Evaluating Vegetable Oils as Eco-Friendly Alternatives in Metal Heat Treatment : Review

Sukendar sukendar, Sagir Alva, Dianta Ginting

Abstract


Recent research on sustainable heat-treatment processes highlights the strong potential of vegetable oils as environmentally benign quenching media. This review integrates thermo-physical characteristics, cooling behavior, and mechanical performance reported in key studies from 2010–2024. Vegetable oils demonstrate higher quenching severity (H-value 0.17–0.21) than mineral oils (0.11–0.14), supported by stable viscosity ranges (20.78–110.35 cSt at 40°C; 6.9–33.65 cSt at 100°C) and superior thermal conductivity (0.131–0.182 W/m°C) relative to SAE40 (0.145 W/m°C). Their mechanical performance is consistently favorable: palm kernel oil yields hardness up to 40.85 HRC, cottonseed oil ~33.25 HRC, and groundnut oil produces ~173.8 HV with yield strength reaching 805 MPa. Neem seed oil exhibits exceptional hardness (68.7 HRA) and tensile strength (2122 MPa), while marula oil significantly enhances the hardness and tensile strength of medium-carbon steels. Soybean, sunflower, and canola oils applied to AISI 1045 steel deliver hardness levels of 41–50 HRC. Impact toughness also improves, with neem oil reaching 15 J and additive-modified quenchants containing 5% metal salts achieving up to 131 J. Antioxidant-fortified oils (Irganox L109, TBHQ, Propyl Gallate) further improve oxidation resistance without impairing cooling performance. Overall, properly stabilized vegetable oils represent robust, efficient, and environmentally responsible quenching alternatives for the heat treatment of low- and medium-carbon steels.

Keywords


Vegetable oils, quenching media, mechanical properties, thermal stability, heat treatment of steels.

Full Text:

PDF

References


Zurnadzhy, V., Ставровская, В., Chabak, Y., Petryshynets, I., Efremenko, B., Wu, K., … & Brykov, M. (2024). Enhancing the tensile properties and ductile-brittle transition behavior of the en s355 grade rolled steel via cost-saving processing routes. Materials, 17(9), 1958. https://doi.org/10.3390/ma17091958

Guo, H., Li, Q., Su, J., & Feng, X. (2021). Microstructural characterizations and kinetics model of isothermal bainite formation with the presence of prior martensite in high‐carbon nanostructured bainitic steel. Steel Research International, 92(7). https://doi.org/10.1002/srin.202000708

Siwiec, D., Dwornicka, R., & Pacana, A. (2020). Improving the process of achieving required microstructure and mechanical properties of 38MnVS6 steel. https://doi.org/10.37904/metal.2020.3525

Callister, W. D., Jr., & Rethwisch, D. G. (2018). Materials Science and Engineering: An Introduction (10th ed.). Hoboken, NJ: John Wiley & Sons, Inc.

Krauss G. Steels: heat treatment and processing principles. ASM International, 1990. 1990:497.

Valentino, J., Pramono, A., Syaifudin, A., Kis, A., Shalahuddin, L., Windharto, A., … & SASAKI, K. (2024). Enhancing s45c steel for the primary component of an automatic coupler using quench-tempering techniques. Istrazivanja I Projektovanja Za Privredu, 22(2), 215-222. https://doi.org/10.5937/jaes0-43988

Hằng, P. (2021). Effects of heat treatment process on mechanical properties of medium carbon steel. Vietnam Journal of Agricultural Sciences, 4(4), 1283-1292. https://doi.org/10.31817/vjas.2021.4.4.07

Priyambodo, B., Margono, M., & Yaqin, R. (2022). Gabungan quenching-variasi tekanan shot peening terhadap kekerasan permukaan dan struktur mikro permukaan baja s45c. Quantum Teknika, 4(1), 27–34. https://doi.org/10.18196/jqt.v4i1.16170

Patil, J., et al. (2023). A review on effect of different quenching media on properties of steel. IRJMETS. https://doi.org/10.56726/irjmets39954

Riza, R., Putra, W., & Harjanto, S. (2020). Cooling rate observation in quenching process using carbon nanofluids for s45c carbon steel. Key Engineering Materials, 833, 13–17. https://doi.org/10.4028/www.scientific.net/kem.833.13

Putra, W., et al. (2025). The effects of leaching and pyrolysis on particle synthesis and their impact on thermal conductivity and cooling rates of waste pcb-dispersed quenchants. Materials Research Express, 12(1), 016502. https://doi.org/10.1088/2053-1591/ada48e

Ajiboye, T. & Abdulsalam, A. (2019). Mechanical characteristics of heat-treated medium carbon steel quenched using blending different types of vegetable oils. International Journal of Engineering Materials and Manufacture, 4(4), 146-153. https://doi.org/10.26776/ijemm.04.04.2019.02

Boyer, H. E. (1984). Practical Heat Treating, 1st ed., American

Araoyinbo, A. (2023). Low temperature heat treatment of steel and the effect of quenching on the strength and oxidation behaviour. Mehran University Research Journal of Engineering and Technology, 42(1), 32. https://doi.org/10.22581/muet1982.2301.04

MacKenzie, D. S. (2021, December 22). Using water as a quenchant. Heat Treatment and Surface Engineering. Retrieved from http://thermalprocessing.com

Zheng, H., Yang, Y., Li, J., Zuo, X., Wan, J., Rong, Y., & Chen, N. (2025). Mechanisms of secondary crack initiation, propagation and closure during the water quenching process in medium-carbon martensitic steel. Journal of Materials Science and Engineering, Advance online publication. https://doi.org/10.1016/j.ijplas.2025.104240

Zheng, H., Zeng, L., Zuo, X., Rong, Y., Wan, J., & Chen, N. (2023). Water quenching cracking mechanism and prevention of steels. Heat Treatment and Surface Engineering, 5(1), 2280352. https://doi.org/10.1080/25787616.2023.2280352

Liščić, B., Totten, G. E., & Thornton, S. (1992). Theory and technology of quenching. Metals Park, OH: ASM International. (Halaman 117–181, 248–340, 341–389)

Lopez-Garcia, R. D., Medina-Juárez, I., & Maldonado-Reyes, A. (2022). Effect of quenching parameters on distortion phenomena in AISI 4340 steel. Metals, 12(5), 759. https://doi.org/10.3390/met12050759

Grishin SA, Churyukin YN. Evaluation of the cooling capacity of quenching media based on water. Met Sci Heat Treat. 1986;28:744-5.

Fernandes, P., & Prabhu, K. N. (2008). Comparative study of heat transfer and wetting behaviour of conventional and bioquenchants for industrial heat treatment. International Journal of Heat and Mass Transfer, 51(3–4), 526–538. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.018

Prathviraj, M. P., Samuel, A., & Prabhu, K. N. (2020). Reprocessed waste sunflower cooking oil as quenchant for heat treatment. Journal of Cleaner Production, 269, 122276. https://doi.org/10.1016/j.jclepro.2020.122276

Buczek, A. and Telejko, T. (2004). Inverse determination of boundary condition during boiling water heat transfer in quenching operation. Journal materials Processing Technology, 155-156; 1324-1329

Feng, C. and Tahir I.K. (2008). The effect of quenching medium on the wear resistance of a Ti-6Al-4V alloy. Journal of Material Science, 43, 788-792

Adekunle, A. S., Adeleke, A. A., Gbadamosi, T. A., Nwosu, F. O., Odusote, J. K., Omoniyi, P. O., Popoola, T. O., & Adebiyi, K. A. (2020). A cooling potential of formulated bio-quenchant oils on a cast aluminium alloy material. Journal of Chemical Technology and Metallurgy, 55(5), 1140–1149.

R. L. S. Otero, L. Meekisho, L. C. F. Canale, and G. E. Totten, “Vegetable oil quenchants: a review,” International Journal of Microstructure and Materials Properties, vol. 14, no. 4, pp. 307–360, 2019.

Andriollo, J.P., Parodi, A., Baglietto, L. and Bianchi, S. (2012) ‘Vegetable oil vs mineral oil in quenching applications’, in MacKenzie, D.S. (Ed.): Conf. Proceed. 6th International Conference on Quenching and Control of Distortion, 9–13 September, 2012, Chicago, IL, ASM International, Materials, OH, pp.606–620, ISBN: 9781615039807.

A. Saka, T. K. Abor, A. C. Okafor, dan M. U. Okoronkwo, “Thermo-rheological and tribological properties of low- and high-oleic vegetable oils as sustainable bio-based lubricants”, RSC Sustainability, vol. 3, hlm. 1461–1476, 2025. DOI: 10.1039/D4SU00605D.

D. Filon, M. Pietrzak, dan kolega, “Synthesis and Evaluation of Bio-Lubricants from Vegetable Oils”, Lubricants, vol. 12, no. 12, artikel 446, 2024.

J. Pichler, “Green Chemistry Letters and Reviews: Biodegradable Lubricants from Plant Oils”, Green Chemistry Letters and Reviews, 2023.

Y. H. Tsai, “Thermal Degradation of Vegetable Oils”, Foods, vol. 12, no. 9, artikel 1839, 2023. DOI: 10.3390/foods12091839.

I. Stanciu, “Viscosity Index for Oil Used as Biodegradable Lubricant”, Indian Journal of Science and Technology, vol. 13, no. 03, 2020.

Agboola, J. B., Abubakre, O. K., Mudiare, E., Adeyemi, M. B., & Afolabi, S. A. (2015). Performance assessment of selected Nigerian vegetable oils as quenching media in hardening process for medium carbon steel. Journal of Minerals and Materials Characterization and Engineering, 3(2), 85–93. https://doi.org/10.4236/jmmce.2015.32011.

G. Belinato, L. C. F. Canale, and G. E. Totten, “Effect of antioxidants on oxidative stability and quenching performance of soybean oil and palm oil quenchants,” Journal of ASTM International, vol. 8, no. 9, pp. 1–15, 2011.

Simêncio, E., Otero, R. Canale, L., Totten, G. (2016). Stabilization of vegetable oil-based quenchants to thermal-oxidative degradation: experimental strategy and effect of oxidation on quenching performance. La Metallurgia Italiana, 3.

Salihu, S. A., Sulaiman, Y. I., & Hassan, S. B. (2013). Comparative study of neem seed oil and watermelon seed oil as quenching media for thermal processing of steel. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 7(2), 103–110.

A. S. Sani and E. I. Aminu, "Comparative Analysis of Hot Vegetable Oils Used as Quenchants for Austempering of Nodular (Ductile) and Grey Cast Irons," *International Journal of Science Academic Research*, vol. 2, no. 2, pp. 1093–1106, Feb. 2021. [Online]. Available: http://www.scienceijsar.com

N. I. Kobasko, E. Carvalho de Souza, L. C. F. Canale, and G. E. Totten, "Vegetable Oil Quenchants: Calculation and Comparison of The Cooling Properties of a Series of Vegetable Oils," *Strojniški vestnik - Journal of Mechanical Engineering*, vol. 56, no. 2, pp. 131–142, 2010.

A. Olagunju, “Chemical and physical characterization of watermelon (Citrullus lanatus) seed oil,” Saudi Journal of Chemistry and Materials Science, vol. 8, no. 3, pp. 70–76, 2023.

J. A. Odeyemi and O. A. Adeyemi, “Physicochemical properties and thermal behavior of watermelon seed oil for engineering applications,” Journal of Newviews in Engineering and Technology (JNET), vol. 3, no. 1, pp. 40–48, 2023.

Flores Cuautle, J.J.A. Thermal properties of vegetable oils used in lubricants. Discov Chem Eng 5, 17 (2025). https://doi.org/10.1007/s43938-025-00093-w.

Thermtest, “Heat Conductivity of Water,” Thermtest Thermal Conductivity Blog, Nov. 29, 2021. [Online]. Available: https://thermtest.com/heat-conductivity-of-water.

F. Soltani, D. Toghraie, and A. Karimipour, “Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO₃) and MWCNTs inclusions,” Powder Technology, vol. 374, pp. 228–239, 2020, doi: 10.1016/j.powtec.2020.05.059.

K. Achille, M. M. Ghislain, L. Monkam, dan I. I. Adolphe, “Determination at Variable Temperatures and Analysis of the Physico-Thermal Properties of Palm Kernel and Castor Oil Methyl Esters as Dielectrics for Power Transformers,” International Journal of Heat and Technology, vol. 41, no. 1, hlm. 63–71, Feb 2023. DOI: 10.18280/ijht.410107.

A. J. Asalekar dan D. V. A. Rama Sastry, “Comparative Analysis of Thermal Conductivity of the Hybrid Nanoparticles Based Sunflower and Jatropha Vegetable Oil,” Journal of Polymer and Composites, vol. 11, Special Issue 08, hlm. 164–171, 2023. → mengukur thermal conductivity nanofluid minyak nabati.

