Design of Temperature Control System on UV Weathering Chamber Based on PID

Zakaria Zakaria, Dedik Romahadi, Muhamad Fitri

Abstract


The influence of high temperature and exposure to ultraviolet (UV) radiation from sunlight, rain, and humidity causes damage to the composite material and consequently, reduces its mechanical performance. Weathering experiments can be carried out outdoors or under laboratory conditions. Material degradation tests can be carried out directly using natural conditions or laboratory test equipment that artificially simulates natural conditions. An automatic temperature control system is needed to keep the setpoint stable during the degradation test. The controller on the system uses Arduino based on Proportional, Interval, and Derivative (PID). The test was carried out by running the system with different PID parameter values three times to obtain the most optimize-tingling results in maintaining the setpoint at steady state conditions. Based on the results of tests that have been carried out with a setpoint of 40⁰C, the most optimal results are obtained with values of Kp=10, Ki=20, and Kd=30. The average temperature is 40.02⁰C with an average error percentage of 2% and an average accuracy rate of 98%.

Keywords


PID, Control System, UV Weathering Chamber

Full Text:

PDF

References


D. Sebayang et al., “Numerical simulation of distortion and phase transformation in laser welding process using MSC Marc/Mentat,” IOP Conf. Ser. Mater. Sci. Eng., vol. 453, no. 1, 2018, doi: 10.1088/1757-899X/453/1/012020.

F. Anggara, D. Romahadi, A. L. Avicenna, and Y. H. Irawan, “Numerical analysis of the vortex flow effect on the thermal-hydraulic performance of spray dryer,” SINERGI, vol. 26, no. 1, pp. 23–30, Feb. 2022, doi: 10.22441/SINERGI.2022.1.004.

J. Qin et al., “Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review,” Polym. Test., vol. 93, p. 106940, Jan. 2021, doi: 10.1016/J.POLYMERTESTING.2020.106940.

S. Cesari, G. Emmi, and M. Bottarelli, “A weather forecast-based control for the improvement of PCM enhanced radiant floors,” Appl. Therm. Eng., vol. 206, p. 118119, Apr. 2022, doi: 10.1016/J.APPLTHERMALENG.2022.118119.

M. Hu, G. Sun, D. Sun, T. Lu, J. Ma, and Y. Deng, “Accelerated weathering simulation on rheological properties and chemical structure of high viscosity modified asphalt: A temperature acceleration effect analysis,” Constr. Build. Mater., vol. 268, p. 121120, Jan. 2021, doi: 10.1016/J.CONBUILDMAT.2020.121120.

M. Jamal, G. Martinez-Arguelles, and F. Giustozzi, “Effect of waste tyre rubber size on physical, rheological and UV resistance of high-content rubber-modified bitumen,” Constr. Build. Mater., vol. 304, p. 124638, Oct. 2021, doi: 10.1016/J.CONBUILDMAT.2021.124638.

P. Sanmartín and J. S. Pozo-Antonio, “Weathering of graffiti spray paint on building stones exposed to different types of UV radiation,” Constr. Build. Mater., vol. 236, p. 117736, Mar. 2020, doi: 10.1016/J.CONBUILDMAT.2019.117736.

R. F. Nascimento, A. O. da Silva, R. P. Weber, and S. N. Monteiro, “Influence of UV radiation and moisten associated with natural weathering on the ballistic performance of aramid fabric armor,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10334–10345, Sep. 2020, doi: 10.1016/J.JMRT.2020.07.046.

G. F. L. R. Bernardes, R. Ishibashi, A. A. S. Ivo, V. Rosset, and B. Y. L. Kimura, “Prototyping low-cost automatic weather stations for natural disaster monitoring,” Digit. Commun. Networks, May 2022, doi: 10.1016/J.DCAN.2022.05.002.

M. Fitri, T. Susilo, D. Feriyanto, and D. M. Zago, “Effect Of morphology and percentage of second phase content of coconut coir on the impact strength of epoxy resin composites,” Nat. Volatiles Essent. Oils, vol. 8, no. 6, pp. 3880–3894, 2021.

D. Romahadi, F. Anggara, A. F. Sudarma, and H. Xiong, “The implementation of artificial neural networks in designing intelligent diagnosis systems for centrifugal machines using vibration signal,” SINERGI, vol. 25, no. November 2020, 2021, doi: 10.22441/sinergi.2021.1.012.

D. Romahadi, A. A. Luthfie, W. Suprihatiningsih, and H. Xiong, “Designing expert system for centrifugal using vibration signal and Bayesian Networks,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 1, p. 23, Jan. 2022, doi: 10.18517/IJASEIT.12.1.12448.

Irianto, F. D. Murdianto, E. Sunarno, and Yusra, “Robustness analysis of speed control method to drive AC/DC motor,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 5, pp. 1794–1800, 2021, doi: 10.18517/ijaseit.11.5.9575.

M. H. Suid and M. A. Ahmad, “Optimal tuning of sigmoid PID controller using Nonlinear Sine Cosine Algorithm for the Automatic Voltage Regulator system,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.11.037.

A. Kherkhar, Y. Chiba, A. Tlemçani, and H. Mamur, “Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach,” Case Stud. Therm. Eng., vol. 36, p. 102249, Aug. 2022, doi: 10.1016/J.CSITE.2022.102249.

B. S. Taysom, C. D. Sorensen, and J. D. Hedengren, “A comparison of model predictive control and PID temperature control in friction stir welding,” J. Manuf. Process., vol. 29, pp. 232–241, Oct. 2017, doi: 10.1016/J.JMAPRO.2017.07.015.

J. L. Song, W. L. Cheng, Z. M. Xu, S. Yuan, and M. H. Liu, “Study on PID temperature control performance of a novel PTC material with room temperature Curie point,” Int. J. Heat Mass Transf., vol. 95, pp. 1038–1046, Apr. 2016, doi: 10.1016/J.IJHEATMASSTRANSFER.2015.12.057.

H. H. Manap, A. K. Abdul Wahab, and F. Mohamed Zuki, “Control for Carbon Dioxide Exchange Process in a Membrane Oxygenator Using Online Self-Tuning Fuzzy-PID Controller,” Biomed. Signal Process. Control, vol. 64, p. 102300, Feb. 2021, doi: 10.1016/J.BSPC.2020.102300.

M. Schiavo, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “Individualized PID Tuning for Maintenance of General Anesthesia with Propofol,” IFAC-PapersOnLine, vol. 54, no. 3, pp. 679–684, Jan. 2021, doi: 10.1016/J.IFACOL.2021.08.320.

X. Yu, X. Yang, C. Yu, J. Zhang, and Y. Tian, “Direct approach to optimize PID controller parameters of hydropower plants,” Renew. Energy, vol. 173, pp. 342–350, Aug. 2021, doi: 10.1016/J.RENENE.2021.03.129.

B. Arun, B. V. Manikandan, and K. Premkumar, “Multiarea Power System Performance Measurement using Optimized PID Controller,” Microprocess. Microsyst., p. 104238, Feb. 2021, doi: 10.1016/J.MICPRO.2021.104238.

H. Liang, Z. K. Sang, Y. Z. Wu, Y. H. Zhang, and R. Zhao, “High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions,” Appl. Therm. Eng., vol. 195, p. 117234, Aug. 2021, doi: 10.1016/J.APPLTHERMALENG.2021.117234.

A. Kumar and S. Pan, “Design of fractional order PID controller for load frequency control system with communication delay,” ISA Trans., Dec. 2021, doi: 10.1016/J.ISATRA.2021.12.033.

M. Ma, H. Wang, N. Xiang, P. Yun, and H. Wang, “Fault diagnosis of PID in crystalline silicon photovoltaic modules through I-V curve,” Microelectron. Reliab., vol. 126, p. 114236, Nov. 2021, doi: 10.1016/J.MICROREL.2021.114236.

P. Z. Csurcsia, P. Bhandari, and T. De Troyer, “Development of a low-cost PID setup for engineering technology students,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 213–218, Jan. 2022, doi: 10.1016/J.IFACOL.2022.06.035.

S. S. Franco, J. R. Henríquez, A. A. V. Ochoa, J. A. P. da Costa, and K. A. Ferraz, “Thermal analysis and development of PID control for electronic expansion device of vapor compression refrigeration systems,” Appl. Therm. Eng., vol. 206, p. 118130, Apr. 2022, doi: 10.1016/J.APPLTHERMALENG.2022.118130.




DOI: http://dx.doi.org/10.22441/jtm.v12i1.16505

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats