Perancangan *Driver Wireless Power Transfer* Menggunakan Topologi Kompensasi LCC Dalam Peningkatan Efisiensi *Transfer* Daya Listrik

Iqbal Nurrozan^{1*}, Galang Persada Nurani Hakim¹, Eko Ramadhan²

¹Teknik Elektro, Universitas Mercu Buana, Jakarta ²Dinas Penanaman Modal dan Pelayanan Terpadu Satu Pintu DKI Jakarta *iqbal.nr95@gmail.com

Abstrak- Mode kompensasi yang berbeda memiliki sensitivitas berbeda terhadap perubahan koefisien kopling sistem wirelss power transfer (WPT). Nilai puncak arus kumparan transmisi berdasarkan mode kompensasi double LCC berubah relatif sedikit ketika beban berubah. Rangkaian double LCC memiliki efek penyaringan dan kehilangan siaga yang rendah saat dinamis sehingga mampu memberikan toleransi misalignment dan meningkatkan efisiensi transfer daya. Perancangan driver wirelss power transfer menggunakan topologi kompensasi induktorkapasitor-kapasitor (LCC) yang diterapkan pada sisi transmitter dan receiver. Nilai induktor dan kapasitor dianalisa untuk mendapatkan komponen yang sesuai. Kumparan pemancar dan penerima dengan nilai induktansi dan resistansi yang beragam diuji dan dianalisa untuk mendapatkan output daya serta efisiensi yang optimal. Frekuensi 20 kHz digunakan membangkitkan arus bolak balik pada rangkaian inverter. Pada jarak kumparan terdekat 0 cm dengan suplai tegangan 12 V DC mampu mentransmisikan tegangan sebesar 7,55 V DC dan arus sebesar 0,67 mA. Daya yang dihasilkan sebesar 5,06 watt. Efisiensi daya yang dihasilkan dengan menggunakan kompensasi LCC sebesar 44,15 %. Kumparan Tx dan Rx memiliki jumlah lilitan yang sama yaitu 100 dengan bentuk spiral persegi.

Kata kunci—Driver, Kumparan, LCC, Receiver, Transmitter, WPT

DOI: 10.22441/jte.2025.v16i2.004

I. PENDAHULUAN

WPT pada kendaraan listrik telah dilakukan ketika kendaraan posisi diam, sehingga *misalignment* tidak dianggap masalah dan rangkaian SS, di mana kapasitor resonansi dihubungkan secara seri dengan kumparan yang digunakan untuk mengirim dan menerima daya telah banyak digunakan. Dalam bentuk umum kompensasi SS, ini menunjukkan kopling independen beban dan kontrol tegangan konstan untuk frekuensi resonansi tinggi, namun masalah utama terjadi selama pengoperasian sistem tanpa beban. Dalam sistem pengisian nirkabel dinamis pada kendaraan listrik, koefisien kopling antara mekanisme kopling daya berubah seiring dengan pergerakan kendaraan listrik. Mode kompensasi yang berbeda memiliki sensitivitas berbeda terhadap perubahan koefisien kopling sistem pengisian nirkabel dinamis [5]. Oleh karena itu, perlu dilakukanya analisa penerapan struktur *double* LCC dan

struktur tradisional dalam sistem pengisian nirkabel dinamis. Untuk mencapai arus konstan dan tegangan konstan, diperlukan satu tahap daya dc-dc lagi untuk pengisian *onboard* yang meningkatkan kerugian serta tekanan termal pada perangkat semikonduktor [1]. Untuk selanjutnya, rangkaian kompensasi untuk sistem *Dynamic Wireless Power Transfer* (DWPT) merupakan pilihan yang baik untuk menangani efisiensi dan toleransi *misalignment*.

Rangkaian SS menghasilkan arus berlebih selama *misalignment* [2]. Tentu ini menjadi masalah ketika akan digunakan dalam perancangan WPT dinamis. Nilai puncak arus kumparan transmisi berdasarkan mode kompensasi SS sangat berubah seiring dengan perubahan beban [5]. Namun, nilai puncak arus kumparan transmisi berdasarkan mode kompensasi *double* LCC berubah relatif sedikit ketika beban berubah. Pada suatu beban resistansi lebih tinggi dari nilai kritis, topologi LCC memiliki toleransi *misalignment* yang lebih tinggi. Sedangkan pada resistansi beban yang lebih rendah dari nilai kritis, topologi SS mempunyai toleransi *misalignment* yang lebih tinggi [4].

Rangkaian *Double*-LCC semakin banyak digunakan dan dikembangkan. Sistem DWPT LCC-S memiliki fleksibilitas yang lebih besar dalam mencapai peralihan tegangan nol dan peralihan arus nol, yang secara inheren menghasilkan operasi sudut fase nol yang lebih baik dari sistem DWPT [1]. Rangkaian *double* LCC telah menarik perhatian karena efek penyaringannya dan kehilangan siaga yang rendah saat dinamis sehingga mampu memberikan toleransi *misalignment*. Dibandingkan dengan rangkaian SS, rangkaian *double* LCC memiliki jumlah elemen yang lebih banyak, dan optimalisasi elemen resonansi serta optimalisasi kumparan sangat mempengaruhi efisiensi dan daya rangkaian, kapasitor disusun secara paralel pada sisi pengirim dan penerima daya, namun belum digeneralisasikan.

Mendapatkan nilai pengiriman dan efisiensi yang baik perlu adanya optimalisasi dalam sistem WPT. Simulasi rangkaian sistem pemrograman dilakukan dengan menggunakan simulink guna memperoleh nilai pengiriman daya. Menentukan komponen pada rangkaian LCC serta nilai dan jenis kumparan yang sesuai supaya sistem dapat mentransmisikan daya

optimal. Dari berbagai penelitian yang dilakukan serta hasil yang telah diuji bahwa rangakaian SS yang saat ini banyak diterapkan pada wireless power transfer memiliki tingkat toleransi misalignment dan efisiensi yang rendah. Dalam penelitian ini disajikan perancangan driver WPT menggunakan topologi kompensasi double LCC yang mampu mengirim daya yang stabil dan tingkat efisiensi yang baik.

II. PENELITIAN TERKAIT

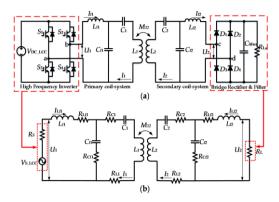
Analisis komparatif antara kompensasi tingkat tinggi dan Kompensasi Seri-Seri (SS) untuk sistem DWPT disajikan. Membandingkan tegangan keluaran antara rangkaian SS dan LCC-S dengan variasi induktansi timbal balik dan R_{ac}. Kompensasi SS terbukti efektif ditinjau dari karakteristik independen beban dan sudut fasa nol operasi. Kompensasi tingkat tinggi dari sistem DWPT memberikan fleksibilitas yang lebih besar dalam kontrol dan mengurangi tahapan daya pada penerima onboard EV. Diketahui bahwa kompensasi tingkat tinggi lebih baik dalam hal karakteristik peralihan arus nol dan tegangan nol yang membuatnya lebih cocok untuk sistem DWPT [1].

Rangkaian SS, di mana kumparan dan kapasitor yang diperlukan untuk transfer daya dihubungkan secara seri dan beresonansi, rangkaian *Double*-LCC, di mana kapasitor dimasukkan secara paralel pada sisi pengirim dan penerima daya, lebih tahan terhadap *misalignment*, dan memiliki lebih sedikit kehilangan siaga. Hasilnya, transmisi daya AC sebesar 31,2 kW dan efisiensi 98,0 % dicapai dalam simulasi ketika L_0 =14.9 μ H dan L'_0 =35,5 μ H. Di sisi lain, kekuatan terukur dan efisiensi masing-masing sebesar 28 kW dan 96,4% [2].

Berdasarkan parameter koil aktual, sistem WPT dengan daya keluaran terukur 3,3kW dirancang untuk memvalidasi metode yang diusulkan. Frekuensi operasi sistem adalah 85kHz, dan tegangan DC adalah 395V. Ukuran kumparan pemancar 58 cm x 42 cm, dan ukuran kumparan penerima 32 cm x 32 cm. Jarak vertikal antara kumparan pemancar dan kumparan penerima adalah 20 cm. Nilai induktansi dari kumparan pemancar dan kumparan penerima masing-masing sebesar 232,9 μ H dan 219,7 μ H. Induktansi timbal balik adalah 25,1 μ H tanpa perpindahan horizontal antar kumparan. Nilai bebannya adalah 42,2 Ω , yang dipilih berdasarkan baterai daya EV dengan tegangan sirkuit terbuka sekitar 325–340 V dan arus pengisian 8A. Hasil simulasi menunjukkan bahwa daya keluaran sistem dengan mempertimbangkan induktansi setara penyearah lebih dekat dengan daya pengenal [3].

Prinsip topologi kompensasi LCC dianalisis dan dibandingkan dengan topologi SS dalam hal efisiensi transfer daya dan kapasitas transfer daya. Hasil perhitungan, hasil simulasi dan hasil eksperimen saling bersesuaian. Pada suatu beban resistensi lebih tinggi dari nilai kritis, topologi LCC memiliki toleransi *misalignment* yang lebih tinggi. Sedangkan pada resistansi beban yang lebih rendah dari nilai kritis, topologi SS mempunyai toleransi *misalignment* yang lebih tinggi. Dengan topologi kompensasi LCC yang diusulkan dan ketahanan beban pada 60Ω , efisiensi 92.8% dari sumber daya

dc ke beban telah tercapai, dan area efisiensi tinggi horizontal (>90%) telah diperluas hingga 40% dari ukuran kumparan, mencapai peningkatan 30,4% dibandingkan dengan topologi kompensasi SS [4].


Sistem pengisian nirkabel dari perspektif mode kompensasi. Melalui pemodelan matematis dan analisis simulasi, keluaran arus konstan dan karakteristik stabilitas yang kuat dari mode kompensasi LCC ganda dieksplorasi ketika diterapkan pada sistem pengisian nirkabel dinamis kendaraan listrik. Dan dibandingkan dengan mode kompensasi tradisional, mode kompensasi LCC ganda tidak hanya memiliki karakteristik arus konstan, tetapi juga memiliki stabilitas yang lebih kuat pada daya penerima ketika kendaraan listrik diisi secara dinamis dan nirkabel [5].

III. METODOLOGI PENELITIAN

Sistem pengiriman energi tanpa kabel menggunakan prinsip induksi resonansi elektromagnetik, terdiri dari suatu rangkaian pemancar dan rangkaian penerima dari sistem tersebut. Pada rangkaian pemancar, sumber listrik arus bolak balik disearahkan terlebih dahulu dengan suatu modul DC, lalu masuk ke dalam rangkaian LC, dalam hal ini Induktor (L) dan kapasitor (C), untuk membuat suatu pembangkit sinyal medan magnet bolak balik yang non-radiatif. Pada sisi rangkaian penerima, juga terdapat rangkaian LC, dimana L dan C berfungsi untuk menghasilkan resonansi dari medan magnetik yang dihasilkan oleh rangkaian pemancar untuk menerima daya listrik.

A. Metode Topologi Kompensasi LCC

Rangkaian kompensasi LCC sisi primer dan koil transmisi merupakan sistem koil primer dan digerakkan oleh inverter H-Bridge. Daya ditransmisikan ke sistem kumparan sekunder, yang terdiri dari kumparan penerima dan rangkaian kompensasi LCC sisi sekunder tambahan, dan menyuplai beban melalui penyearah jembatan dan kapasitor filter. Seperti yang ditunjukkan pada gambar 1, induktor seri tambahan Lf1 & Lf2 dan kapasitor paralel tambahan C_{f1} & C_{f2} ditambahkan ke sisi primer dan sekunder. Untuk sisi primer, L_{f1} dihubungkan seri setelah inverter, dan C_{f1} dihubungkan secara paralel sebelum kapasitor kompensasi asli C1. Di sisi sekunder, induktor kompensasi tambahan L_{f2} dan kapasitor C_{f2} dihubungkan antara kapasitor kompensasi asli C2 dan inverter H-Bridge. Rangkaian yang disederhanakan hanya berisi topologi kompensasi LCC dan sistem koil dapat diturunkan dengan resistansi yang berasal dari semua komponen digabungkan bersama seperti yang ditunjukkan pada gambar 1b, untuk menyederhanakan perhitungan karakteristik transfer daya nirkabel.

Gambar 1. Sistem LCC-WPT (a) Sistem Keseluruhan; (b) Disederhanakan

Untuk beban resistansi tinggi, sistem LCC-WPT dapat secara efektif meningkatkan efisiensi sistem dibandingkan dengan sistem SS-WPT. Sistem LCC telah terbukti lebih toleran pada nilai ketahanan beban *misalignment* yang lebih tinggi dan tidak menunjukkan kenaikan tajam daya beban seperti pada sistem SS-WPT ketika *misalignment* mengatur faktor kopling pada titik kopling kritis [6].

Penerapan rangkaian kompensasi LCC pada driver transmitter dan receiver untuk mendapatkan nilai efisiensi transfer daya listrik yang tinggi. Pada penerapan rangkaian topologi kompensasi LCC, nilai masing-masing rangkaian dapat dirumuskan sebagai berikut:

$$X_{L2} = X_{C2}$$

$$\omega L = \frac{1}{\omega C}$$

$$\omega = \frac{1}{\sqrt{LC}}$$

Dimana nilai $\omega = 2\pi f$, sehingga:

$$f_r = \frac{\omega}{2\pi}$$

$$f_r = \frac{1}{2\pi\sqrt{L_2 C_2}} \tag{1}$$

Sedangkan untuk nilai kapasitansi C1 pada driver transmitter dan receiver dapat dihitung sebagai berikut:

$$C_1 = \frac{1}{4\pi^2 (L_{kumparan} - L_2)}$$
 (2)

Untuk mendapatkan nilai induktansi pada kumparan *flat spiral* dapat menggunakan persamaan berikut ini:

$$L = \frac{r^2 x N^2}{8r + 11w} \tag{3}$$

B. Metode Kuantitatif

Metode kuantitatif digunakan sebagai pendekatan mendapatkan hasil berupa angka, output dari *driver* yang akan menggambarkan tingkat keoptimalan rangkaian *driver* sistem wireless power transfer dan kumparan pemancar dan penerima yang di teliti. Dari pengamatan akan diperoleh data tegangan dan arus. Sehingga perhitungan daya pada driver dapat dihitung dengan persamaan berikut.

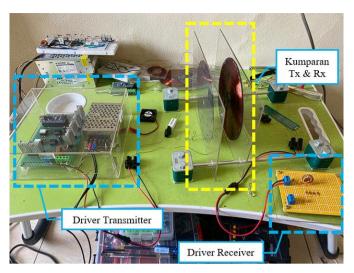
$$P = V \times I \tag{4}$$

Setelah diketahui besar daya yang ditransmisikan oleh *transmitter* dan *receiver*, maka dapat dihitung efisiensi transfer daya menggunakan persamaan berikut:

$$\eta = \frac{P_{Rx}}{P_{Tx}} \ x \ 100\% \tag{5}$$

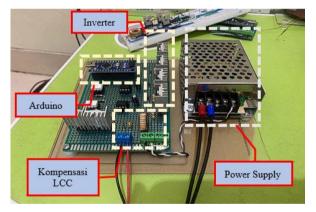
C. Metode Resonansi Induksi Elektromagnetik

Prinsip dasar induksi elektromagnetik adalah pada saat arus bolak balik melewati suatu kumparan, di sekitar kumparan tersebut akan menghasilkan suatu medan magnet. Jika pada kondisi ini diletakkan suatu kumparan lain di dekat kumparan tersebut, maka medan magnet dari kumparan yang pertama akan timbul juga di sekitar kumparan yang kedua.

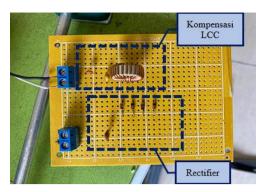

Kumparan *transmitter* adalah rangakaian gulungan kawat tembaga dengan jumlah gulungan tertentu sehingga menghasilkan kerapatan fluks magnetik. Dengan arus pemancar yang bervariasi, kerapatan fluks magnetik akan berubah seiring berjalanya waktu [13]. Bentuk kumparan *transmitter* dan *receiver* yang digunakan adalah bentuk *flat spiral*.

Untuk mendapatkan nilai induktansi pada kumparan *flat spiral* dapat menggunakan persamaan berikut ini:

$$L = \frac{r^2 x N^2}{8r + 11w} \tag{6}$$


IV. HASIL DAN ANALISA

Pada bab ini sistem *driver wireless power transfer* yang telah dirancang dilakukan pengujian dan dilakukan analisis data dari hasil yang diperoleh saat pengujian. Sistem wireless power transfer dengan kompensasi LCC direalisasikan dengan berdasar pada teori dan hitungan yang sudah dilakukan.


Gambar 2. Realisasi Wireless Power Transfer

Pada gambar 2 dapat ditinjau hasil sistem WPT secara keseluruhan yang terdiri dari driver transmitter, driver receiver, dan kumparan TX & Rx. Sistem WPT dirancang menggunakan rangkaian kompensasi LCC untuk meningkatkan efisiensi transfer daya. Cara kerja dari masing-masing bagian seperti yang terlihat pada gambar 2 adalah power suplai akan memberikan tegangan DC pada rangkaian driver transmitter yang kemudian driver transmitter membangkitkan tegangan AC dan dipancarkan oleh coil Tx dengan mengirim fluks magnetik yang kemudian ditangkap oleh coil Rx dengan adanya jarak antar coil. Daya yang diterima kemudian diteruskan oleh driver receiver dan disearahkan untuk ditrasmisikan ke beban.

Gambar 3. Realisasi Rangkaian Driver Transmitter

Pada *driver transmitter* terdapat rangkaian *H-bridge inverter*, rangkaian kompensasi LCC, arduino sebagai kontrol *switching* dan frekuensi masukan. Power supply digunakan sebagai penurun sumber tegangan. Pada rangkaian *driver receiver* terdapat *rectifier* dan rangkaian kompensasi LCC seperti terlihat pada gambar 4 dibawah ini.

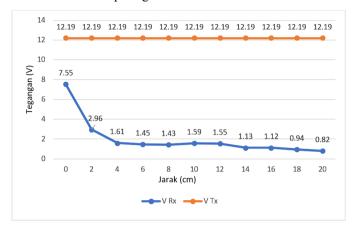
Gambar 4. Realisasi Rangkaian Driver Receiver

Kumparan *transmitter* dan *receive*r dibuat dalam bentuk *flat spiral* dengan berbagai ukuran diameter kawat email dan jumlah lilitan.

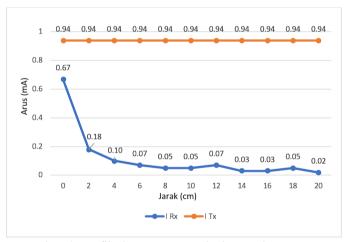
Lilitan kawat email direkatkan dengan akrilik sebagai tempat berdirinya kumparan secara vertikal yang akan saling berhadapan antara kumparan *transmitter* dan *receiver*. Dengan menggunakan rumus induktansi, maka dapat dihitung nilai induktansi pada masing masing kumparan dan didapat sebagai berikut.

Tabel 1. Nilai Induktansi Diri Dan Resistansi Koil Yang Digunakan

Lilitan Coil	Induktasni diri (μΗ)	Resistansi (Ohm)
150	25.202,78	8.8
100	17.355,47	13
80	7.980,502	10
60	3.632,24	8

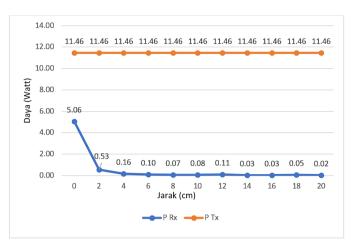

Pengujian dilakukan menggunakan berbagai variabel dan terdapat beberapa jenis kumparan. Pengujian-pengujian yang dilakukan meliputi:

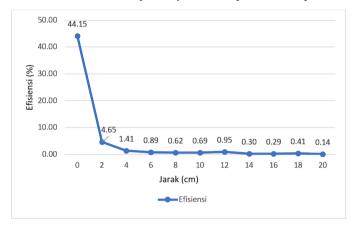
- Pengujian pengaruh jarak antara kumparan transmitter dan receiver
- 2. Pengujian pengaruh perbedaan bentuk kumparan *transmitter* dan *receiver*
- 3. Pengujian pengaruh silang jumlah lilitan kumparan *transmitter* dan *receiver*


A. Pengaruh Jarak Antar Kumparan

Pada pengujian pertama bertujuan untuk mengetahui nilai daya yang ditransmisikan oleh sistem wireless power transfer dengan menggunakan jarak yang berbeda beda antara kumparan transmitter dan receiver. Alat yang digunakan adalah multimeter digital sebagai pengukur tegangan dan arus. Pada pengujian ini telah ditentukan variabel tetap antara lain:

- 1. Tegangan input 12V DC.
- 2. Kumparan *transmitter* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 100, R = 13,8 ohm dan berbentuk persegi.
- 3. Kumparan *receiver* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 100, R = 13,8 ohm dan berbentuk persegi.

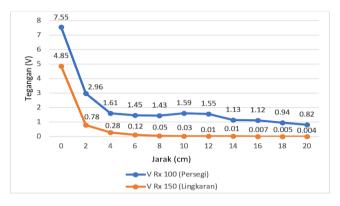

Gambar 5. Grafik Output Tegangan Terhadap Jarak Kumparan


Gambar 6. Grafik Output Arus Terhadap Jarak Kumparan

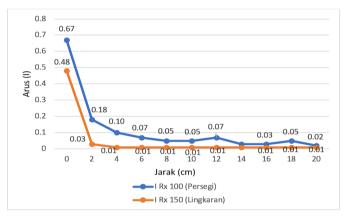
Berdasarkan garfik pada gambar 5 diketahui bahwa besar tegangan sangat dipengaruhi oleh jarak antar kumparan Tx dan Rx. Ketika kumparan berada pada jarak 0 cm, besar tegangan yang dihasilkan 7,55 V dan terjadi penurunan yang signifikan ketika kumparan diberi jarak 2 cm dengan besar tegangan yang dihasilkan 2,96 V. Besar arus dapat dilihat pada grafik gambar 6 diketahui ketika jarak kumparan Tx dan Rx 0 cm, arus yang dihasilkan 0,67 mA dan pada jarak terjauh 20 cm, besar arus 0,02 mA.

Berdasarkan nilai tegangan dan arus pada pengujian yang sudah dilakukan, maka dapat diketahui nilai daya dan efisiensi sebagai berikut.

Gambar 7. Grafik Output Daya Terhadap Jarak Kumparan

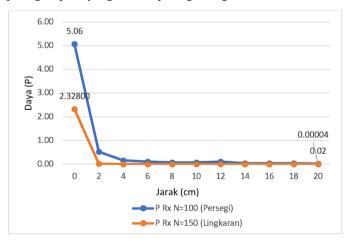

Gambar 8. Grafik Efisiensi Transfer Daya Terhadap Jarak Kumparan

Grafik pada gambar 7 dan 8 menunjukan bahwa jarak kumparan sangat mempengaruhi besar daya dan efisiensi yang dihasilkan. Semakin jauh jarak antara kumparan Tx dan Rx, besar daya dan efisiensi semakin kecil. Jarak paling optimal untuk teransfer daya pada jarak 0 cm dengan besar daya yang dihasilkan 5,06 W dan efisensi 44,15%.

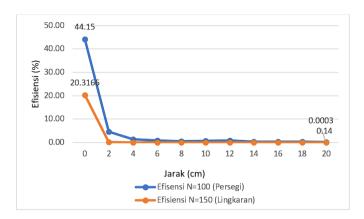

B. Pengaruh Perbedaan Bentuk Kumparan

Pada pengujian ini bertujuan untuk mengetahui pengaruh perbedaan bentuk kumparan. Kumparan dibuat dengan dua bentuk berdeda yaitu lingkaran dan persegi serta jumlah lilitan yang berbeda. Pengujian dilakukan dengan variabel sebagai berikut:

- 1. Tegangan *input* 12V DC.
- 2. Kumparan *transmitter* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 100, R = 13,8 ohm berbentuk persegi dan kumparan jumlah lilitan 150, R = 8,8 ohm berbentuk lingkaran.
- 3. Kumparan *receiver* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 100, R = 13,8 ohm berbentuk persegi dan kumparan jumlah lilitan 150, R = 8,8 ohm berbentuk lingkaran.



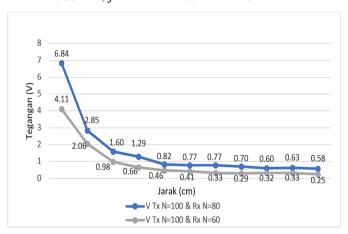
Gambar 9. Grafik *Output* Tegangan Terhadap Bentuk Kumparan



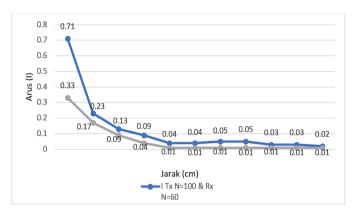
Gambar 10. Grafik Output Arus Terhadap Bentuk Kumparan

Berdasarkan garfik pada gambar 9 diketahui bahwa besar tegangan kumparan bentuk persegi lebih tinggi yaitu 7,55 V dibandingkan dengan kumparan bentuk lingkaran besar tegangan 4,85 V. Jumlah lilitan kumparan bentuk lingkaran 150 dan lilitan kumparan bentuk persegi lebih sedikit yaitu 100. Besar arus yang dihasilkan juga lebih tinggi kumparan bentuk persegi seperti yang terlihat pada grafik gambar 10.

Gambar 11. Grafik Output Daya Terhadap Bentuk Kumparan

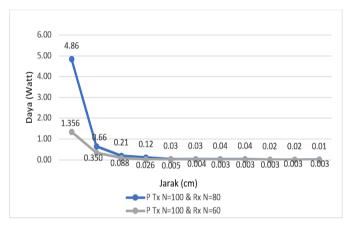

Gambar 12. Grafik Efisiensi Transfer Daya Terhadap Bentuk Kumparan

Dari grafik pada gambar 11 dan 12 terlihat bahwa bentuk kumparan persegi dengan jumlah lilitan lebih sedikit dapat mentransmisikan daya lebih besar dan efisiensi transfer daya yang dihasilkan juga lebih besar.

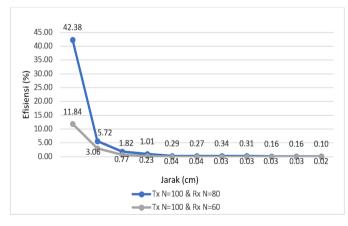

C. Pengaruh Silang Jumlah Lilitan Kumparan

Pengujian ini bertujuan untuk mengetahui pengaruh silang jumlah lilitan antara kumparan *transmitter* dan *receiver*. Jumlah lilitan kumparan *trasnmitter* berbeda dengan jumlah kumparan *receiver*. Alat pengujian menggunakan multimeter digital untuk mengukur tegangan dan arus. Pengujian dilakukan dengan variabel sebagai berikut:

- 1. Tegangan *input* 12V DC
- 2. Kumparan *transmitter* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 100 dan R = 13,8 ohm.
- 3. Kumparan *receiver* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 80 dan R = 10 ohm.
- 4. Kumparan *receiver* dengan spesifikasi diameter kawat 0.35 mm, jumlah lilitan 60 dan R = 8 ohm.



Gambar 13. Grafik *Output* Tegangan Terhadap Silang Jumlah Lilitan Kumparan



Gambar 14. Grafik *Output* Arus Terhadap Silang Jumlah Lilitan Kumparan

Berdasarkan garfik pada gambar 13 dan 14 diketahui nilai tegangan silang kumparan Tx N=100 & Rx N=80 lebih besar dibandingkan dengan Tx N=100 & Rx N=60, begitu pula pada besar arusnya. Dalam hal ini, jumlah lilitan lebih banyak akan menghasilkan tegangan dan arus lebih besar

Gambar 15. Grafik *Output* Daya Terhadap Silang Jumlah Lilitan Kumparan

Gambar 16. Grafik Efisiensi Transfer Daya Terhadap Silang Jumlah Lilitan Kumparan

Berdasarkan garfik pada gambar 15 dan 16 diketahui nilai daya dan efisiensi silang kumparan Tx N=100 & Rx N=80 lebih

besar dibandingkan dengan Tx N=100 & Rx N=60. Transfer daya paling tinggi pada Rx N=80 dengan besar daya 4,86 W. Efisensi paling tinggi pada Rx N=80 dengan efisiensi daya sebesar 42,38%. Pengujian dilakukan dengan jarak kumparan yang bervariasi. Semakin jauh jarak kumparan, daya dan efisiensi cenderung semakin turun.

V. KESIMPULAN

Secara keseluruahan rancangan *driver* menggunakan rangkaian kompensasi LCC dapat bekerja dengan baik. Sistem dapat mentransmisikan daya dengan jarak kumparan yang bervariasi. Berdasarkan percobaan yang sudah dilakukan pada penelitian ini telah memberikan beberapa hasil diantaranya penggunaan catu daya 12 V sebagai sumber tegangan menyebabkan regulator dengan input minimal 7 V dan MOSFET menjadi cepat panas sehingga diperlukan peralatan seperti *heatsink* untuk mengurangi panas pada komponen *driver*. Rangkaian kompensasi LCC yang digunakan pada *driver transmitter* dan *receiver* mampu mentransmisikan daya dengan frekuensi 20 kHz dan menghasilkan efisiensi tertinggi sebesar 44,15 % yang dihasilkan oleh kumparan diameter kawat 0,35 mm dan jumlah lilitan 100 dengan jarak antar kumparan 0 cm.

DAFTAR PUSTAKA

- [1]. Chowdary, K. V., Kumar, K., Banerjee, S., & Kumar, R. R. (2020, December). Comparative Analysis between High-order Compensation and SS-compensation for Dynamic Wireless Power Transfer System. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-6). IEEE.
- [2]. Yamada, Y., Imura, T., & Hori, Y. (2022, July). A Method for Determining Resonant Elements Considering the Requirements of Double-LCC Circuits in Dynamic Wireless Power Transfer. In 2022 Wireless Power Week (WPW) (pp. 766-771). IEEE.
- [3]. Zhang, Y., Guo, Y., Wang, L., & Bo, Q. (2020, November). Design of dual-side LCC compensation networks considering rectifier equivalent inductance for wireless power transfer system. In 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (pp. 210-213). IEEE.
- [4]. Zhu, G., Gao, D., Wang, S., & Chen, S. (2017, May). Misalignment tolerance improvement in wireless power transfer using LCC compensation topology. In 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) (pp. 1-7). IEEE.
- [5]. Zhang, X., Wang, J., Xue, M., Li, Y., & Yang, Q. (2019, June). Reserch on Dynamic Wireless Charging of Electric Vehicle Based on Double LCC Compensation Mode. In 2019 IEEE Wireless Power Transfer Conference (WPTC) (pp. 141-145). IEEE.
- [6]. Liu, X., Clare, L., Yuan, X., Wang, C., & Liu, J. (2017). A design method for making an LCC compensation two-coil wireless power transfer system more energy efficient than an SS counterpart. *Energies*, 10(9), 1346.
- [7]. Li, Y., Dong, W., Yang, Q., Jiang, S., Ni, X., & Liu, J. (2019). Automatic impedance matching method with adaptive network based fuzzy inference system for WPT. *IEEE Transactions on Industrial Informatics*, 16(2), 1076-1085.
- [8]. Rahayu, S., & Kustija, J. (2018). Aplikasi Transistor Darlington Pada Rangkaian Inverter Portable. ENERGI & KELISTRIKAN, 10(2), 119-128.
- [9]. Nur, K. M. (2020). Rancang Bangun Buck Konverter dengan Antarmuka Visual Studio. MSI Transaction on Education, 1(2), 41-50.
- [10]. Prasetyo, Y. (2021). Otomatisasi Sistem Pengisian Baterai Pada Sistem Tenaga Surya. Jurnal Geuthèë: Penelitian Multidisiplin, 4(3), 153-159.
- [11] Murtianta, B. (2018). Pengaruh Duty Cycle dan Frekuensi Terhadap Kecepatan Putar Motor DC. Techné: Jurnal Ilmiah Elektroteknika, 17(01), 13-26.

- [12]. Santosa, E. S. B., & Waluyanti, S. (2019, November). Teaching microcontrollers using Arduino nano based quadcopter. In *Journal of Physics: Conference Series* (Vol. 1413, No. 1, p. 012003). IOP Publishing.
- [13]. Isyanto, H., & Birawan, H. (2018). Rancang Bangun Pengisi Daya Tanpa Kabel Untuk Semua Jenis Alat Portable. Elektum, 15(2).
- [14]. Rifqiana, A. (2019). Variasi Frekuensi Dan Jarak Antar Kumparan Pada Sistem Wireless Power Transfer. SinarFe7, 2(1), 28-32.