Matijevic, B., Liščić, B., Totten, G., & Canale, L. C. F. (2017). Comparative measurement and evaluation of the quenching intensity of palm oil, canola oil and a conventional petroleum oil quenchant based on temperature gradient measurements. Materials Performance and Characterization, 6(1), 20170041. https://doi.org/10.1520/MPC20170041).

S. Onukwuli, C. U. Iloamaeke, and G. E. Okoye, “A comprehensive study on physicochemical properties of fatty acid esters derived from different vegetable oils,” Energies, vol. 17, no. 24, pp. 1–18, 2024.

Kolawole, M. Y., Aliyu, S. A., Bello, S. A., Oladosu, K. O., & Owoeye, I. J. (2023). Effect of bio-mineral oil blend quenchant on the mechanical properties of carburized mild steel. Journal of Engineering and Applied Science, Article 263. https://doi.org/10.1186/s44147-023-00263-z.

E. A. Pérez R., S. Frye R., J. F. Llano M., and D. A. Zuleta D., “Performance of vegetable oils on the hardness and microstructure of AISI 1045 steel quenched,” International Journal of Mechanical Engineering and Technology (IJMET), vol. 10, no. 1, pp. 1120–1127, Jan. 2019. Available: http://iaeme.com/Home/issue/IJMET?Volume=10&Issue=1

I. B. Rahardja, D. Prumanto, Muchayar, and A. I. R. S. C. W. Edukasi, “Hardening of Iron ST 37 with Various Heat Treatments Using Cooling Crude Palm Oil (CPO),”International Journal of Scientific & Technology Research, vol. 8, no. 9, pp. 1275–1280, 2019.

Civera, C., Rivolta, B., Simencio-Otero, R. L., Lu´cio, J. G., Totten, G. E., and Canale, L. C. F., “Vegetable Oils as Quenchants for Steels: Residual Stresses and Dimensional Changes,” Materials Performance and Characterization, Vol. 3, No. 4, 2014, pp. 1–20, doi:10.1520/MPC20140039. ISSN 2165-3992.

O. T. Johnson, E. N. Ogunmuyiwa, A. U. Ude, N. Gwangwava, and R. Addo-Tenkorang, “Mechanical Properties of Heat-treated Medium Carbon Steel in Renewable and Biodegradable Oil,” Procedia Manufacturing, vol. 35, pp. 229–235, 2019, 2nd Int. Conf. on Sustainable Materials Processing and Manufacturing (SMPM 2019).

K. J. Franklin, S. Joshy, M. R., and N. A. Nikhil, “Microstructural study of quenched EN 31 steel in biodegradable oils,” International Journal of Research in Technology and Innovation (IJRTI), vol. 4, no. 1, pp. –, 2019, ISSN: 2456-3315.

S. V. Sreeja, P. Dinesh, and S. B. Patil, "Study of Mechanical Properties of Steel Quenched in a Blend of Biodegradable Oils with Quench Accelerators," *IJLTEMAS*, vol. V, no. V, May 2016, ISSN 2278–2540.

Joel Passanha, Sathyashankara Sharma, Ananda Hegde, Bhagya Lakshmi, Gowri Shankar & Guru Murthy (2022) Experimental and statistical analysis of vegetable oil brine egg yolk emulsion quench on the properties of AISI 4140 steel, Cogent Engineering, 9:1, 2146626, DOI: 10.1080/23311916.2022.2146626.

I. Y. Suleiman, T. A. Mohammed, and L. Shuaibu, “Assessment of Coconut and Ghee Oils as Quenchants in Hardening of Plain Carbon Steel Process,” Journal of Advancement in Engineering and Technology, vol. 6, no. 4, pp. 1–6, Aug. 2018.

E. C. de Souza, M. R. Fernandes, S. C. M. Augustinho, L. C. F. Canale, and G. E. Totten, “Comparison of Structure and Quenching Performance of Vegetable Oils,” Journal of ASTM International, vol. 6, no. 9, Paper ID JAI102188, pp. 1–15, Sep. 2009.




DOI: http://dx.doi.org/10.22441/jtm.v15i01.37136

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Jurnal Teknik Mesin (Journal Of Mechanical Engineering)

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats