22441/jte.2025.v16i2.001

I. PENDAHULUAN

Hampir 3 dari 4 kematian yang terjadi di dunia disebabkan oleh penyakit tidak menular [1]. Sekitar 73% kematian di Indonesia disebabkan oleh penyakit tidak menular. Rincian penyakit tidak menular yang menyebabkan kematian meliputi penyakit kardiovaskular 35%, kanker 12%, penyakit pernafasan kronis 6%, diabetes melitus 6%, dan penyakit tidak menular lainnya 15% [2]. Penyakit kardiovaskular merupakan penyakit tidak menular yang paling banyak menimbulkan kematian. Bahkan, angka kematian karena penyakit kardiovaskular lebih banyak dari gabungan angka kematian karena kanker dan penyakit pernafasan [3]. Penyakit kardiovaskular

diantaranya termasuk penyakit jantung iskemik, stroke, penyakit jantung bawaan, penyakit jantung koroner, penyakit arteri perifer, dan penyakit jantung rematik. Selain itu, penyakit kardiovaskular juga mencakup hipertensi serta kelainan yang berkaitan dengan sirkulasi lainnya [4]. Upaya utama untuk mengatasi dan mencegah penyakit tidak menular adalah menghilangkan faktor risiko dan menyediakan pelayanan kesehatan yang memadai. Pemerintah dapat memainkan peran penting dalam membuat kebijakan dan menciptakan lingkungan yang meminimalkan keterpaparan terhadap faktor risiko dan PTM [1]. Paulus Januar menjelaskan penderita penyakit tidak menular seringkali tidak menyadari dirinya mengidap penyakit, hingga tanda, gejala, dan komplikasi muncul [5]. Sehubungan dengan kenyataan ini, sangat diperlukan skrining atau pemantauan secara periodik untuk individu yang berisiko tinggi, sehingga penyakit dapat didiagnosis dan dirawat secepatnya.

Berdasarkan permasalahan yang sudah diuraikan diatas maka pada penelitian ini berfokus pada "Rancang Bangun Alat Pengukur Tekanan Darah untuk Deteksi Tingkat Risiko Cardiovascular disease dengan Metode Fuzzy logic Mamdani Berbasis IoT" yang merupakan suatu alat untuk mendeteksi tingkat risiko penyakit kardiovaskuler. Alat ini berfungsi untuk mengukur tekanan darah dengan metode Oscillometric dan dilakukan penginputan tiga variabel melalui keypad berupa tingkat kolesterol, berat badan serta tinggi badan. Data-data tersebut selanjutnya akan diproses dengan metode fuzzy logic Mamdani yang inputnya ada tiga variabel berupa tekanan darah yang didapat dari hasil pengukuran, tingkat kolesterol, dan indeks massa tubuh (IMT).

II. PENELITIAN TERKAIT

Setelah penulis melakukan telaah, ada beberapa penelitian yang berkaitan dengan penelitian yang penulis lakukan.

Penelitian pertama dengan judul "Blood Pressure Monitoring System using Wireless technologies" Pengukuran tekanan menggunakan Sensor BPM180 dengan NodeMCU ESP8266. Hasil sistolik pada orang normal 110mmHg -135mmHg dan pada pasien hipertensi, bacaannya berkisar antara 150-160mmHg.

Penelitian kedua dengan judul "Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data" [7]. Penelitian ini membahas sistem pengukuran dan kalibrasi tekanan darah berdasarkan platform CrowdOS yang memungkinkan berbagi data yang berbasis sensor antar perangkat. Peneliti menggunakan sensor MKB0803 dengan hasil penelitian menunjukkan kesalahan kuadrat rata-rata akar tekanan sistolik adalah 9,76 mmHg, dan 5,56 mmHg untuk pengukuran diastolik.

Penelitian ketiga dengan judul "Cuff-Less Blood Pressure Monitoring System Using Smartphones" [8]. Penelitian menggunakan dua buah photoplethysmogram (PPG) yang dipasang terpisah pada tangan kanan dan kiri dengan memanfaatkan smartphone untuk menampilkan pembacaan hasil tekanan darah sistolik dan diastolik. Hasil eksperimen menunjukkan bahwa kesalahan rata-rata dari penelitian adalah 2,07 dan 2,06 mmHg untuk tekanan darah sistolik, dan 2,12 dan 1,85 mmHg untuk tekanan darah diastolik.

Penelitian keempat dengan judul "Blood Pressure Monitoring Using Arduino-Android Platform" [9]. Penelitian ini membahas tentang Pengukuran tekanan darah menggunakan sensor tekanan PSG010 dengan metode osilometri, dengan pengolah data mikrokontroler ATMega328. Hasil pembacaan tekanan darah ditampilkan pada smartphone via bluetooth. Hasil percobaan dilakukan dengan membandingkan nilai MAP alat dan referensi, hasilnya nilai error maksimal pada sistem adalah 6.17%.

Penelitian kelima dengan judul "Development of IoT Based Cuffless Blood Pressure Measurement System" [10]. Pada penelitian ini menggunakan 2 buah sensor photoplethysmograph untuk mengukur tekanan darah dan ditampilkan pada aplikasi ThingSpeak. Hasil yang didapatkan dari penelitian ini adalah berbandingan dengan alat ukur tekanan darah OMRON untuk estimasi pengukuran tekanan darah sistolik adalah 22,6 \pm 20,6 mmHg dan untuk tekanan darah diastolik adalah 1,6 \pm 1,2 mmHg.

III. METODOLOGI PENELITIAN

Metode yang digunakan dalam penelitian ini adalah metode rancang bangun. Adapun komponen-komponen yang digunakan terdiri dari sensor tekanan MPX5050GP, LCD 16x2 yang sudah terhubung dengan I2C, keypad 4x4, Arduino Uno, ESP32, Driver L298N, pompa dan solenoid valve.

Sistem dirancang untuk memprediksi tingkat risiko cardiovascular disease berdasarkan parameter-parameter input yang berupa tekanan darah, tingkat kolesterol dan indeks massa tubuh. Acuan dalam memprediksi tingkat risiko cardiovascular disease berdasarkan data dari European Society of Cardiology dan European Society of Hypertension pada tahun 2018 dengan judul Guidelines for The Management of Arterial Hypertension.

Penilaian risiko penyakit jantung sangat dipengaruhi oleh usia (yaitu orang yang lebih tua selalu berisiko mutlak lebih tinggi). Sebaliknya, risiko pada orang yang lebih muda, khususnya wanita yang lebih muda cenderung rendah [11]. Klasifikasi tahapan hipertensi menurut tingkat tekanan darah terhadap adanya faktor risiko kardiovaskular, kerusakan organ yang dimediasi hipertensi, atau komorbiditas dapat diketahui seperti ditunjukkan pada Tabel 1.

Tabel 1. Klasifikasi Tekanan Darah terhadap adanya Risiko Kardiovaskular

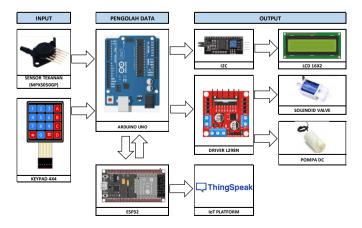
	Other risk	BP (mmHg) grading					
Hypertensio n disease staging	factors, HMOD, or disease	High normal SBP 130-139 DBP 85-89	Grade 1 SBP 140-159 DBP 90-99	Grade 2 SBP 160-179 DBP 100-109	Grade 3 SBP >180 or DBP >110		
Star 1	No other risk factors	Low risk	Low risk	Moderate risk	High risk		
Stage 1 (uncomplica	1 or 2 risk factors	Low risk	Moderate risk	Moderate to high risk	High risk		
ted)	>3 risk factors	Low to Moderate risk	Moderate to high risk	High Risk	High risk		
Stage 2 (asymptoma tic disease)	HMOD, CKD grade 3, or diabetes mellitus without organ damage	Moderate to high risk	High risk	High risk	High to very high risk		
Stage 3 (established disease)	Established CVD, CKD grade >4, or diabetes mellitus with organ damage	, 0	Very high risk	Very high risk	Very high risk		

Keterangan:

BP : blood pressure (tekanan darah)

SBP : sistolic blood pressure (tekanan darah sistolik)
DBP : diastolic blood pressure (tekanan darah diastolik)
CVD : cardiovascular diseases (penyakit

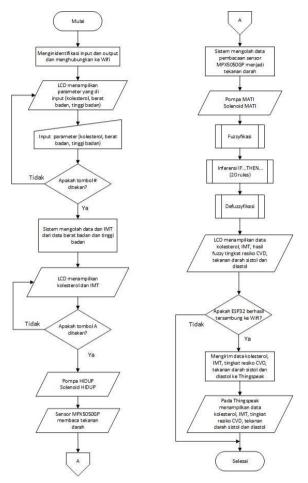
kardiovaskular)


CKD : *chronic kidney disease* (penyakit ginjal kronis) HMOD : *hypertension-mediated organ damage* (kerusakan

organ yang dimediasi hipertensi)

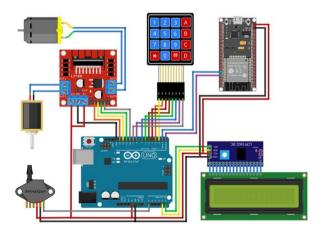
Tabel tampilkan merupakan data dari European Society of Cardiology and European Society of Hypertension pada tahun 2018 dengan judul *Guidelines for the management of arterial hypertension* menunjukkan klasifikasi tahapan hipertensi menurut tingkat tekanan darah terhadap adanya faktor risiko kardiovaskular, kerusakan organ yang dimediasi hipertensi, atau komorbiditas [11]. Risiko penyakit jantung yang diilustrasikan untuk pria paruh baya (41 tahun s.d. 65 tahun). Pada usia yang berbeda risiko penyakit jantung tidak selalu sesuai dengan tabel yang diilustrasikan.

A. Perancangan Blok Diagram


Pada perancangan blok diagram terdiri dari 3 bagian utama, yaitu bagian input, proses dan output.

Gambar 1. Diagram Blok Sistem

B. Diagram Alir Sistem

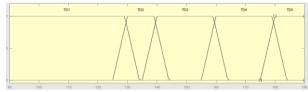

Alur kerja pada sistem rancang bangun alat pengukur tekanan darah untuk deteksi tingkat risiko *cardiovascular disease* dengan metode fuzzy logic mamdani berbasis IoT dapat dilihat pada Gambar 2.

Gambar 2. Diagram Alir Sistem

C. Perancangan Hardware

Pada perancangan hardware memiliki tujuan agar memperkecil kesalahan pada saat pembuatan alat.

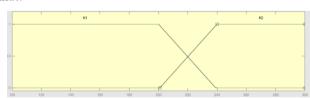
Gambar 3. Rancangan Perangkat Keras


D. Perancangan Logika Fuzzy Mamdani

Fuzzifikasi

Pada fuzzifikasi akan dilakukan tahapan penentuan derajat keanggotaan pada variabel Tekanan darah akan dibagi menjadi 5 (lima) himpunan fuzzy, pada variabel Kolesterol akan dibagi menjadi 2 (dua) himpunan fuzzi dan pada variabel indeks massa tubuh akan dibagi menjadi 2 (dua) himpunan fuzzi. Pada Output fuzzi akan dibagi menjadi 5 (lima) himpunan fuzzi.

a. Variabel Input Sensor Tekanan Darah


Penentuan fungsi keanggotaan dari variabel input tekanan darah mengacu dari Tabel 1 yang dibagi menjadi 5 ketegori yaitu TD1, TD2, TD3, TD4 dan TD5. Fungsi keanggotaan dari variabel input tekanan darah dapat disajikan sebagaimana data berikut:

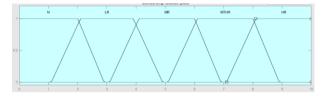
Gambar 4. Himpunan Fuzzy Tekanan Darah

b. Variabel Kolesterol Total

Variabel kolesterol total diinputkan secara manual tingkat kolesterol total dalam darah sebagai variable input 2 dibagi menjadi 2 kategori yaitu K1 dan K2. Fungsi keanggotaan dari variabel input kolesterol total dapat disajikan sebagaimana data berikut:

Gambar 5. Himpunan Fuzzy Kolesterol

c. Variabel Indeks Massa Tubuh (IMT)


Variabel Indeks Massa Tubuh (IMT) berasal dari data yang diinputkan manual yaitu dari berat badan dan tinggi badan selanjutnya diolah menjadi Indeks Massa Tubuh dengan satuan kg/m2. Selanjutnya Indeks Massa Tubuh dijadikan sebagai variable input 3 dibagi menjadi 2 kategori yaitu IMT1 dan IMT2. Fungsi keanggotaan dari variabel input indeks masa tubuh dapat disajikan sebagaimana data berikut:

Gambar 6. Himpunan Fuzzy Indeks Massa Tubuh

d. Output fuzzy logic

Berdasarkan Tabel 1, maka output fuzzy yang berupa prediksi tingkat risiko penyakit *cardiovascular disease* dapat dibagi menjadi 5 kategori yaitu Normal (N), *Low Risk* (LR), *Moderate Risk* (MR), *Moderate to High Risk* (MTHR) dan *High Risk* (HR). Untuk mempermudah dalam mempresentasikan tingkat risiko maka digunakan nilai 1 s.d. 10 sebagai rentang dari output logika fuzzi. Fungsi keanggotaan dari variabel output dapat disajikan sebagaimana data berikut:

Gambar 7. Himpunan Fuzzy Tingkat Risiko Penyakit Kardiovaskular

2. Aplikasi Fungsi Implikasi dan Komposisi Aturan

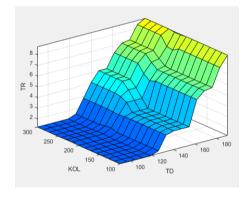
Setelah menentukan himpunan fuzzy input dan output, selanjutnya menentukan aturan fuzzy untuk menentukan tindakan atas perubahan yang terjadi pada inputnya. Berdasarkan European Heart Journal (2018) yang berjudul "2018 ESC/ESH Guidelines for the management of arterial hypertension" tentang tabel klasifikasi hipertensi yang terdapat pada tabel Tabel 1, dengan menjabarkan parameter input dan output dijadikan dasar untuk membuat aturan pada logika fuzzy sehingga diperoleh 20 aturan fuzzy dengan aturan AND sehingga mengambil nilai minimal yang dirincikan sebagai berikut:

Tabel 2. Aturan Fuzzy Logic

	Output		
Tekanan Darah	IMT	Kolesterol	Tingkat Risiko CVD
TD1	IMT1	K1	N
TD1	IMT1	K2	N
TD1	IMT2	K1	N
TD1	IMT2	K2	N
TD2	IMT1	K1	LR
TD2	IMT1	K2	LR
TD2	IMT2	K1	LR
TD2	IMT2	K2	LR
TD3	IMT1	K1	LR
TD3	IMT1	K2	MR
TD3	IMT2	K1	MR
TD3	IMT2	K2	MR
TD4	IMT1	K1	MR
TD4	IMT1	K2	MTHR
TD4	IMT2	K1	MTHR
TD4	IMT2	K2	MTHR
TD5	IMT1	K1	HR
TD5	IMT1	K2	HR
TD5	IMT2	K1	HR
TD5	IMT2	K2	HR

Keterangan:

TD1 Tekanan darah 1 90-134 mmHg) TD2 Tekanan darah 2 (125-144 mmHg) Tekanan darah 3 (135-164 mmHg) TD3 Tekanan darah 4 (155-184 mmHg) TD4 Tekanan darah 5 (175-190 mmHg) TD5 K1 Kolesterol 1 (100-240 mg/dL) Kolesterol 2 (240-300 mg/dL) K2 IMT 1 Indeks Massa Tubuh 1 (15-27 kg/m2) IMT 2 Indeks Massa Tubuh 2 (25-30 kg/m2)


N : Normal
LR : Low Risk
MR : Moderate Risk
MRTH : Moderate to High Risk

HR : High Risk

Komposisi aturan menggunakan fungsi MAX, sehingga solusi himpunan fuzzy diperoleh dengan mengambil nilai maksimum aturan, kemudian menggunakannya untuk memodifikasi komposisi pada daerah output fuzzy antar semua aturan. Komposisi aturan merupakan kesimpulan secara keseluruhan dengan mengambil tingkat keanggotaan maksimum dari tiap konsekuen aplikasi fungsi implikasi dengan menggabungkan dari semua kesimpulan masing-masing aturan.

3. Defuzzifikasi

Defuzzifikasi berfungsi untuk mengubah himpunan fuzzy menjadi bilangan bilangan tegas Penegasan yang digunakan pada penelitian ini menggunakan Metode Centroid. Metode centroid atau titik pusat memperhatikan kondisi setiap daerah fuzzy, sehingga menghasilkan hasil yang lebih akurat. Solusi crisp diperoleh dengan mengambil titik pusat (z^*) pada daerah fuzzy dari pembagian momen (integral dari masing-masing fungsi keanggotaan dari komposisi aturan) dan luas daerah. Secara umum dituliskan dengan $Z^* = \int (z) z \, dz / \int (z)$

Gambar 8. Defuzzifikasi Menggunakan *Fuzzy Logic Toolbox* pada Matlab

IV. HASIL DAN ANALISA

Pada bagian ini akan membahas langkah pengujian dan hasil yang didapatkan dari percobaan

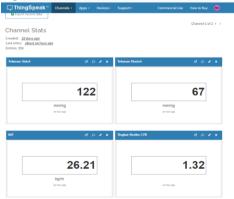
A. Pengujian Sensor Tekanan MPX5050GP

Pengujian sensor tekanan MPX5050GP dilaksanakan untuk memastikan bahwa sensor tekanan MPX5050GP dapat mengetahui tekanan darah dalam satuan mmHg. Berikut merupakan hasil pengujian pembacaan tekanan darah sensor MPX5050GP dengan objek percobaan yang berbeda-beda dengan mengambil nilai rata-rata dari 3 (tiga) kali pengambilan

data pada prototipe dan 3 (tiga) kali pengambilan data pada alat ukur secara bergantian:

Tabel 3. Hasil Pengujian Pembacaan Tekanan Darah Sistol

No	Objek Pengujian	Rata-rata Tekanan Prototipe (mmHg)	Rata-rata Tekanan Pada Alat Ukur (mmHg)	Selisih	Error (%)
1	Orang 1	110,67	111,00	0,33	0,30
2	Orang 2	102,33	104,00	1,67	1,60
3	Orang 3	123	126,33	3,33	2,64
4	Orang 4	99,33	99,67	0,33	0,33
5	Orang 5	131,33	137,00	5,67	4,14
	1,80				
	98,20				


Tabel 4. Hasil Pengujian Pembacaan Tekanan Darah Diastol

No	Objek Pengujian	Rata-rata Tekanan Pada Prototipe (mmHg)	Rata-rata Tekanan Pada Alat Ukur (mmHg)	Selisih	Error (%)
1	Orang 1	78,33	79,33	1,00	1,26
2	Orang 2	81,00	80,00	1,00	1,25
3	Orang 3	82,67	83,33	0,67	0,80
4	Orang 4	71,67	75,00	3,33	4,44
5	Orang 5	83,00	85,67	2,67	3,11
	2,17				
	97,83				

Berdasarkan hasil pengujian, dari 5 pengujian yang dilakukan dengan menggunakan tangan kiri, yang terdiri dari pembacaan sistol dan diastol diperoleh persentase rata-rata kesalahan sebesar 1,8%, untuk pembacaan sistol dan 2,17%, untuk pembacaan diastol, sehingga pembacaan tegangan pada prototipe memiliki keakuratan 98,2% untuk pembacaan sistol dan 97,83% untuk untuk pembacaan diastol. Perbedaan Pembacaan dapat terjadi karena tekanan darah pada manusia yang dapat berubah sewaktu-waktu.

B. Pengujian IoT ThingSpeak

Pengujian IoT menggunakan Platform ThingSpeak bertujuan untuk mengetahui lama waktu tunda saat ESP32 mengirim data dan IoT Platform ThingSpeak menampilkan data-data yang telah dikirimkan oleh ESP32.

Gambar 9. Tampilan IoT Platform ThingSpeak

Pada Pengujian Internet of Things memerlukan Wi-Fi yang sebelumya ssid dan password telah diinputkan pada saat pengkodean program ESP32. Data hasil Pengujian Internet of Things dapat dilihat pada Tabel 5.

Tabel 5. Hasil Pengujian Pengiriman Data

No	Pengujian	ESP32 mengirim kan Data	ThingSpeak Menampilka n Data	Wakt u Tunda
1	Pengiriman Data 1	09:26:43	09:27:00	17
2	Pengiriman Data 2	09:47:12	09:47:31	19
3	Pengiriman Data 3	10:04:02	10:04:14	12
4	Pengiriman Data 4	11:38:11	11:38:32	21
5	Pengiriman Data 5	11:45:42	11:45:51	9
	15,6			

Berdasarkan hasil pengujian IoT menggunakan Platform ThingSpeak, dari 5 (lima) kali pengiriman data diperoleh waktu tunda rata-rata ketika ESP32 mengirim data dan IoT Platform ThingSpeak menampilkan data adalah sebesar 15,6 detik.

C. Pengujian Algoritma Fuzzy Mamdani dengan Matlab

Pengujian ini dilakukan untuk mengetahui keakuratan perhitungan logika fuzzy logic pada prototipe dengan cara membandingkan dengan hasil perhitungan pada software Matlab. Pengujian algoritma fuzzy mamdani dilakukan pengujian dengan objek yang berbeda untuk mendapatkan variasi nilai input yang berbeda. Berikut ini merupakan tabel pengujian dari algoritma fuzzy mamdani.

Tabel 6. Hasil Pengujian Pengiriman Data

No	Objek Pengujian	Usia	Kolest erol	IMT	Sistol	Tingkat Risiko CVD (Prototipe)	Tingkat Risiko CVD (Matlab)	Selisih	Error (%)
1	Orang 1	48	216	21,3	119	1,33	1,33	0,00	0,00
2	Orang 2	55	170	26,22	115	1,32	1,33	0,01	0,75
3	Orang 3	42	165	28,76	125	1,24	1,24	0,00	0,00
4	Orang 4	43	202	27,06	121	1,24	1,25	0,01	0,80
5	Orang 5	53	180	29,71	128	2,03	2,03	0,00	0,00
Presentase rata-rata error							0,31		
Presentase akurasi						99,69			

Berdasarkan hasil pengujian, dari 5 pengujian yang dilakukan dengan diperoleh persentase rata-rata kesalahan sebesar 0,31%. Sehingga akurasi pada pengujian algoritma fuzzy prototipe dengan matlab adalah 99,69%.

D. Pengujian Keseluruhan Sistem

Tujuan dari pengujian ini untuk mengetahui bahwa sistem pengukur tekanan darah untuk deteksi tingkat risiko cardiovascular disease dengan metode fuzzy logic dapat berjalan dengan baik.

Gambar 10. Pengujian Prototipe

Setelah melaksanakan semua prosedur, realisasi perancangan harus sesuai dengan target perencanaan. Perencanaan awal dari penelitian ini adalah pengukur tekanan darah untuk deteksi tingkat risiko *cardiovascular disease* dengan metode fuzzy logic mamdani. Tabel 7 menunjukkan hasil pengujian dari prototipe yang telah dirancang.

Tabel 7. Capaian Realisasi Prototipe dengan Target Perencanaan

No	Target Perencanaan	Realisasi Prototipe		
1	Rangkaian prototipe	Rangkaian prototipe sudah		
	sesuai dengan rangkaian	sesuai dengan rancangan		
	skematik yang dirancang	rangkaian skematik		
2	Sensor Tekanan	Sensor Tekanan		
	MPX5050GP membaca	MPX5050GP dapat membaca		
	tekanan darah dalam	tekanan darah dalam satuan		
	satuan mmHg	mmHg		
3	Keypad menginputkan	Keypad dapat menginputkan		
	parameter yang	parameter yang dibutuhkan		
	dibutuhkan			
4	Prototipe terhubung	Prototipe dapat terhubung		
	dengan wifi dan IoT	dengan wifi dan IoT Platform		
	Platform Thingspeak	Thingspeak		
5	LCD menampilkan	LCD dapat menampilkan		
	karakter yang telah	karakter yang telah		
	ditentukan	ditentukan		
6	Prototipe mengirim dan	Prototipe dapat mengirim dan		
	menampilkan data pada	menampilkan data pada		
	Thingspeak	Thingspeak		
7	Prototipe menampilkan	Prototipe dapat menampilkan		
	prediksi risiko	prediksi risiko		
	cardiovascular disease	cardiovascular disease		

V. KESIMPULAN

Berdasarkan hasil perancangan sistem dan alat pengukur tekanan darah untuk deteksi tingkat risiko *cardiovascular disease* dengan metode *fuzzy logic* mamdani berbasis IoT terdiri dari beberapa komponen yaitu sensor tekanan MPX5050GP, keypad, Arduino Uno, ESP32, pompa, solenoid valve dan LCD yang ditampilkan pada *Platform IoT* Thingspeak dengan hasil akurasi prototipe untuk memprediksi risiko *cardiovascular disease* yang dibandingkan dengan perhitungan fuzzy logic pada Matlab adalah sebesar 99,69%. Penerapan metode *oscillometric* pada pengukuran tekanan darah bekerja saat arteri brakialis pada lengan diberikan tekanan udara melalui manset eksternal dan didapatkan hasil akurasi pengukuran tekanan darah pada

rancang bangun sebesar 98,2% pada pengukuran tekanan darah sistol dan 97,83% pada pengukuran tekanan darah diastol. Pengiriman data secara *wireless* menggunakan jaringan WiFi yang sudah terintegrasi pada modul ESP32 dan menampilkannya pada *Platform IoT* ThingSpeak. Waktu tunda rata-rata ketika ESP32 mengirim data dan *Platform IoT* ThingSpeak menampilkan data sebesar 15.6 detik.

DAFTAR PUSTAKA

- [1] World Health Organization, Invisible numbers: the true extent of noncommunicable diseases and what to do about them. Geneva: World Health Organization (WHO), 2022, ch. 1, pp.7.
- [2] World Health Organization, Noncommunicable diseases country profiles 2018, Geneva: World Health Organization (WHO), 2018, pp. 107.
- [3] Budreviciute A, Damiati S, et all, "Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors", Front. Public Health 8:574111, November 2020. DOI: 10.3389/fpubh.2020.57411
- [4] Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al, "Heart disease and stroke statistics-2018 update: a report from the american heart association Circulation", January 2018. DOI: 10.1161/CIR.0000000000000558
- [5] Januar, Paulus(2023, February 28). Upaya Menurunkan Kematian Akibat Penyakit Tidak Menular [Online]. Available: https://www.alomedika.com/upaya-menurunkan-kematian-akibatpenyakit-tidak-menular. [Diakses: 8 April 2023]
- [6] Singh, Bharat, Shabana Urooj dkk. "Blood Pressure Monitoring System using Wireless technologies", 2019, Procedia Computer Science 152 (2019) 267–273.
- [7] D. Zhong, Z. Yian, W. Lanqing, D. Junhua and H. Jiaxuan, "Continuous Blood Pressure Measurement Platform: A Wearable System Based on Multidimensional Perception Data," in IEEE Access, vol. 8, pp. 10147-10158, 2020, doi: 10.1109/ACCESS.2020.2965245.
- [8] F. Tabei, J. M. Gresham, B. Askarian, K. Jung and J. W. Chong, "Cuff-Less Blood Pressure Monitoring System Using Smartphones," in IEEE Access, vol. 8, pp. 11534-11545, 2020, doi: 10.1109/ACCESS.2020.2965082.
- [9] E. Edwan, M. Abu-Musameh and A. Alsabah, "Blood Pressure Monitoring Using Arduino-Android Platform," 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), Gaza, Palestine, 2020, pp. 87-91, DOI: 10.1109/iCareTech49914.2020.00024.
- [10] Norsuriati, M S, M S Norehan Mohd Sobri, "Development of IoT Based Cuffless Blood Pressure Measurement System",2021 Journal of Physics: Conference Series 2071 (2021) 012030. DOI:10.1088/1742-6596/2071/1/012030
- [11] Williams, Bryan, Mancia G, Spiering W et al, 2018 ESC/ESH Guidelines for the management of arterial hypertension, February 2019, European Heart Journal 39, 3021–3104. DOI: 10.1093/eurheartj/ehy339