Memperbaiki Kinerja Mutu dengan Menggunakan Metode FMEA pada Industri Karung Tenun *Polypropylene*

Kemas Muhammat Abdul Fatah^{1*}, Wisnaningsih²

¹²Teknik Industri, Universitas Sang Bumi Ruwa Jurai, Bandar Lampung

*Email korespondensi: kmsmafattah@gmail.com

Abstrak

Tingkat kegagalan mutu pada proses produksi yang berupa produk cacat (*defect*), produk yang tidak bisa dijual (*scrap*), pengerjaan ulang (*rework*), penolakan (*rejection*), dan limbah (*waste*) adalah indikator kinerja mutu perusahaan, khususnya yang berhubungan dengan biaya mutu. Kegagalan pada proses produksi akan meningkatan tingkat *defect*, *scrap*, *rework*, *rejection*, dan *waste*, yang pada akhirnya akan meningkatkan biaya mutu. Penelitian ini menggunakan metode FMEA untuk menurunkan kegagalan yang teridentifikasi dari aktifitas *gemba walk*. Perbaikan yang dilakukan dengan menggunakan metode FMEA dengan beberapa rekomendasi solusi perbaikan mampu menurunkan kegagalan, ini dapat diketahui dengan membandingkan nilai RPN. Nilai RPN kegagalan pada proses ekstrusi dimana berdampak pada karung tenun PP bolong atau renggang adalah turun menjadi 98 dari 490, dan yang berdampak pada berat karung lebih ringan turun menjadi 98 dari 490. Penurunan terjadi karena pencapaian nilai kapabilitas proses (Cpk) yang sesuai harapan yaitu 1,36 untuk spesifikasi denier dan 1,33 untuk spesifikasi lebar pita benang. Capaian Cpk ini berdampak pada penurunan nilai tingkat *occurence* (o). Sementara itu, nilai RPN kegagalan pada proses tenun yang berdampak produk dikembalikan pelanggan, turun menjadi 98 dari 490. Penurunan terjadi karena operator proses tenun diberi tanggung jawab untuk merakukan perawatan dan kebersihan mesin yang berdampak pada penurunan nilai tingkat *occurence* (o).

Kata Kunci: FMEA, Kapasitas Proses, Karung Plastik Tenun PP

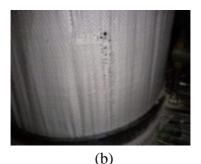
Abstract

The quality failure rate in the production process in the form of defective products, scrap products, rework, rejection, and waste is an indicator of a company's quality performance, especially with regard to cost quality. Failure in the production process will increase the rate of defects, scrap, rework, rejection, and waste, which in turn will increase the cost of quality. This study uses the FMEA method to fight identified failures from gemba walk activities. Improvements made using the FMEA method with several recommendations for improvement solutions can reduce failures, this can be seen by comparing the RPN values. The RPN failure value in the extrusion process which affected the hollow or loose PP woven sacks decreased to 98 from 490, and which resulted in lighter sack weight decreased to 98 from 490. The decrease occurred due to the achievement of the process capability value (Cpk) which was as expected ie 1.36 for denier specifications and 1.33 for yarn bandwidth specifications. This Cpk achievement has an impact on a decrease of the occurrence (o) level. Meanwhile, the failure of the RPN value in the weaving process which had an impact on products returned by customers, decreased to 98 from 490. The decrease occurred because the weaving process operator was given the responsibility to carry out maintenance and cleanliness of the machine which resulted in a decrease of the occurrence (o) level.

Keywords: Capability Process, FMEA, Woven Sack

1. Pendahuluan


Tingkat kegagalan mutu pada proses produksi yang berupa produk cacat (*defect*), produk yang tidak bisa dijual (*scrap*), pengerjaan ulang (*rework*), penolakan (*rejection*), dan limbah (*waste*) adalah indikator yang digunakan untuk mengukur kinerja perusahaan dalam konteks mutu pada banyak penelitian (Kumar et al.,


2018). Kegagalan yang terjadi, baik terjadi di internal (kegagalan internal) maupun terjadi di eksternal (kegagalan eksternal), keduanya akan memunculkan biaya, yaitu biaya kegagalan. Selain itu, kegiatan pengendalian mutu yang ditujukan untuk mencegah kegagalan juga memunculkan biaya, terdiri dari biaya pencegahan dan biaya penilaian (biaya pemeriksaan dan biaya pengujian) (Sturm et al., 2019). Selanjutnya, biaya kegagalan dan biaya pengendalian mutu, keduanya akan memunculkan biaya yang disebut total biaya mutu. Peningkatan atau penurunan biaya mutu, dapat dipandang menurut pandangan klasik dan pandangan modern. Pandangan klasik menyatakan bahwa biaya mutu akan meningkat secara eksponensial seiring dengan peningkatan tingkat mutu. Pandangan modern menyatakan bahwa biaya mutu akan meningkat di awal karena beberapa investasi (dapat berupa alat atau sistem atau keduanya) dibutuhkan untuk pencegahan kegagalan. Dengan adanya penekanan pada usaha mencegah kegagalan, akan membuat biaya mutu meningkat tajam pada awalnya dan pada titik tertentu akan melandai. Secara keseluruhan, menurut pandangan modern, biaya mutu mutu kurang dari setengah dari peningkatan penjualan, sehingga tetap menguntungkan) (Sturm et al., 2019).

Defect, scrap, rework, rejection, waste adalah beberapa di antara bentuk kegagalan mutu yang berujung pada biaya mutu. Untuk menurunkan biaya mutu dapat dilakukan dengan memperbaiki kinerja mutu perusahaan. Terdapat beberapa teknik atau metode yang digunakan untuk memperbaiki kinerja mutu perusahaan diantaranya adalah TQM, Six Sigma, FMEA, QFD (Carvalho et al., 2021). Penelitian ini menggunakan metode FMEA (Failure Mode Effect Analysis), dimana metode ini berhasil diterima sebagai metode perbaikan di berbagai bidang (Spreafico et al., 2017) dengan beragam tujuan. FMEA digunakan untuk aktifitas perbaikan yang terkait dengan kepuasan pelanggan (Altuntas & Kansu, 2019), secara terus menerus memperbaiki produk atau proses dengan mengidentifikasi dan menganalisis potensi kegagalan (Godina et al., 2021). Hasil identifikasi dan analisis akan menjadi dasar menghitung RPN (Risk Priority Number) (Arabsheybani et al., 2018) dan merekomendasikan solusi perbaikan. Nilai RPN diperoleh dari perkalian nilai Severity (S), Occurrence (O) dan Detectability (D) (Rana & Belokar, 2017). Nilai RPN yang diketahui akan mendekatkan pada parameter yang paling berpengaruh pada kegagalan, sehingga mampu mendeteksi bagaimana kegagalan terjadi dan menyarankan tindakan pencegahan (Rana & Belokar, 2017).

FMEA banyak digunakan di dalam penelitian untuk menyelesaikan permasalahan di industri, khususnya industri manufaktur, bahkan beberapa peneliti mengkombinasikan atau mengintegrasikan FMEA dengan metode lain untuk mendapatkan cara yang lebih baik di dalam menyelesaikan masalah. (Mete, 2019) mengintegrasikan FMEA berbasis AHP-MOORA ke dalam *Pythagorean fuzzy sets*, (Lo & Liou, 2018) mengkombinasikan FMEA dengan *Grey Relational Analysis*, (Arabsheybani et al., 2018) mengintegrasikan metode fuzzy MOORA dan FMEA. (Fattahi & Khalilzadeh, 2018) mengkombinasikan FMEA, MULTYMOORA dan AHP, (Peeters et al., 2018) mengkombinasikan *Fault Tree Analysis* dan FMEA, (Trafialek & Kolanowski, 2014) mengkombinasikan FMEA dengan *Hazard Analysis and Critical Control Points* (HACCP) untuk mengaudit risiko dari sistem HACCP.

Merujuk pada hasil dari beberapa penelitian yang dikutip di atas, penelitian ini juga dimaksudkan untuk memperbaiki kinerja mutu dengan menggunakan metode FMEA dengan cara menurunkan atau menghilangkan kegagalan pada sebuah perusahaan industri karung tenun plastik *Polypropylene* (PP). Perbaikan kinerja mutu yang dilakukan terkait dengan ditemukan beberapa produk cacat dan *waste* di area produksi, diantaranya seperti yang terlihat pada Gambar 1.

Gambar 1. Beberapa jenis cacat: (a) anyaman renggang, (b) anyaman berlubang, (c) *waste* pita benang plastic

2. Metoda

Penelitian ini dilakukan pada sebuah industri karung tenun *polypropylene* (PP) yang berlokasi di Cikupa Tangerang di dalam upaya untuk meperbaiki kinerja mutu perusahaan. Seperti yang terlihat pada Gambar 2, tahap pertama dari penelitian ini adalah tim ahli melakukan *Gemba Walk*, dimana tim ahli terdiri dari personil yang kompeten (kepala produksi, *supervisor* ekstrusi, *supervisor* tenun, *supervisor* QC). *Gemba Walk* adalah aktivitas pengamatan permasalahan secara langsung di lapangan (Dalton, 2019) dengan salah satu tugas utama personil dari *Gemba* adalah untuk melakukan perbaikan yang terkait dengan mutu (Maryani et al., 2020). Tahap kedua adalah analisis pertama atas hasil aktifitas *gamba walk* dengan menggunakan metode FMEA, di mana tim ahli akan menentukan nilai *Risk Priority Number* (RPN) dan merekomendasikan solusi perbaikan. Nilai RPN diperoleh dari perkalian nilai *Severity* (S), *Occurrence* (O) dan *Detectability* (D). Sementara itu, untuk menentukan nilai S, O dan D, tim ahli mengacu pada nilai-nilai yang tercantum pada Tabel 1 untuk menentukan nilai S, Tabel 2 untuk menentukan nilai O, dan Tabel 3 untuk menentukan nilai D.

Gambar 2. Kerangka penelitian

Tahap ketiga, penanggungjawab proses perbaikan merealisasikan solusi yang diusulkan oleh tim ahli. Tahap keempat, setelah solusi diimplementasikan perlu dilakukan kembali analisis potensi kegagalan untuk perbaikan selanjuntya, juga menggunakan metode FMEA.

Tabel 1. Skala Tingkat Severity (S) (Fatah, 2022)

Peringkat	Deskripsi	Definisi							
		Kegagalan dapat menyebabkan cedera pelanggan (pasien, pengunjung,							
10	Luar biasa berbahaya	karyawan, anggota staf, mitra bisnis) dan / atau total sistem rusak, tanpa							
		peringatan sebelumnya.							
9	Sangat berbahaya	Kegagalan dapat menyebabkan konsekuensi besar yang permanen; seperti:							
8		gangguan sistem yang serius, gangguan layanan, dengan peringatan sebelumnya.							
7	Berbahaya	Kegagalan bisa menyebabkan konsekuensi besar; yaitu: tingkat ketidakpuasan							
6		pelanggan yang tinggi, perbaikan sistem besar-besaran, atau pengerjaan ulang							
Ü		yang signifikan.							
5	Sedang	Kegagalan dapat menyebabkan konsekuensi yang moderat; yaitu: tingkat							
	C	ketidakpuasan pelanggan yang sedang, masalah sistem.							
4	Rendah	Kegagalan dapat menyebabkan konsekuensi kecil tetapi mengganggu pelanggan							
3		dan / atau mengakibatkan masalah sistem kecil yang dapat diatasi dengan sedikit							
3		modifikasi pada sistem atau proses.							
		Kegagalan tidak dapat menimbulkan konsekuensi apa pun dan pelanggan tidak							
2	Sedikit bahaya	menyadari masalah tersebut; namun, ada potensi konsekuensi kecil. Ada sedikit							
		atau tidak ada efek pada sistem.							
1	Tidak ada bahaya	Kegagalan tidak menimbulkan konsekuensi dan tidak berdampak pada sistem.							

Tabel 2. Skala Tingkat *Occurrence* (O) (Fatah. 2022)

Peringkat	Deskripsi	Definisi						
	1	* **						
10	Kejadian kegagalan hampir pasti	Kegagalan pasti akan terjadi dan setidaknya sekali dalam sehari.						
9	Kegagalan hampir tidak bisa dihindari	Kegagalan terjadi dengan pasti, atau kegagalan terjadi setiap 3–4 hari						
8	Kemungkinan kejadiannya sangat	Kegagalan sering terjadi, atau kegagalan terjadi seminggu sekali						
7	tinggi							
6	Kemungkinan kejadiannya cukup	Kegagalan terjadi kira-kira sebulan sekali						
5	tinggi							
4	Kemungkinan kejadian sedang	Kegagalan terjadi sesekali, atau kegagalan terjadi setiap 3 bulan						
3	Kemungkman kejadian sedang							
2	Kemungkinan terjadinya rendah	Kegagalan jarang terjadi, atau kegagalan terjadi sekitar setahun sekali						
1	Jauh dari kemungkinan terjadi	Kegagalan hampir tidak pernah terjadi; tidak ada yang mengingat kegagalan terakhir						

Tabel 3. Skala Tingkat *Detectability* (D) (Fatah, 2022)

Peringkat	Deskripsi	Definisi						
10	Tidak ada kemungkinan terdeteksi	Tidak ada mekanisme untuk mendeteksi kegagalan.						
9	Peluang deteksi yang sangat tidak dapat	Kegagalan dapat dideteksi hanya dengan pemeriksaan						
8	diandalkan	menyeluruh, dan ini tidak dapat dilakukan atau tidak						
	diandarkan	dapat segera diselesaikan.						
7	Peluang deteksi yang tidak dapat	Kegagalan dapat dideteksi dengan inspeksi manual,						
6	diandalkan	tetapi tidak ada proses yang mapan di tempat untuk						
	diandarkan	menyelesaikan kegagalan.						
5	Kemungkinan deteksi sedang	Ada proses untuk pra-inspeksi, tetapi tidak otomatis dan						
	Remangaman deteksi sedang	/ atau hanya diterapkan pada keadaan tertentu.						
4	Kemungkinan deteksi tinggi	Ada proses inspeksi atau evaluasi, tetapi tidak otomatis.						
3	Kemungkman deteksi tinggi							
2	Kemungkinan deteksi sangat tinggi	Ada proses inspeksi atau evaluasi, dan otomatis.						
1	Hampir kepastian pendeteksiannya	Ada proses pemeriksaan otomatis yang mencegah terjadinya kegagalan.						

3. Hasil Penelitian

Aktifitas *Gemba Walk* dimulai dari proses ekstrusi dan secara berturut-turut ke proses tenun, proses potong, proses cetak, proses jahit. Hasil temuan pada aktifitas *Gemba* selanjutnya dianalisis dengan menggunakan metode FMEA, dan hasilnya seperti terlihat pada pada Tabel 4.

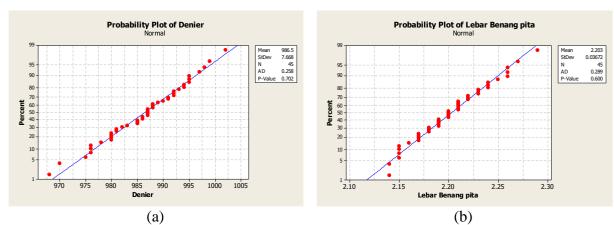
Tabel 4. FMEA Hasil Gemba Walk

Proses	Potensi Kegagalan	Efek	S	Potensi Penyebab	О	Proses Kontrol	D	RPN	Solusi Perbaikan					
Ekstrusi	Denier benang pita tidak sesuai spesifikasi	Karung bolo atau rengga pada pro tenun	_	Belum ada			_Belum ada		_Belum ada		Inspeksi secara periodik	7	490	Menetapkan standar komposisi material dan standar parameter mesin Hitung kapabilitas proses (Cp)
		Berat karu tidak ses spesifikasi	ng 7 uai	standar komposisi material dan	10	Inspeksi secara periodik	7	490						
	Lebar benang pita kurang dari spesifikasi	Karung renggang pa proses tenun	7 ıda	standar parameter mesin.	1	Inspeksi secara periodik	7	49						
	Kekuatan tarik tidak sesuai spesifikasi	Karung tenun pecah	PP 7		-	1	Inspeksi secara periodik	ıra	Tidak diperlukan					

Tenun	Karung bolong atau renggang	Produk dikembalikan oleh pelanggan	7	Wireheart rusak 3 atau aus dan Roda shuttle kotor Sensor suttle tidak -berfungsi	Inspeksi secara periodik	7	147	Membuat standar pembersihan mesin tenun
Potong	Panjang karung tenun PP tidak sesuai spesifikasi	Produk dikembalikan oleh pelanggan	7	Sensor tidak 1 berfungsi	Inspeksi secara periodik	7	49	Tidak diperlukan
Cetak	Warna hasil cetakan tidak merata atau pudar.	Produk dikembalikan oleh pelanggan	7	Roll karet rusak 1 atau aus	Inspeksi secara periodik	7	49	Tidak diperlukan
	Hasil cetakan kotor.	Produk dikembalikan oleh pelanggan	7	Plate pada mesin 1 printing kotor dan terdapat sisa-sisa kotoran tinta	Inspeksi secara periodik	7	49	Tidak diperlukan
	Hasil cetakan tidak tajam warnanya atau terlalu tebal	Produk dikembalikan oleh pelanggan	7	Posisi roll anilox 1 tidak tepat maka	Inspeksi secara periodik	7	49	Tidak diperlukan
Jahit	Benang jahit putus sehingga isi karung tumpah	Produk dikembalikan oleh pelanggan	10	Kerapatan 1 jahitan tidak sesuai	Inspeksi secara periodik	7	70	Inspeksi secara periodik

Seperti terlihat pada Tabel 4, nilai RPN tertinggi ada pada proses ekstrusi dan proses tenun dengan nilai RPN lebih dari 100. Potensi kegagalan pada proses ekstrusi terkait dengan spesifikasi *denier* pita benang yang berdampak pada karung bolong atau renggang, dan berat karung tidak sesuai spesifikasi, masingmasing dengan nilai RPN 490 dan 490. Sementara itu, potensi kegagalan pada proses tenun yang berupa cacat karung bolong atau renggang yang berdampak pada produk dikembalikan oleh pelanggan, dengan nilai RPN 149. Kedua proses ini membutuhkan rekomendasi perbaikan, sementara potensi kegagalan yang lain tidak membutuhkan karena nilai RPN kurang dari 100 (Özilgen & Özilgen, 2017).

Solusi perbaikan pada penelitian ini adalah terhadap karung tenun PP dengan spesifikasi *denier* 1000 dan pick 12 x 12, karena paling banyak di produksi. Cara untuk mengetahui nilai *denier* adalah memotong benang pita sepanjang 9 m lalu ditimbang. Benang pita denier 1000 jika beratnya 1 gram, denier 980 jika beratnya 0.980 gram. Cara untuk mengetahui lebar benang pita (w) adalah berdasarkan spesifikasi *pick* karung tenun. Pick 12 x 12 menunjukan 12 utas benang arah *shuttle* (*horizontal*) dalam 1 inch lebar karung tenun dan menunjukan 12 utas benang arah *creel* (*vertical*) dalam 1 *inch* panjang karung tenun, sehingga spesifikasi lebar benang adalah 2.2 mm.

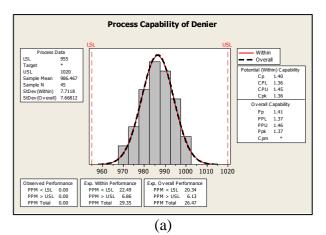

Rekomendasi solusi yang pertama sesuai metode FMEA adalah menetapkan standar komposisi material yang terdiri dari resin PP murni, PP *recycle*, CaCo₃ sebagai bahan *filler*, dan standar parameter mesin untuk yang terdiri dari standar temperatur *barrel*, standar kecepatan *screw*, standar temperatur water quenching tank, standar *stretching ratio* (SR). Sementara itu, rekomendasi solusi yang kedua adalah menghitung kapabitas proses (Cpk). Kedua solusi dapat dilakukan secara bersamaan di mana standar komposisi material dan standar parameter mesin didapat melalui serangkaian eksperimen, dan pada setiap hasil eksperimen dilakukan pemeriksaan kapabilitas proses (Cpk) data hasil pengukuran *denier* dan lebar pita benang. Komposisi material dan parameter mesin dengan hasil pemeriksaan Cpk minimal bernilai 1.33 dapat ditetapkan sebagai standar. Nilai Cpk minimal 1.33 adalah nilai yang disepakati sebagai nilai minimal terkait dengan pemenuhan kepuasan pelanggan (The Council Six Sigma Certification, 2018). Adapun data hasil pengukuran *denier* dan lebar pita benang seperti tampak pada Tabel 5.

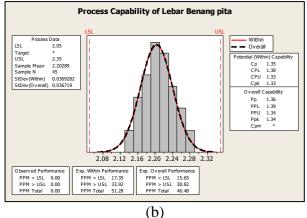
Untuk melakukan perhitungan Cpk, data hasil pengukuran harus dilakukan uji normalitas data dengan metode *Anderson Darling*. Perhitungan normalitas data dilakukan dengan menggunakan *software* minitab 16 dan hasilnya seperti pada Gambar 3 dan Tabel 6.

Tabel 5. Data Pengukuran Denier dan Lebar Pita Benang

No Winder	Denier	Lebar pita	No Winder	Denier	Lebar pita	No Winder	Denier	Lebar pita
1	987	2.22	16	991	2.26	31	997	2.19
2	981	2.15	17	980	2.23	32	975	2.21
3	982	2.23	18	992	2.24	33	976	2.21
4	985	2.21	19	994	2.15	34	983	2.14
5	980	2.15	20	980	2.17	35	988	2.18
6	986	2.29	21	999	2.14	36	990	2.21
7	987	2.19	22	976	2.21	37	995	2.24
8	985	2.17	23	986	2.20	38	994	2.23
9	970	2.26	24	995	2.24	39	998	2.21
10	980	2.25	25	988	2.22	40	976	2.20
11	981	2.18	26	978	2.19	41	987	2.18
12	985	2.19	27	987	2.17	42	988	2.20
13	992	2.20	28	992	2.19	43	989	2.17
14	993	2.20	29	995	2.26	44	968	2.16
15	991	2.22	30	987	2.27	45	1002	2.15

Setelah dipastikan bahwa kedua data hasil pengukuran terdistribusi normal, selanjutnya menghitung Cpk *denier* dan lebar pita benang. Perhitungan Cpk menggunakan *software* minitab 16 dan hasilnya seperti pada Gambar 4 dan Tabel 7.


Gambar 3. Hasil uji normalitas data: (a) data denier, (b) data lebar benang pita


Tabel 6. Ringkasan Hasil Uji Normalitas Data

Parameter Uji	P-value	Interprestasi
Denier	0.702	Nilai P di atas 0.05, data hasil
Lebar	0.234	pengukuran terdistribusi Normal

Tabel 7. Ringkasan Hasil Cpk

Parameter Uji	Cpk	Interprestasi
Denier	1.36	Nilai Cpk keduanya mencapai 1.33, proses
Lebar	1.33	diterima

Gambar 4. Kapabilitas proses data pengukuran: (a) denier, (b) lebar benang pita

Sebagai rekomendasi solusi perbaikan ketiga adalah membuat standar pembersihan dan pemantauan mesin yang selanjutnya disosialisasikan kepada operator mesin tenun. Adapun standar pembersihan yang dimaksud seperti terlihat pada Tabel 8.

Tabel 8. Standar Pembersihan dan Pemantauan Mesin Tenun Oleh Operator

No	Kegiatan	Waktu pelaksanaan	Ilustrasi
1	Ketika diketemukan pita benang silang, segera perbaiki.	Sepanjang mengoperasikan mesin	
2	Membersihkan sisa benang yang nyangkut di pemegang bobin benang	Setiap pergantian benang <i>shuttle</i>	

Bersihkan Daerah tiang gun, dropper, sensor dan sekitarnya dengan cara disemprot dengan angin.

Setiap pergantian *ship* kerja

5 Bersihkan mesin dengan lap

Setiap pergantian *ship* kerja

6 Bersihkan daerah sekitar mesin dari sampah-sampah dengan cara disapu

Setiap pergantian *ship* kerja

Setelah 6 bulan rekomendasi solusi perbaikan diimplementasikan, untuk mengukur efektifitas perbaikan tersebut dilakukan kembali FMEA, hasilnya seperti terlihat pada Tabel 9.

Tabel 9. FMEA Setelah Implementasi Rekomendasi Solusi Perbaikan

Proses	Potensi Kegagalan	Efek	S	Potensi Penyebab	О	Proses Kontrol	D	RPN	Solusi Perbaikan
Ekstrusi	Denier benang pita tidak sesuai spesifikasi	g Karung bolong i atau renggang pada proses tenun	5	Nilai Cpk masih di bawah 2.00	2	Inspeksi secara periodik	7	98	Tidak diperlukan
		Berat karung tidak sesua spesifikasi		sehingga, masih ada kemungkinan ukuran denier dan lebar pita benang berada di luar	2	Inspeksi secara periodik	7	98	_
	Lebar benang pita kurang dari spesifikasi	g Karung i renggang pada proses tenun	7 1		1	Inspeksi secara periodik	7	49	
		Karung tenun i PP pecah	7	– spesifikasi.	1	Inspeksi secara periodik	7	49	Tidak diperlukan
Tenun	Karung tenun PF bolong	Produk dikembalikan oleh pelanggan	7	Wireheart rusak atau aus Roda shuttle	2	Inspeksi secara periodik	7	98	
	Karung tenun PP renggang	•		kotor <i>Sensor suttle</i> tidak berfungsi					_
Potong	Panjang karung tenun PP tidak sesuai spesifikasi	g Produk dikembalikan oleh pelanggan	7	Sensor tidak berfungsi	: 1	Inspeksi secara periodik	7	49	Tidak diperlukan

Cetak	Warna hasil Produk cetakan tidak dikembalikan merata atau oleh pelangga pudar.	Roll karet 1 rusak atau aus	Inspeksi secara periodik	7	49	Tidak diperlukan
	Hasil cetakan Produk kotor. dikembalikan oleh pelangga	Plate pada 1 mesin printing kotor dan terdapat sisa- sisa kotoran tinta	Inspeksi secara periodik	7	49	Tidak diperlukan
	Hasil cetakan Produk tidak tajam dikembalikan warnanya atau oleh pelangga terlalu tebal	Posisi roll 1 anilox tidak tepat maka	Inspeksi secara periodik	7	49	Tidak diperlukan
Jahit	Benang jahit Produk putus sehingga dikembalikan isi karung oleh pelangga tumpah	Kerapatan 1 jahitan tidak sesuai	Inspeksi secara periodik	7	70	Tidak diperlukan

Seperti terlihat pada Tabel 9, setelah rekomendasi solusi perbiakan dilakukan, nilai RPN potensi kegagalan pada proses ekstrusi terkait dengan spesifikasi denier pita benang yang berdampak pada karung bolong atau renggang, dan berat karung tidak sesuai spesifikasi, masing-masing dengan nilai RPN yang sama yaitu 98. Jika dibandingkan dengan nilai RPN sebelumnya, seperti terlihat pada Tabel 4, terjadi penurunan secara signifikan. Hal ini terjadi karena implementasi solusi perbaikan mampu menurunkan nilai tingkat *Occurrence* (o), dimana sebelumnya masing adalah bernilai 10 atau kegagalan pasti terjadi, menjadi bernilai 2 atau kegagalan jarang terjadi. Sementara itu, potensi kegagalan pada proses tenun yang berupa cacat karung bolong atau renggang yang berdampak pada produk dikembalikan oleh pelanggan, dengan nilai RPN 98. Jika dibandingkan dengan nilai RPN sebelumnya, terjadi penurunan secara signifikan. Hal ini terjadi karena implementasi solusi perbaikan mampu menurunkan nilai tingkat *occurrence* (o), dimana sebelumnya masing-masing adalah bernilai 10 atau kegagalan pasti terjadi, menjadi bernilai 2 atau kegagalan jarang terjadi.

4. Kesimpulan dan Saran

Perbaikan yang dilakukan dengan menggunakan metode FMEA dengan beberapa rekomendasi solusi perbaikan mampu menurunkan kegagalan, ini dapat diketahui dengan membandingkan nilai RPN. Nilai RPN kegagalan pada proses ekstrusi dimana berdampak pada karung plastik tenun PP bolong atau renggang adalah turun menjadi 98 dari 490, dan yang berdampak pada berat karung lebih ringan turun menjadi 98 dari 490. Penurunan terjadi karena pencapaian nilai kapabilitas proses (Cpk) yang sesuai harapan yaitu 1,36 untuk spesifikasi denier dan 1,33 untuk spesifikasi lebar pita benang. Capaian Cpk ini berdampak pada penurunan nilai tingkat occurence (O). Sementara itu, nilai RPN kegagalan pada proses tenun yang berdampak produk dikembalikan pelanggan, turun menjadi 98 dari 490. Penurunan terjadi karena operator proses tenun diberi tanggung jawab untuk me;akukan perawatan dan kebersihan mesin yang berdampak pada penurunan nilai tingkat occurence (O). Perbaikan kinerja mutu dengan menurunkan kegagalan pada penelitian ini terjadi karena penurunan nilai tingkat occurrence (O), sementara pada nilai tingkat severity (S) dan tingkat detectability (D) tidak terjadi penurunan, sehingga penelitian ini dapat dilanjutkan untuk menurunkan nilai S dan nilai D.

Daftar Pustaka

Altuntas, S., & Kansu, S. (2019). An innovative and integrated approach based on SERVQUAL, QFD and FMEA for service quality improvement: A case study. *Kybernetes*, 49(10), 2419–2453. https://doi.org/10.1108/K-04-2019-0269

Arabsheybani, A., Paydar, M. M., & Safaei, A. S. (2018). An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier's risk. *Journal of Cleaner Production*, 190, 577–591. https://doi.org/10.1016/j.jclepro.2018.04.167

- Carvalho, A. V., Enrique, D. V., Chouchene, A., & Charrua-Santos, F. (2021). Quality 4.0: An overview. *Procedia Computer Science*, 181(2019), 341–346. https://doi.org/10.1016/j.procs.2021.01.176
- Dalton, J. (2019). Gemba Kaizen. In *Great Big Agile: An OS for Agile Leaders* (pp. 175–176). https://doi.org/10.1007/978-1-4842-4206-3
- Fatah, K. M. A. (2022). Menghilangkan Keluhan Pelanggan Dengan Menggunakan Teknik Poka-Yoke Sederhana Berbiaya Murah. *J@ti Undip: Jurnal Teknik Industri*, *17*(3), 168–173. https://doi.org/10.14710/jati.17.3.168-173
- Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. *Safety Science*, *102*(July 2017), 290–300. https://doi.org/10.1016/j.ssci.2017.10.018
- Godina, R., Silva, B. G. R., & Espadinha-Cruz, P. (2021). A DMAIC integrated fuzzy fmea model: A case study in the automotive industry. *Applied Sciences* (*Switzerland*), 11(8). https://doi.org/10.3390/app11083726
- Kumar, P., Maiti, J., & Gunasekaran, A. (2018). Impact of quality management systems on firm performance. *International Journal of Quality and Reliability Management*, *35*(5), 1034–1059. https://doi.org/10.1108/IJQRM-02-2017-0030
- Lo, H. W., & Liou, J. J. H. (2018). A novel multiple-criteria decision-making-based FMEA model for risk assessment. *Applied Soft Computing Journal*, *73*, 684–696. https://doi.org/10.1016/j.asoc.2018.09.020
- Maryani, E., Purwanto, A., Kartika, H., Haris, M., Ihsan, N., Fatah, K. M. A., & Pramono, R. (2020). *Do gemba kaizen and 5s reinforce medical equipment manufacturing performance?* 07(07), 41–57.
- Mete, S. (2019). Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment. *Human and Ecological Risk Assessment*, 25(7), 1645–1660. https://doi.org/10.1080/10807039.2018.1546115
- Özilgen, S., & Özilgen, M. (2017). General template for the FMEA applications in primary food processing. *Advances in Biochemical Engineering/Biotechnology*, 161, 29–69. https://doi.org/10.1007/10_2016_52
- Peeters, J. F. W., Basten, R. J. I., & Tinga, T. (2018). Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. *Reliability Engineering and System Safety*, 172(November 2017), 36–44. https://doi.org/10.1016/j.ress.2017.11.024
- Rana, S., & Belokar, R. M. (2017). Quality Improvement Using FMEA: A Short Review. *International Research Journal of Engineering and Technology*, 4(6), 263–267. https://irjet.net/archives/V4/i6/IRJET-V4I645.pdf
- Spreafico, C., Russo, D., & Rizzi, C. (2017). A state-of-the-art review of FMEA/FMECA including patents. *Computer Science Review*, 25, 19–28. https://doi.org/10.1016/j.cosrev.2017.05.002
- Sturm, S., Kaiser, G., & Hartmann, E. (2019). Long-run dynamics between cost of quality and quality performance. *International Journal of Quality and Reliability Management*, *36*(8), 1438–1453. https://doi.org/10.1108/JJQRM-05-2018-0118
- The Council Six Sigma Certification. (2018). Six Sigma A Complete Step-by-Step Guide. In *The Council for Six Sigma Certification*. https://www.sixsigmacouncil.org/wp-content/uploads/2018/08/Six-Sigma-A-Complete-Step-by-Step-Guide.pdf
- Trafialek, J., & Kolanowski, W. (2014). Application of Failure Mode and Effect Analysis (FMEA) for audit of HACCP system. *Food Control*, 44, 35–44. https://doi.org/10.1016/j.foodcont.2014.03.036