COMPARATIVE ANALYSIS OF THE EFFICIENCY OF HYBRID AND NON-HYBRID CARS: EFFECT OF WEIGHT, TORQUE AND PRICE

Ahmad Ikwal, Dianta Ginting, Ph.D, Maulana Witanta

Abstract


Fuel serves as the primary energy source for motor vehicles, enabling them to move. Although it has been the primary energy source for several centuries, Fuel has led to various environmental issues. One of its negative impacts is that, when burned, Fuel produces carbon dioxide (CO2), a significant contributor to global climate change. Currently, this petroleum-based energy is facing a crisis. Hybrid vehicles present a solution to address this petroleum energy crisis. Recently, hybrid cars have become popular in the modern automotive industry due to their numerous advantages, especially fuel efficiency and emissions. Hybrid vehicle technology combines conventional engine technology that uses Fuel with electric motor technology. This study provides a comprehensive comparative analysis between hybrid and non-hybrid cars, focusing on fuel efficiency, vehicle weight, torque, and price parameters. The aim is to assess the economic feasibility of hybrid vehicles compared to non-hybrid cars. The methodology used is a quantitative comparative study of several hybrid and non-hybrid car models within the same class. Performance data were systematically collected from reliable sources and analyzed under standard conditions, covering various price segments ranging from 600 million to 1.6 billion rupiahs. Statistical analysis was conducted to compare fuel efficiency, torque, and vehicle weight between the two types of cars and evaluate the economic implications of these differences. The study results indicate that hybrid cars achieve significantly higher fuel efficiency, averaging 18–22 km/l, compared to 10–14 km/l for non-hybrid models (p < 0.05). This efficiency increase persists despite increasing torque and vehicle weight, demonstrating that hybrid technology improves performance without sacrificing efficiency. Additionally, cost analysis suggests that although the initial price of hybrid cars is higher, fuel savings can offset the price difference in the long term. This research is expected to serve as a reference for consumers considering cost and energy efficiency when choosing hybrid and non-hybrid cars.


Keywords


Fuel Efficiency, Hybrid Cars, Torque, Weight, Price.

Full Text:

PDF

References


. Anwar, S., Permana, H., & Susanto, I. (2022). Analisa Kinerja Motor Bakar Bensin 4 Langkah Menggunakan Bahan Bakar Dari Minyak plastik. Metrik Serial Humaniora dan Sains, 3(2), 16-24.

. Budi, F. (2010). Analisa Penggunaan Mobil Hybrid Sebagai Kenderaan Hemat BBM Dan Ramah Lingkungan (Doctoral dissertation, Universitas Medan Area).

. Simbolon, E. (2013). Kajian Performansi Mesin Genset Otto 1 Silinder dengan Bahan Bakar Campuran Premium dan Super Fuel (Doctoral dissertation, Universitas Sumatera Utara).

. Raksodewanto, A. A. (2020, November). Membandingkan mobil listrik dengan mobil konvensional. In TECHNOPEX 2020.

. Tugaswati, A. T. (2008). Emisi gas buang kendaraan bermotor dan dampaknya terhadap kesehatan. Komisi Penghapusan Bensin Bertimbel, 1, 1-11.

. Dhingra, A., & Saggu, T. S. (2021). Energy Conservation for a Sustainable Future. In Sustainable Development Through Engineering Innovations: Select Proceedings of SDEI 2020 (pp. 651-657). Springer Singapore.

. Sinaga, S., & Pranoto, H. (2020). Analisis Kebutuhan Energi Motor Listrik pada Mobil Hybrid Urban KMHE 2018. Jurnal Teknik Mesin, 9(3), 180.

. Hidayat, R. A. (2013). Kali Literatur Karakteristik Performansi Hybrid Engine Toyota Prius (Doctoral dissertation, Fakultas Teknik Unpas).

. BUDIONO, V. J. ANALISIS RASIO DAN TINGKAT TRANSMISI, SISTEM TENAGA DAN REGENERATIVE BRAKING PADA TRUK HYBRID UNTUK MENGANGKUT HASIL PERKEBUNAN KELAPA SAWIT.

. Julian, J., & Batu, F. L. (2023). Pengembangan Mesin Hybrid yang Efisien dan Ramah Lingkungan. All Fields of Science Journal Liaison Academia and Sosiety, 3(4), 88-93.

. Syed, F. U., Kuang, M. L., Czubay, J., & Ying, H. (2006). Derivation and experimental validation of a power-split hybrid electric vehicle model. IEEE Transactions on Vehicular Technology, 55(6), 1731-1747.

. Poetro, K. H. (2019). Analisis Pengaruh Rasio Final Gear terhadap Kecepatan dan Konsumsi Bahan Bakar Mobil Hybrid Urban Kmhe 2018. Jurnal Teknik Mesin Mercu Buana, 8(3), 59-69.

. Weiss, M., Zerfass, A., & Helmers, E. (2019). Fully electric and plug-in hybrid cars-An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. Journal of cleaner production, 212, 1478-1489.

. Sinaga, S., & Pranoto, H. (2020). Analisis Kebutuhan Energi Motor Listrik pada Mobil Hybrid Urban KMHE 2018. Jurnal Teknik Mesin, 9(3), 180.

. Iskandar, H. (2021). Studi analisis perkembangan teknologi kendaraan listrik hibrida. Journal of Automotive Technology Vocational Education, 2(1), 31-44.

. ZAENURI, M. (2019). ANALISIS DAYA BATERAI DAN PENGARUHNYA TERHADAP KONSUMSI BAHAN BAKAR PADA MOBIL HYBRID KMHE 2018 (Doctoral dissertation, Universitas Mercu Buana Jakarta).

. ZAENURI, M. (2019). ANALISIS DAYA BATERAI DAN PENGARUHNYA TERHADAP KONSUMSI BAHAN BAKAR PADA MOBIL HYBRID KMHE 2018 (Doctoral dissertation, Universitas Mercu Buana Jakarta).

. Nasution, D. (2009). Analisa Penggunaan-Mobil Hybrid sebagai Kenderaan Hemat BBM dan Ramah Lingkungan.

. Jeong, J., Lee, D., Kim, N., Park, Y. I., & Cha, S. W. (2011, September). Fuel economy analysis of a parallel hybrid bus using the optimal control theory. In 2011 IEEE Vehicle Power and Propulsion Conference (pp. 1-5). IEEE.

. Van Vliet, O. P., Kruithof, T., Turkenburg, W. C., & Faaij, A. P. (2010). Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars. Journal of power sources, 195(19), 6570-6585.

. Taymaz, I., & Benli, M. (2014). Emissions and fuel economy for a hybrid vehicle. Fuel, 115, 812-817.

. Wang, Y., Hao, C., Ge, Y., Hao, L., Tan, J., Wang, X., ... & Li, J. (2020). Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests. Fuel, 278, 118340.

. Changizian, S., Ahmadi, P., Raeesi, M., & Javani, N. (2020). Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. International Journal of Hydrogen Energy, 45(60), 35180-35197.

. Awadallah, M., Tawadros, P., Walker, P., Zhang, N., & Qin, Y. D. (2016, November). Comparative system dynamic modeling of a conventional and hybrid electric powertrain. In Power Engineering-International conference on Power Transmissions (ICPT 2016) (pp. 231-238). ed Chongqing, China: CRC Press.

. Awadallah, M., Tawadros, P., Walker, P., & Zhang, N. (2017). Dynamic modelling and simulation of a manual transmission based mild hybrid vehicle. Mechanism and Machine Theory, 112, 218-239.

. Wu, G., & Dong, Z. (2017). Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission. Mechanical Systems and Signal Processing, 93, 688-705.

. Zhuang, W., Zhang, X., Ding, Y., Wang, L., & Hu, X. (2016). Comparison of multi-mode hybrid powertrains with multiple planetary gears. Applied energy, 178, 624-632.

. Kim, D. M., Benoliel, P., Kim, D. K., Lee, T. H., Park, J. W., & Hong, J. P. (2019). Framework development of series hybrid powertrain design for heavy-duty vehicle considering driving conditions. IEEE Transactions on Vehicular Technology, 68(7), 6468-6480.

. Minh, V. T., Moezzi, R., & Owe, I. (2018). Fuel economy regression analyses for hybrid electric vehicle. European Journal of Electrical Engineering, 20(3), 363-377.

. Minh, V. T., Moezzi, R., Cyrus, J., & Hlava, J. (2022). Optimal fuel consumption modelling, simulation, and analysis for hybrid electric vehicles. Applied System Innovation, 5(2), 36.

. Mukhamadiev, G. (2023). Hybrid Vehicles: An Analysis of Efficiency and Environmental Impact. Academia Open, 8(2), 10-21070.

. Jung, H. (2020). Fuel economy of plug-in hybrid electric and hybrid electric vehicles: Effects of vehicle weight, hybridization ratio and ambient temperature. World Electric Vehicle Journal, 11(2), 31.

. Deng, Y. (2023). Future Vehicle Trend: A Comparative Study of the Fuel Vehicle, Electrical Vehicle, and Hybrid Vehicles. Highlights in Science, Engineering and Technology, 29, 143-148.

. Srivastava, S., Maurya, S. K., & Chauhan, R. K. (2023). Fuel-Efficiency Improvement by Component-Size Optimization in Hybrid Electric Vehicles. World Electric Vehicle Journal, 14(1), 24.

. National Research Council, Transportation Research Board, Division on Engineering, Physical Sciences, Board on Energy, Environmental Systems, ... & Heavy-Duty Vehicles. (2010). Technologies and approaches to reducing the fuel consumption of medium-and heavy-duty vehicles. National Academies Press.

. Center, A. F. D. (2020). How do hybrid electric cars work. US Department of Energy,[Online]. Available: https://afdc. energy. gov/vehicles/how-do-hybrid-electric-carswork.[Accessed September 2018].

. Xia, F., Griefnow, P., Tidau, F., Jakoby, M., Klein, S., & Andert, J. (2021). Electric torque assist and supercharging of a downsized gasoline engine in a 48V mild hybrid powertrain. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235(5), 1245-1255.

. Joost, W. J. (2012). Reducing vehicle weight and improving US energy efficiency using integrated computational materials engineering. Jom, 64, 1032-1038.

. Ozkan, M. F., Farrell, J., Telloni, M., Mendez, L., Pirvan, R., Chrstos, J. P., ... & Stockar, S. (2024). Data-Driven Personalized Energy Consumption Range Estimation for Plug-in Hybrid Electric Vehicles in Urban Traffic. arXiv preprint arXiv:2405.17654.

. Kulkarni, A. A., Dhanush, P., Chethan, B. S., Gowda, T., & Shrivastava, P. K. (2019). Recent Development in Hybrid Electrical Vehicle. Indian Journal of Science and Technology, 12, 48.

. Yin, Z., Ma, X., Su, R., Huang, Z., & Zhang, C. (2023). Regenerative braking of electric vehicles based on fuzzy control strategy. Processes, 11(10), 2985.

. Sait, M., Dubey, N., Kshitij, P., Prithvi, E. A., & Balaji, S. (2023). An Overview of Influence of Hybridization in Automobiles on its Performance and Environment. Journal of Mines, Metals & Fuels, 71(12).

. Iqbal, M. Y., Wang, T., Li, G., Chen, D., & Al-Nehari, M. M. (2022). A study of advanced efficient hybrid electric vehicles, electric propulsion and energy source. Journal of Power and Energy Engineering, 10(7), 1-12.

. Krithika, V., & Subramani, C. (2018). A comprehensive review on choice of hybrid vehicles and power converters, control strategies for hybrid electric vehicles. International journal of energy research, 42(5), 1789-1812.

. Turrentine, T., Delucchi, M., Heffner, R. R., Kurani, K. S., & Sun, Y. (2006). Quantifying the benefits of hybrid vehicles.

. Solouk, A., & Shahbakhti, M. (2016). Energy optimization and fuel economy investigation of a series hybrid electric vehicle integrated with diesel/RCCI engines. Energies, 9(12), 1020.

. Gao, Z., LaClair, T. J., Smith, D. E., & Daw, C. S. (2015). Exploring fuel-saving potential of long-haul truck hybridization. Transportation Research Record, 2502(1), 99-107.

. Gallagher, K. S., & Muehlegger, E. (2011). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. Journal of Environmental Economics and management, 61(1), 1-15.

. Soon, W. L., Luen, W. K., & Siang, J. M. L. D. (2013). Hybrid Vehicle Adoption –A Conceptual Study. Journal of Education and Vocational Research, 4(6), 165-168.

. Li, F., Gao, J., Wang, J., Zhou, Y., & Zhang, P. (2024, January). Correlation Evaluation and Optimization of Greenhouse Gas Emissions and Electricity Energy Consumption. In Proceedings of the First International Conference on Science, Engineering and Technology Practices for Sustainable Development, ICSETPSD 2023, 17th-18th November 2023, Coimbatore, Tamilnadu, India.

. Condorelli, D. (2013). Market and non-market mechanisms for the optimal allocation of scarce resources. Games and Economic Behavior, 82, 582-591.

. Jin, L., Cao, Y., & Sun, D. (2013). Investigation of potential fuel savings due to continuous-descent approach. Journal of aircraft, 50(3), 807-816.

. Granovskii, M., Dincer, I., & Rosen, M. A. (2006). Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources, 159(2), 1186-1193.




DOI: http://dx.doi.org/10.22441/jtm.v14i3.31388

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats