ANALISIS KINERJA HEAT EXCHANGER SHELL & TUBE PADA SISTEM COG BOOSTER DI INTEGRATED STEEL MILL KRAKATAU

Jajat Sudrajat

Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana E-mail: jjt.sudrajat22@gmail.com

Abstrak -- Penggunaan heat exchanger pada sistem COG booster bertujuan untuk mendinginkan temperatur oli yang akan digunakan sebagai pelumasan dan pendinginan bearing. Semakin lama heat exchanger digunakan akan menyebabkan terjadinya fouling (pengotoran) di bagian dalam heat exchanger. Semakin besar fouling yang terjadi akan menyebabkan terjadi penurunan kinerja heat exchanger seperti besarnya laju perpindahan panas aktual dan efektivitas. Oleh karena itu dilakukan analisis heat exchanger untuk mengetahui pengaruh fouling terhadap laju perpindahan panas aktual dan efektivitas heat exchanger dengan rentang waktu 1 tahun setelah booster beroperasi yang dibagi menjadi 2 periode. Analisis dilakukan dengan membuat perhitungan parameter-parameter yang dibutuhkan. Dari hasil perhitungan dan analisis, ditunjukan bahwa terjadi penurunan pada laju perpindahan panasnya hingga sebesar 0,411 kW atau 19,45%, setara dengan energi yang dihasilkan dari penggunaan solar sejumlah 0,036 liter selama satu jam. Fouling yang terjadi mengalami kenaikan hingga sebesar 0,561 m²-K/kW. Sedangkan efektivitasnya mengalami penurunan sebesar 3,7%.

Kata kunci: biodegradabel, bioplastik, pelt intercalation, pati, pemlastis

1. PENDAHULUAN

Integrated Steel Mill (ISM) adalah pabrik berskala besar yang menyatukan peleburan besi (iron smelting) dan fasilitas pembuatan baja (steel making), biasanya berbasis Basic Oxygen Furnace [1]. Proses pembuatan baja pada ISM meliputi 3 tahap dasar [2], salah satunya adalah Coke Making. Coke adalah bahan bakar karbon padat dan sumber karbon yang digunakan untuk meleburkan bijih besi [2], yang didapatkan dengan memanaskan coal dengan temperatur tinggi di dalam Coke Oven. Proses pemanasan tersebut akan menghasilkan produk sampingan gas, yang dinamakan Coke Oven Gas (COG) yang juga merupakan salah satu emisi [2]. Meskipun demikian, COG adalah bahan bakar gas yang memiliki nilai kalori yang sedang [3], sehingga dapat dimanfaatkan kembali untuk bahan bakar di ISM setelah dilakukan treatment terlebih dahulu.

Di ISM Krakatau sendiri, COG digunakan untuk beberapa plant yang dibedakan berdasarkan tekanan kerjanya, yaitu low pressure plant dan high pressure plant. Pada low pressure plant, COG yang telah di treatment dapat langsung digunakan. Sedangkan pada high pressure plant tekanan COG harus dinaikan terlebih dahulu untuk dapat sampai ke plant yang dituju dan dapat digunakan. Untuk kebutuhan tersebut digunakanlah COG booster, yang termasuk jenis fan. Fungsi dari fan itu sendiri adalah untuk mengalirkan gas dalam jumlah besar dengan sedikit kenaikan pada tekanan nya [4].

Terdapat dua unit booster yang terpasang, dimana pada kondisi normal satu booster beroperasi, sedangkan booster yang lain dalam posisi stand by. Dengan fungsinya tersebut, maka COG booster merupakan salah satu komponen

yang penting dan harus beroperasi dengan normal.

Salah satu faktor yang mempengaruhi kinerja COG booster adalah temperatur komponenkomponen booster tersebut, dimana harus tetap berada pada batas normalnya. Sehingga untuk memastikan hal tersebut, dipasang suatu penukar panas atau heat exchanger. Definisi dari heat exchanger adalah suatu alat yang dimana terjadi aliran perpindahan panas diantara dua fluida atau lebih pada temperatur yang berbeda [5]. Perbedaan temperatur harus terjadi karena berdasarkan hukum termodinamika ke-2, panas mengalir secara spontan dari benda dengan temperatur tinggi ke benda lain dengan temperatur lebih rendah, dan tidak mengalir secara spontan dalam arah kebalikannya [6].

Pada COG booster dipasang sebuah heat exchanger dengan tipe shell and tube untuk menurunkan temperatur oli, yang digunakan untuk pelumasan dan pendinginan bearing. Oli yang disirkulasikan dengan pompa dari reservoir mengalir menuju bearing housing, melumasi dan menyerap panas dari bearing tersebut, setelah itu kembali ke reservoir. Karena tersebut disirkulasikan kembali, pemasangan heat exchanger sangat penting agar oli tersebut dapat terus digunakan untuk menyerap panas dari bearing dan mencegah terjadinya overheat pada bearing tersebut. Kerugian yang terjadi ketika terjadi *overheat* pada bearing adalah booster akan mengalami trip [7]. dan kemungkinan terjadi kerusakan pada bearing dan komponen lain.

Seperti komponen atau mesin yang lain pada umumnya yang memiliki umur pakai, berlaku pula pada heat exchanger. Semakin lama heat exchanger digunakan akan menyebabkan pengotoran (fouling) pada bagian dalam heat

exchanger tersebut. Lapisan pengotoran ini menyebabkan penambahan tahanan termal dan menyebabkan laju perpindahan panas pada heat exchanger berkurang [8], yang pada akhirnya akan berpengaruh pada kinerja dari heat exchanger secara khususnya, dan unit booster pada umumnya.

Karena komponen heat exchanger tersebut memegang peranan penting pada operasi booster, maka kinerja dari heat exchanger tersebut harus terus dijaga agar tetap optimal dan berfungsi dengan baik. Oleh karena itu perlu dilakukan analisis terhadap kinerja dan efektivitas heat exchanger, terutama akibat pengaruh pengotoran yang terjadi didalamnya, untuk selanjutnya dilakukan evaluasi akibat pengaruh dari pengotoran tersebut.

2. TINJAUAN PUSTAKA

Bizzy & Setiadi melakukan penelitian untuk merancang dimensi shell and tube dengan menggunakan metode analisis komputerisasi Heat Transfer Research Inc. (HTRI) dan metode analisis perhitungan manual [9]. Handoyo & Ahsan melakukan penelitian untuk menganalisis kinerja heat exchanger jenis shell and tube yang digunakan sebagai pendingin aliran air pada PLTA Jatiluhur [10]. Lebo et al melakukan penelitian pada heat exchanger dengan tipe shell and tube di Pabrik Semen Kupang II - PT. Sarana Agra Gemilang, KSO PT. Semen Kupang (Persero) [11]. Soekardi melakukan penelitian untuk menganalisis pengaruh rata-rata faktor efektivitas perpindahan panas dan faktor koefisien perpindahan panas global terhadap dimensi utama hasil perancangan heat exchanger shell and tube dengan metode efektivitas-NTU [12]. Zainuddin et al melakukan penelitian pada suatu heat exchanger dengan tujuan untuk mengetahui kemampuan shell and multi tube helical coil HE sebagai pemanas udara dengan memanfaatkan gas buang dari mesin diesel [13].

2.1 Perpindahan Panas

Perpindahan panas adalah ilmu yang berupaya untuk memprediksi perpindahan energi yang mungkin terjadi antara material sebagai akibat dari adanya perbedaan temperatur [14]. Sesuai dengan hukum termodinamika ke-2 (dua), aliran energi panas akan selalu mengalir ke bagian yang memiliki temperatur lebih rendah [6]. Secara umum terdapat 3 (tiga) jenis perpindahan panas yaitu konduksi, konveksi, dan radiasi.

2.2 Heat Exchanger

Heat exchanger adalah suatu alat yang dimana terjadi aliran perpindahan panas diantara dua fluida atau lebih pada temperatur yang berbeda [5], dimana fluida tersebut keduanya mengalir didalam sistem. Di dalam heat exchanger

tersebut, kedua fluida yang mengalir terpisah satu sama lain, biasanya oleh pipa silindris. Fluida dengan temperatur yang lebih tinggi akan mengalirkan panas ke fluida yang bertemperatur lebih rendah.

Heat exchanger dapat dibagi menjadi beberapa tipe berdasarkan fungsional dan jenis permukaan perpindahan panasnya. Pembagian tipe heat exchanger secara fungsional diantaranya recuperative type, regenerative/ storage type, dan direct mixing type [6]. Sementara itu, pembagian tipe heat exchanger berdasarkan permukaan perpindahan panasnya dapat diatur dalam beberapa bentuk diantaranya single tube arrangement, shell and tube arrangement, dan cross flow heat exchanger [6].

2.3 Shell and Tube

Shell and tube merupakan jenis heat exchanger yang populer dan lebih banyak digunakan. Shell and tube terdiri dari sejumlah tube yang terpasang didalam shell yang berbentuk silindris [15]. Terdapat dua fluida yang mengalir, dimana satu fluida mengalir di dalam tube, dan yang lainnya mengalir diluar tube [14].

2.3.1 Standardisasi TEMA

Karena shell and tube merupakan tipe yang paling banyak digunakan, sehingga perlu dilakukan standardisasi dalam pembuatannya. Pembuatan standardisasi tersebut dilakukan oleh Tubular Exchanger Manufactures Asociation (TEMA) dengan dilakukan sistem penomeran. Sistem penomeran dibuat dengan 3 (tiga) huruf alphabet. Masing masing huruf mewakili bagian dari shell and tube dimana huruf pertama menunjukan front header type, huruf kedua menunjukan shell type, dan huruf ketiga menunjukan end header type [15].

Dari standardisasi tersebut, dapat diciptakan beberapa jenis kombinasi dari *shell and tube*. Namun terdapat 3 (tiga) kombinasi utama yang sering digunakan ^[15], diantaranya *fixed tubesheet heat exchanger, U-tube heat exchanger,* dan *floating header heat exchanger.*

2.3.2 Perhitungan Shell and Tube

Beberapa perhitungan yang dilakukan dalam menganalisis kinerja dari *heat exchanger* atau *shell and tube* diantaranya sebagai berikut:

a. Koefisien perpindahan panas global dan fouling factor

Koefisien perpindahan panas global merupakan keseluruhan nilai koefisien perpindahan panas yang terdapat pada suatu *heat exchanger*, yang dinotasikan dengan U. Besarnya nilai U dapat dihitung dengan persamaan [8]:

$$\frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = R$$

$$= \frac{1}{h_i A_i} + \frac{\ln(D_o / D_i)}{2\pi k L}$$

$$+ \frac{1}{h_o A_o}$$
(1)

dimana:

U = koefisien perpindahan panas global $(W/m^2.K)$

koefisien perpindahan panas bagian dalam (W/m²·K)

koefisien perpindahan panas bagian luar $(W/m^2 \cdot K)$

luas permukaan perpindahan panas total (m²)

luas permukaan perpindahan panas bagian dalam (m²)

luas permukaan perpindahan panas bagian luar (m²)

koef perpindahan panas konveksi bagian dalam (W/m·K)

koef perpindahan panas konveksi bagian luar (W/m·K)

 D_0 = diameter luar *tube* (m) D_i = diameter dalam tube (m)

konduktivitas termal bahan tube (W/m·K)

panjang tube (m)

Sedangkan fouling factor adalah besarnya pengotoran yang terjadi pada heat exchanger yang mengakibatkan bertambahnya besaran tahanan termalnya. Fouling factor dinotasikan dengan Rf. Besarnya nilai Rf akan mempengaruhi besarnya nilai U, sehingga persamaannya menjadi [8]:

$$\frac{1}{UA_s} = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} = R$$

$$= \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln(D_o/D_i)}{2\pi k L} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}$$

$$+ \frac{1}{h_o A_o}$$
(2)

dimana:

 R_{fi} = fouling factor di bagian dalam (m² K/W)

 $R_{fo} = fouling factor di bagian luar (m²·K/W)$

Besarnya fouling factor dapat juga dihitung dengan persamaan berikut [14]:

$$R_f = \frac{1}{U_{dirty}} - \frac{1}{U_{clean}} \tag{3}$$

dimana:

fouling factor (m²·K/W) R_f

koefisien perpindahan panas global setelah terjadi pengotoran (W/m²K) koefisien perpindahan panas global sebelum terjadi pengotoran (W/m²K)

b. Perhitungan laju perpindahan panas aktual Laju perpindahan panas aktual merupakan panas yang dilepaskan oleh fluida panas atau yang diserap oleh fluida dingin, yang dapat dihitung dengan persamaan berikut [8]:

$$Q_{act} = C_h.(T_{h1} - T_{h2}) (4)$$

$$Q_{act} = C_c \cdot (T_{c2} - T_{c1}) \tag{5}$$

dimana:

Qact = laju perpindahan panas aktual (W)

 C_h = laju kapasitas panas fluida panas (W/K) C_c = laju kapasitas panas fluida dingin (W/K)

= temperatur fluida panas masuk heat

exchanger (K)

 T_{h2} = temperatur fluida panas keluar heat exchanger (K)

 T_{c1} = temperatur fluida dingin masuk heat exchanger (K)

 T_{c2} = temperatur fluida dingin keluar heat exchanger (K)

Selain itu perhitungan laju perpindahan panas aktual dapat dicari dengan menggunakan persamaan [8]:

$$Q_{act} = U.A_s.\Delta T_{lm} \tag{6}$$

dimana:

koefisien perpindahan panas global U $(W/m^2.K)$

luas permukaan perpindahan panas total (m2)

 ΔT_{lm} perbedaan temperatur rata rata logaritma / LMTD (K)

c. Perhitungan laju kapasitas panas

mempermudah menghitung perpindahan panas dibutuhkan laju kapasitas panas yang dapat dihitung dengan persamaan berikut [8]:

$$C_{h} = \dot{m}_{h}.\,cp_{h} \tag{7}$$

 $C_c = \dot{m}_c \cdot cp_c$

dimana:

C_h = laju kapasitas panas fluida panas (W/K) C_c = laju kapasitas panas fluida dingin (W/K) \dot{m}_h = laju aliran massa fluida panas (kg/s) m_c = laju aliran massa fluida dingin (kg/s)

d. Perhitungan laiu perpindahan

Laju perpindahan panas maksimal merupakan nilai perpindahan panas terbesar yang mungkin

(8)

terjadi pada heat exchanger yang dapat dihitung dengan persamaan berikut [8]:

$$Q_{max} = C_{min} \cdot (T_{h1} - T_{c1})$$
 (9) dimana:

 Q_{max} = laju perpindahan panas maksimal (W) C_{min} = nilai terkecil di antara nilai C_h dan C_c

(W/K)

T_{h1} = temperatur fluida panas masuk *heat* exchanger (K)

T_{c1} = temperatur fluida dingin masuk *heat* exchanger (K)

e. Perhitungan LMTD

Besarnya nilai LMTD atau perbedaan temperatur rata rata logaritma bergantung pada jenis heat exchanger yang digunakan, dimana pada dasarnya dibagi menjadi 3 (tiga) jenis heat exchanger berdasarkan arah alirannya yaitu parallel flow (searah), counterflow (berlawanan), dan multi pass and cross flow (i.e shell and tube). Persamaan untuk menghitung nilai LMTD dari masing masing jenis heat exchanger yaitu [8]:

1) Parallel flow dan counter flow

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln(\frac{\Delta T_1}{\Delta T_2})} \tag{10}$$

dimana untuk paralle flow:

$$\Delta T_1 = T_{h1} - T_{c1} \tag{11}$$

$$\Delta T_2 = T_{h2} - T_{c2} \tag{12}$$

Sedangkan untuk counter flow:

$$\Delta T_1 = T_{h1} - T_{c2} \tag{13}$$

$$\Delta T_2 = T_{h2} - T_{c1} \tag{14}$$

2) Multi pass dan cross flow

$$\Delta T_{lm} = F \cdot \Delta T_{lm,cf} \tag{15}$$

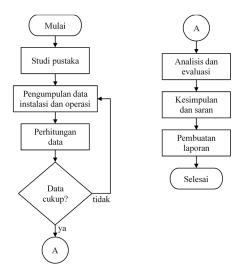
dimana:

F = faktor koreksi, F < 1 $\Delta T_{lm,cf}$ = LMTD counterflow (K)

f. Perhitungan efektivitas

Efektivitas shell and tube dapat dihitung dengan persamaan berikut [8]:

$$\epsilon = \frac{Q_{act}}{Q_{max}} \tag{16}$$


dimana:

 ϵ = efektivitas (%)

 Q_{act} = laju perpindahan panas aktual (W) Q_{max} = laju perpindahan maksimal (W)

3. METODE PENELITIAN

Proses penyelesaian penelitian ditunjukan dan akan dilakukan seperti diagram alir yang ditunjukan pada Gambar 1 sebagai berikut:

Gambar 1. Diagram alir penelitian

4. HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

Tahap awal yang dilakukan adalah mengumpulkan data-data yang telah diketahui atau data instalasi, yang bersumber dari *manual book*, katalog produk, dan data operasi HMI. Data instalasi tersebut diantaranya spesifikasi *shell and tube* dan karakteristik fluida. Sedangkan data operasi yaitu temperatur kerja fluida yang masuk dan keluar *shell and tube*.

a. Spesifikasi Shell and Tube

a. Manufacturer : Universal Hydraulik
b. Tipe : EKM-500-T-CN
c. Jumlah aliran : Two pass

Gambar 2. Shell and tube EKM-500-T-CN

b. Karakteristik Fluida yang digunakan

1) Karakteristik oli

ISO grade : VG 46Manufacturer : Shell

Massa jenis (ph) : 885,8 kg/m3
Panas jenis (cph) : 2,001 kJ/kg.K
Debit aliran (qh) : 0,000167 m3/s

2) Karakteristik air

Massa jenis (pc) : 994,1 kg/m3
Panas jenis (cpc) : 4,187 kJ/kg.K
Debit aliran (qc) : 0,0000833 m3/s

c. Temperatur Kerja Fluida

Diambil 1 sample data per harinya dari hasil pembacaan sensor di HMI.

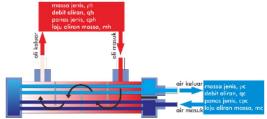
Gambar 3. Tampilan HMI pengambilan data

Beberapa *sample* data yang telah dikumpulkan dicantumkan pada Tabel 1 dan Tabel 2.

Tabel 1. Pengukuran Temperatur periode 1

Periode Pertama							
		Data Pengukuran					
Bulan	Tanggal	T _{h1}	T _{h2}	T _{c1}			
		(°C)	(°C)	(°C)			
Maret	21	53,15	46,01	34,04			
	22	49,8	43,57	33,03			
	23	50,49	44,29	32,86			
	24	49,27	42,87	31,59			
	25	50,09	43,84	32,72			
April	1	52,35	45,99	34,43			
	2	51,47	45,18	34,15			
	3	49,98	44,02	32,59			
	4	51,5	45,06	33,75			
	5	51,58	45,15	32,82			

Tabel 2. Pengukuran temperatur periode 2


Periode Kedua							
		Data Pengukuran					
Bulan	Tanggal	T _{h1} (⁰ C)	T _{h2} (°C)	T _{c1} (⁰ C)			
	1	49,05	43,66	34,07			
	2	51,06	44,92	33,38			
Oktober	3	50,98	45,26	33,61			
	4	50,73	45,08	34,31			
	5	50,5	44,99	33,45			
	1	51,34	45,48	34,57			
	2	51,05	45,31	34,46			
November	3	50,85	45,54	34,5			
	4	50,99	45,52	34,24			
	5	50,07	44,64	34,05			

4.2 Perhitungan Kinerja

a. Perhitungan Data Instalasi

Parameter yang diketahui diantaranya:

- Massa jenis oli, ρ_h = 885,8 kg/m³
- Massa jenis air, $\rho_c = 994,1 \text{ kg/m}^3$
- Debit aliran oli, $q_h = 0,000167 \text{ m}^3/\text{s}$
- Debit aliran air, $q_c = 0,0000833 \text{ m}^3/\text{s}$
- Panas jenis oli, cph = 2,001 kJ/kg·K
- Panas jenis air, cpc = 4,187 kJ/kg K

Gambar 4. Perhitungan data instalasi

Selanjutnya dilakukan perhitungan sebagai berikut:

1) Perhitungan laju aliran massa oli, mh

$$\dot{m_h} = \rho_h. q_h$$

$$\dot{m_h} = 0.148 \frac{kg}{s}$$

2) Perhitungan laju aliran massa air, mc

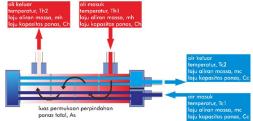
$$\dot{m_c} = \rho_c \cdot q_c$$

$$\dot{m_c} = 0.083 \frac{kg}{s}$$

3) Perhitungan laju kapasitas panas oli, Ch

$$C_h = \dot{m}_h \cdot cp_h$$

 $C_h = 0.296 \frac{kJ}{s \cdot K} = 0.296 \frac{kW}{K}$


4) Perhitungan laju kapasitas panas air, Cc

$$C_c = \dot{m}_c. cp_c$$
 $C_c = 0.347 \frac{kJ}{s \cdot K} = 0.347 \frac{kW}{K}$

5) Laju kapasitas panas minimum, C_{min} Karena nilai $C_h < C_c$ maka:

 $C_{min} = C_h = 0,296 \text{ kW/K}$

b. Perhitungan Data Operasi dan Kinerja

Gambar 5. Perhitungan data operasi & kinerja

Perhitungan akan dibagi menjadi beberapa kondisi sebagai berikut

1) Kondisi awal pengoperasian

Parameter yang diketahui diantaranya:

- $T_{h1} = 53,15^{\circ}C = 326,15 \text{ K}$
- $T_{h2} = 46,01^{\circ}C = 319,01 \text{ K}$
- $T_{c1} = 34,04^{\circ}C = 307,04 \text{ K}$
- $m_h = 0.148 \text{ kg/s}$
- $\dot{m}_c = 0.083 \text{ kg/s}$
- $C_h = 0.296 \text{ kW/K}$
- $C_c = 0.348 \text{ kW/K}$
- $A_s = 0.94 \text{ m}^2$

Selanjutnya dilakukan perhitungan sebagai berikut:

a. Perhitungan Q_{max}

$$Q_{max} = C_{min} \cdot (T_{h1} - T_{c1})$$

 $Q_{max} = 5,657 \text{ kW}$

b. Perhitungan Qact

$$Q_{act} = C_h. (T_{h1} - T_{h2})$$

 $Q_{act} = 2,113 \ kW$

c. Perhitungan ε

$$\epsilon = \frac{Q_{act}}{Q_{max}} x 100\%$$

$$\epsilon = 37,35\%$$

d. Perhitungan Tc2

$$T_{c2} = T_{c1} + \frac{Q_{act}}{C_c}$$

 $T_{c2} = 313,13 K = 40,13$ °C

e. Perhitungan ΔT_{Im,st}

$$\Delta T_{lm,cf} = \frac{(T_{h1} - T_{c2}) - (T_{h2} - T_{c1})}{\ln(\frac{(T_{h1} - T_{c2})}{(T_{h2} - T_{c1})})}$$

$$\Delta T_{lm,cf} = 12.5 K$$

$$\Delta T_{lm,st} = 12.5 [K].0,95$$

$$\Delta T_{lm.st} = 11,87 K$$

f. Perhitungan U₁

$$U_1 = \frac{Q_{act}}{A_s \triangle T_{lm,st}}$$

$$U_1 = 0.189 \frac{kW}{m^2 \cdot K}$$

- 2) Kondisi setelah pengotoran ke-1 Parameter yang diketahui diantaranya:
 - $T_{h1} = 49,8^{\circ}C = 322,8 \text{ K}$
 - $T_{h2} = 43,57^{\circ}C = 316,57 \text{ K}$
 - $T_{c1} = 33,03^{\circ}C = 306,03 \text{ K}$
 - \dot{m}_h = 0,148 kg/s
 - \dot{m}_c = 0,083 kg/s
 - $C_h = 0.296 \text{ kW/K}$
 - $C_c = 0.347 \text{ kW/K}$
 - $A_s = 0.94 \text{ m}^2$
 - F = 0.95
 - $U_1 = 0.189 \text{ kW/m}^2 \text{ K}$

Selanjutnya dilakukan perhitungan sebagai berikut:

a. Perhitungan Q_{max}

$$Q_{max} = C_{min}. (T_{h1} - T_{c1})$$

 $Q_{max} = 4,964 \ kW$

b. Perhitungan Qact

$$\begin{split} Q_{act} &= C_h. \, (T_{h1} - T_{h2}) \\ Q_{act} &= 1,\! 844 \; kW \end{split}$$

c. Perhitungan ε

$$\epsilon = \frac{Q_{act}}{Q_{max}} x 100\%$$

$$\epsilon = 37.15\%$$

d. Perhitungan Tc2

$$T_{c2} = T_{c1} + \frac{Q_{act}}{C_c}$$

 $T_{c2} = 311,34K = 38,34$ °C

e. Perhitungan ΔT_{Im,st}

$$\Delta T_{lm,cf} = \frac{(T_{h1} - T_{c2}) - (T_{h2} - T_{c1})}{\ln(\frac{(T_{h1} - T_{c2})}{(T_{h2} - T_{c1})})}$$

$$\Delta T_{lm,cf} = 11,08 K$$

$$\Delta T_{lm,st} = \Delta T_{lm,cf}. F$$

$$\Delta T_{lm,st} = 10,53 K$$

f. Perhitungan U₂

$$U_2 = \frac{Q_{act}}{A_{S} \Delta T_{lm,st}}$$

$$U_2 = 0.186 \frac{kW}{m^2 \cdot K}$$

g. Perhitungan R_{f1}

$$R_{f1} = \frac{1}{u_2} - \frac{1}{u_1}$$

$$R_{f1} = 0.085 \frac{m^{2} \cdot K}{kW}$$

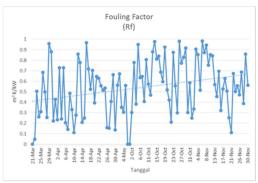
3) Kondisi setelah pengotoran ke-2

Pengotoran ke-2 dan selanjutnya akan menghasilkan nilai koefisien perpindahan panas global *fouled* U_4 , U_5 , U_6 , dst. Juga akan menghasilkan nilai *fouling factor* R_{f3} , R_{f4} , R_{f5} , dst. Proses perhitungannya sendiri sama seperti pada pengotoran pertama.

4.3 Analisis dan Evaluasi

a. Analisis Qact

Berdasarkan spesifikasi, *shell and tube* EKM-510-T-CN memiliki nilai *cooling performance* sekitar 2,25 kW.

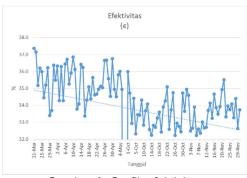


Gambar 6. Grafik laju perpindahan panas

Hasil perhitungan di awal periode pertama menghasilkan nilai laju perpindahan panas aktual sebesar 2,113 kW. Sementara itu dari hasil perhitungan yang dilakukan pada akhir periode pertama, laju perpindahan panas aktual yang terjadi sekitar 1,880 kW. Dengan kata lain selama periode pertama terjadi penurunan perpindahan panas sebesar 0,233 kW atau 11,03%. Penurunan kemampuan untuk mentransfer panas sebesar 0,233 kW tersebut apabila dibandingkan dengan penggunaan solar (*diesel fuel*) yang memiliki *Low Heating Value* (LHV) sebesar 43400 kJ/kg dan massa jenis (ρ_{bb}) sebesar 950 kg/m³, energinya setara dengan penggunaan solar sebanyak 0,02 liter selama satu jam.

Sementara itu dari hasil perhitungan pada akhir periode kedua, laju perpindahan panas yang terjadi sekitar 1,702 kW. Nilai tersebut kembali turun dari nilai sebelumnya, sehingga dapat disimpulkan secara total kemampuan *shell and tube* dalam memindahkan panas pada akhir periode kedua kembali mengalami penurunan hingga sebesar 0,411 kW atau sebesar 19,45%. Apabila energi sebesar 0,411 kW tersebut kembali dibandingkan dengan penggunaan solar sesuai dengan perhitungan sebelumnya, maka jumlah solar yang digunakan adalah sebanyak 0,036 liter selama satu jam.

b. Analisis Rf


Gambar 7. Grafik pengotoran

Berdasarkan hasil perhitungan, besarnya pengotoran yang terjadi pada awal periode pertama adalah sebesar 0,046 m²-K/kW. Sedangkan hasil perhitungan pada akhir periode pertama menghasilkan pengotoran sebesar 0,558 m²-K/kW. Dari hasil perhitungan tersebut disimpulkan bahwa selama periode pertama, terjadi pengotoran pada *shell and tube* hingga sebesar 0,558 m²-K/kW.

Sementara itu perhitungan pada awal periode kedua menghasilkan pengotoran sebesar 0,303 m²-K/kW dan perhitungan di akhir periode kedua menghasilkan nilai pengotoran sebesar 0,561 m²-K/kW. Dengan kata lain, selama periode pertama hingga periode kedua, terjadi pengotoran pada *shell and tube* hingga sebesar 0,561 m²-K/kW. Besarnya pengotoran ini menyebabkan terjadinya penurunan kemampuan *shell and tube* dalam memindahkan panas hingga sebesar 24,36%.

c. Analisis €

Dari hasil perhitungan pada awal periode pertama, efektvitas *shell and tube* terhitung sebesar 37,4%. Sedangkan pada akhir periode pertama, efektivitas yang dihasilkan turun menjadi sekitar 34,9%. Sehingga selama periode pertama terjadi penurunan efektivitas pada *shell and tube* sebesar 2,5%.

Gambar 8. Grafik efektivitas

Sementara itu untuk perhitungan pada awal periode kedua, efektivitas yang dihasilkan adalah sekitar 36,0%. Sedangkan pada akhir periode kedua, efektivitas yang dihasilkan mengalami penurunan menjadi sekitar 33,7%. Dengan kata lain, secara total dari periode pertama hingga periode kedua terjadi penurunan efektivitas pada shell and tube sebesar 3,7%.

5. KESIMPULAN

Berdasarkan hasil analisis dihasilkan beberapa kesimpulan diantaranya:

- Shell and tube yang dianalisis memiliki nilai cooling performance sebesar 2,25 kW. Hasil perhitungan yang dilakukan dari tahap pertama dan tahap kedua menunjukan terjadi penurunan kemampuan shell and tube tersebut dalam mentransfer panas yang ditunjukan dengan penurunan laju perpindahan panas aktual (Qact) yang terjadi, di mana terjadi penurunan sebesar 0,411 kW atau 19,45%. Besarnya nilai tersebut setara dengan penggunaan solar sejumlah 0,036 liter selama 1 jam.
- Besarnya nilai pengotoran bergantung kepada besarnya nilai koefisien perpindahan panas global dalam kondisi fouled (U2, U3, U4, dst) yang dikurangi dengan nilai koefisien perpindahan panas global dalam kondisi clean (U1). Selama periode analisis telah terjadi pengotoran (Rf) pada shell and tube, di mana nilainya mengalami kenaikan dari awal periode pertama sebesar 0,085 m2.K/kW, menjadi 0,561 m2.K/kW pada akhir periode kedua. Besarnya pengotoran tersebut mengakibatkan penurunan Qact hingga 19,45% selama periode analisis.
- 3. Efektivitas dari shell and tube bergantung kepada perbandingan Q_{act} dan Q_{max} yang dihasilkan, sehingga ketika Q_{act} nya mengalami penurunan maka efektivitasnya juga akan mengalami penurunan. Dari hasil analisis pada awal periode pertama menghasilkan nilai efektivitas sebesar 37,4%. Sedangkan di akhir periode kedua efektivitas yang dihasilkan mengalami penurunan menjadi 33,7%. Dengan kata lain dari awal

periode pertama hingga akhir periode kedua terjadi penurunan evektivitas sebesar 3,7%.

DAFTAR PUSTAKA

- [1]. World Steel Asociation. (2012). The White Book of Steel. Diambil dari: www.worldsteel.org/steelstory. Diakses pada 15 April 2017.
- [2]. Primary Metal. (2017). The Steel Making Industry. Diambil dari: http://www.istc.illinois.edu/info/library_docs/m anuals/primmetals/chapter2.htm. Diakses pada 15 April 2017.
- [3]. Lacey, J.A. (2011). Coke-Oven Gas. Diambil dari: http://www.thermopedia.com/content/641/. Diakses pada 15 April 2017.
- [4]. The Engineering ToolBox. (2017). Pumps, Compressors, Blowers and Fans. Diambil dari: http://www.engineeringtoolbox.com/pumpscompressors-fans-blowers-d_675.html. Diakses pada 15 Maret 2017.
- [5]. Kakac, S., Liu, H. (2002). Heat exchanger: Selection, Rating, and Thermal Design (2nd Ed). Florida: CRC Press.
- [6]. Kothandaraman, C.P. (2006). Fundamentals of Heat and Mass Trasfer (3rd Ed). New Delhi: New Age International (P) Ltd.
- [7]. Chmiel. (2012). Erection, Operation, and Maintenance Manual for COG Booster Fan. Wippershainer: TLT-Turbo GmbH.

- [8]. Cengel, Y.A. (2006). *Heat Transfer: A Practical Approach (2nd Ed)*. Ohio: McGraw-Hill Higher Education.
- [9]. Bizzy, I., Setiadi, R. (2013). Studi Perhitungan Alat Penukar Kalor Tipe Shell and Tube dengan Program Heat Transfer Research Inc. (HTRI). *Jurnal Rekayasa Mesin*, *3*(1).
- [10]. Handoyo, Y., Ahsan. (2012). Analisis Kinerja Alat Penukar Kalor Jenis Shell and Tube Pendingin Aliran Air Pada PLTA Jatiluhur. Jurnal Energi dan Manufaktur, 5(1).
- [11] Lebo, Y.M.V., Gusnawati., Jasron, J. (2015). Analisa Unjuk Kerja Alat Penukar Kalor Tipe Shell and Tube Untuk Pendinginan Minyak Pelumas Pasa Sistem Penggerak Induced Draft Fan. Lontar Jurnal Teknik Mesin Undana, 2(2).
- [12]. Soekardi, C. (2015). Analisis Pengaruh Efektivitas Perpindahan Panas dan Tahanan Termal Terhadap Rancangan Termal Alat Penukar Kalor Shell & Tube. *Jurnal Sinergi*, 19(1).
- [13]. Zainuddin., Nurdin, J., Is, E. (2016). The Heat Exchanger Performance of Shell and Multi Tube Helical Coil as a Heater through the Utilization of a Diesel Machine's Exhaust Gas. Aceh International Journal of Science and Technology. 5(1), 21-29.
- [14]. Holman, J.P. (2010). *Heat Transfer (10th Ed)*. New York: McGraw-Hill
- [15]. Brogan, R.J. (2011). Shell and Tube Heat Exchangers. Diambil dari: http://www.thermopedia.com/content/1121/Diakses pada 15 April 2017.