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Abstrak 

Quality Control (QC) sangat penting dalam manufaktur untuk memastikan kualitas produk 

dan meminimalisir cacat produk. Namun, meningkatnya kompleksitas produk dan proses 

manufaktur telah membuat identifikasi dan prioritas cacat untuk QC menjadi lebih 

menantang, sementara sebagian besar studi hanya berfokus pada inspeksi visual. Oleh karena 

itu, studi ini mengusulkan analisis berbasis data cacat terstruktur dan kerangka kerja untuk 

menemukan prioritas dalam proses QC. Kerangka kerja ini menggunakan pengelompokan 

K-Means untuk mengelompokkan cacat berdasarkan karakteristiknya, seperti jenis, lokasi, 

dan tingkat keparahan yang memengaruhi tingkat biaya perbaikan. Untuk memvalidasi 

model, Davis-Bouldin Index dan Silhouette Score digunakan untuk mengukur kualitas 

model. Eksplorasi data menunjukkan bahwa setiap fitur memiliki hubungan serta dampak 

terhadap biaya perbaikan di mana tingkat keparahan yang lebih besar sejalan dengan biaya 

perbaikan yang lebih tinggi. Penemuan menunjukkan bahwa cluster 0 adalah yang harus 

diprioritaskan karena memiliki biaya perbaikan tertinggi di antara yang lain. Hasil penelitian 

menunjukkan bahwa kerangka kerja tersebut dapat secara efektif mengidentifikasi dan 

memprioritaskan cacat untuk QC, yang berpotensi mengarah pada peningkatan kualitas 

produk dan pengurangan biaya manufaktur.

 

Kata kunci: Cacat produk; Quality Control (QC); K-Means Clustering; Manufaktur; 

Prioritas 

 

Abstract 

Quality control (QC) is crucial in manufacturing to ensure product quality and minimize 

defects. However, the increasing complexity of products and manufacturing processes has 

made it more challenging to identify and prioritize defects for QC, while most studies focus 

only on visual inspection. Therefore, this paper proposes a structured defect data-based 

analysis and framework for QC prioritization. The framework uses K-Means clustering to 

group defects based on their characteristics, such as type, location, and severity, which 

impact the repair cost rate. To validate the model, the Davis-Bouldin Index and Silhouette 

Score are used to measure model quality. Data exploration shows that each feature has a 

relationship with and impacts repair costs, where greater severity aligns with higher repair 

costs. The findings indicate cluster 0 as the main priority due to highest repair cost among 

others. The results show that the framework can effectively identify and prioritize defects for 

QC, potentially leading to improved product quality and reduced manufacturing costs. 

Keywords: Defects; Quality Control; K-Means Clustering; Manufacturing; Prioritization 



Jurnal PASTI, XVIII, No. 3, Desember 2024, 405-412 

 

406 

 

INTRODUCTION 

The manufacturing sector is pivotal in advancing Sustainable Development Goals 

(SDGs) by producing high-quality, complex products at lower costs while minimizing 

resource waste (Stershic et al., 2021; Colledani et al., 2014). However, manufacturing 

defects remain a significant challenge, directly affecting product performance, costs, and 

customer perception. Despite advancements in design, material selection, and manufacturing 

processes, defects persist in production systems (Sreedharan et al., 2018). For developed 

countries competing with lower-cost producers, addressing these challenges is crucial. 

Manufacturers are increasingly focusing on productivity and quality enhancement through 

defect analysis and prevention to stay competitive (Elmekkawy et al., 2006).  

Defects negatively affect the manufacturing process (Sanaei & Fatemi, 2021) and 

impact product quality (Psarommatis et al., 2020). Its analysis is essential for enhancing 

quality and productivity.  Various methods, such as simulations, historical and Pareto 

analysis, cause-effect diagrams, and neural networks, help identify process improvements 

(Kumar et al., 2016; Casey et al., 1991). A comprehensive approach classifies defects by 

factors like size and location, then analyzes potential causes related to design, material, and 

process parameters (Mane et al., 2011). Integrated computer modules support small 

industries by combining expertise for defect identification and correction (Mehta et al., 

2020). Simulation analysis optimizes parameters to reduce defects, especially in foundries 

with manual processes and unskilled labor (Mane et al., 2011). 

K-means clustering has proven effective in detecting manufacturing defects across 

various industries. In semiconductor wafer production, it can segment defects based on color 

features, enhancing efficiency compared to manual inspection (Nor Hidayah Saad et al., 

2015). In biomass particle production, K-means, combined with prior knowledge, accurately 

detects issues such as poor roundness and cracks, achieving high accuracy and speed (Wei 

Wang & Gong, 2020). Although K-means itself is not directly used, a related K-Nearest 

Neighbor algorithm has been employed to predict defect rates, with the Minkowski distance 

method reaching 86.41% accuracy under optimal conditions (Muhammad David & 

Muhammad Azka Firdaus, 2024). These studies underscore the adaptability of K-means and 

similar algorithms in improving quality control and production efficiency across various 

industries. 

The primary issue addressed in this research pertains to defects within the 

manufacturing industry, which remain a critical challenge in ensuring product quality. This 

study highlights that defect analysis should not be limited to visual inspections alone. By 

leveraging structured data for further analysis, industries can significantly improve their 

quality control (QC) processes. Through the application of clustering techniques, this 

research provides a practical framework to assist managers in prioritizing defects, thereby 

enhancing the overall efficiency of defect management and quality assurance.  The novelty 

of this research lies in its innovative approach to integrating structured defect data with K-

Means clustering to enhance quality control (QC) prioritization in the manufacturing 

industry. Traditional QC methods often rely on visual inspections and reactive strategies, 

which can be inefficient and fail to uncover underlying defect patterns. Traditional quality 

control methods often rely on reactive strategies and visual inspections, which can be 

inefficient and fail to uncover underlying defect patterns (Desai & Mital, 2009; Watts, 2011). 

These approaches are costly and do not guarantee defect-free products, especially for items 

with multiple quality characteristics (Hussein & Diab, 2010). To address these limitations, 

there has been a shift towards proactive quality management strategies that incorporate 

design techniques to eliminate the need for inspection (Desai & Mital, 2009). This study 

introduces a data-driven framework that systematically analyzes defect data to identify 
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patterns and clusters based on factors such as severity, frequency, and impact. This 

structured methodology provides a fresh perspective on addressing manufacturing defects 

by enabling proactive and informed decision-making.  

Research on defect detection identifies various attributes, including defect type 

(Monje et al., 2019), location (Wang & Cheng, 2019), and severity (Psarommatis et al., 

2020). Defects are classified as cosmetic (e.g., scratches) (Zhang et al., 2021), structural 

(e.g., cracks) (Brennan et al., 2021), or functional (affecting performance) (Fu et al., 2022). 

Location determines whether defects appear on surfaces or components (Brennan et al., 

2021), while severity influences repair costs (Powell et al., 2022). Clustering these attributes 

helps prioritize defect management based on criticality and cost. 

The findings of this research highlight the significant advantages of utilizing 

structured defect data for clustering analysis. By applying K-Means clustering, the study 

reveals hidden trends and patterns in defect occurrences, offering deeper insights that are not 

readily apparent through conventional QC practices. Additionally, the framework prioritizes 

critical defect clusters, allowing managers to allocate resources more effectively to address 

the most impactful issues. Data-driven approaches have shown promise in identifying root 

causes of defects. Chen et al. (2004) as a result, the proposed methodology not only 

streamlines inspection processes but also minimizes waste and improves overall product 

quality, showcasing its potential to revolutionize QC practices in the manufacturing sector.  

 

 

METHODS 

1. Data Collection and Preprocessing 

The primary objective of this step is to prepare manufacturing defect data for clustering 

analysis. Data collection involves gathering defect-related information, including categorical 

features such as defect type, defect location, and severity. 

To ensure compatibility with clustering algorithms, categorical data is transformed into 

numerical formats using label encoding. For example, defect types are encoded as cosmetic 

(0), functional (1), and structural (2). Similarly, defect locations are labeled as component 

(0), internal (1), and surface (2), while severity is categorized into critical (0), minor (1), and 

moderate (2). 

After encoding, the dataset undergoes cleaning processes to address missing values, outliers, 

and duplicates. This ensures that the input data is accurate and reliable for subsequent 

clustering analysis. 

 

2. Cluster Analysis Using K-Means 

The goal of this step is to group defects into clusters based on shared characteristics to 

support prioritization. The first task involves defining the optimal number of clusters (“k”) 

using the elbow method. This technique identifies the point where adding more clusters no 

longer significantly reduces the Within-Cluster Sum of Squares (WCSS). K-Means will 

define the centroid (the center-point) randomly (Romanuke, 2023), and place based on its 

cluster to the nearest centroid (Figure 1), then it will count the average point (Ikotun et.al., 

2023).  
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Figure 1. How K-Means Works on Data Clustering 

 

Each data point in the dataset is assigned to the nearest cluster based on a distance metric, 

typically the Euclidean distance (Ikotun et.al., 2023). It calculates the straight-line distance 

between two points in a multidimensional space (Faisal & Zamzami, 2020), it also helps the 

algorithms to update the centroid. The objective function ( J(z, A)) in k-Means is used to 

minimize the distance between data points and their cluster centres, once data points 

assigned to clusters, the centroid are updated (aₖ). k greatly influences the clustering results. 

four methods used for selecting the value of k: the elbow method & silhouette score (Yuan 

& Yang, 2019). This study will measure the silhouette score to validate clustering quality, 

Once the optimal “k” is determined (e.g., k = 3), the K-Means algorithm is applied. The 

resulting clusters are analyzed by examining their centroids to identify key patterns such as 

repair costs, defect types, defect locations, and severity. 

 

3. Dimensionality Reduction and Visualization 

Dimensionality reduction techniques are essential for effective visualization of clustering 

results. Principal Component Analysis (PCA) is employed to reduce the number of 

dimensions while retaining meaningful data variance. 

The PCA plots highlight group differences based on repair costs and defect characteristics, 

providing a clear visual representation of the clusters. This aids in interpreting the clustering 

results and identifying trends among the defects. 

 

4. Cluster Interpretation and Prioritization 

This step focuses on interpreting the clustering results and determining priorities for quality 

control. 

• Cluster 0: This cluster is characterized by high repair costs and functional defects, 

predominantly located internally. Severity ranges from minor to moderate. These 

defects require prioritization due to their complexity and expense. 

• Cluster 1: This group contains low-cost cosmetic defects that are primarily located 

on the surface. With minor severity, these defects can be managed with minimal 

resources. 

• Cluster 2: Comprising moderate-cost structural defects, this cluster shows a 

balanced distribution of defect locations. Severity levels range from minor to 

moderate, warranting investigations into assembly processes. 

Actionable insights include allocating skilled technicians and larger budgets for Cluster 0, 

minimal resources for Cluster 1, and process optimization for Cluster 2. 

 

5. Model Validation 

Model validation ensures the clustering model’s performance and reliability. Internal 

validation involves calculating silhouette scores and the Davies-Bouldin Index to assess 

clustering quality and overlap between clusters. 
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External validation tests the model’s performance on unseen datasets, using silhouette scores 

to confirm its generalization capability. These validation steps ensure that the model is robust 

and reliable for real-world applications. 

 

6. Implementation 

To integrate the clustering model into manufacturing quality control processes, the model is 

deployed to classify ongoing defect data into clusters. Managers can leverage visualizations 

and statistical summaries to make informed decisions. 

Periodic retraining of the model with updated defect data is crucial to adapt to new patterns 

and maintain its effectiveness. 

 

RESULT & DISCUSSION 

 

1. Data Preprocessing 

 

 
Figure 2. Sample Dataset of Manufacturing Defect 

The manufacturing defect dataset underwent preprocessing to prepare it for K-Means 

clustering. This involved transforming categorical features into numerical representations. 

Defect type has categorical feature was converted into numerical data using label encoding: 

cosmetic (0), functional (1), structural (2). While defect location’s categorical features was 

also converted using label encoding: component (0), internal (1), surface (2). Severity was 

converted using label encoding: critical (0), minor (1), moderate (2).  

 

2. Defining Number of Clusters (k) 

In doing clustering K-Means task, defining centroids is an essential part. The method 

that will be used for defining centroids is elbow method which is used for illustrating the 

relationship between the number of clusters (k) and Within-Cluster Sum of Squares (WCSS). 

Figure 3 shows the elbows graph, y-axis represents the WCSS values. This measures how 

far data points within a cluster are from their cluster center. While x-axis represents the 

number of clusters being tested. Elbow point on the graph indicates the optimal number of 

clusters. Beyond this point, the decrease in WCSS becomes insignificant.  
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Figure 3. Elbow method to define centroid 

 

Before the elbow, decrease in WCSS is very steep, indicating that adding more clusters 

significantly improves the quality of clustering. While after the elbow, decrease in WCSS 

slows down, suggesting that adding more clusters does not provide significant improvement. 

The optimal number of clusters is at the "elbow" point. In this graph, the "elbow" is observed 

around k=3, thus, the research use three clusters.  

 

2. K-Means Clustering 

Result  shows that there is a positive correlation is observed between repair cost and severity 

(figure 4), meaning that defects with higher repair costs also tend to have higher severity 

levels. This relationship highlights that more severe defects often demand more resources to 

address. Additionally, there is a notable relationship between defect location and defect 

type. Despite the general patterns observed within each cluster, there is still significant 

variation among the defects within the same cluster.  

 
Figure 4. Parallel Coordinates Plot Describing Data Spread and Variability Each Cluster 

 

Cluster 2 (red) tends to have lower repair costs and severity, suggesting that defects 

within this cluster are generally easier and more affordable to fix. In contrast, cluster 0 

(green) is characterized by higher repair costs and severity, indicating that defects in this 

cluster are likely more complex and require more expensive repairs. Cluster 1 (yellow) has 

characteristics that fall between cluster 0 and cluster 2, representing a middle ground in terms 
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of repair costs and defect severity. Variability between defects in clustering is common, 

cluster 2, while most defects are easier and cheaper to fix, some may still present unique 

challenges. It may contain defects with various levels of complexity and cost.  PCA 

(Principal Component Analysis) is used in clustering visualization as a dimensionality 

reduction technique where the details of each data point will be identified to maintain the 

accuracy and objectivity of clustering. Figure 6a shows that cluster 0 is grouped in the upper 

part of the PCA graph which indicates higher repair costs, as it tends to be separated from 

other clusters that may have lower repair costs.  

 

 
(a) Cluster visualization with PCA        (b) Distribution of Repair Cost Each Cluster 

 

Figure 5. Principal Component Analysis (PCA) and Boxplot Defines Cluster with Highest 

Repair Cost 

 

Cluster 1 is positioned in the lower-left, indicated lower repair costs, the same with 

cluster 2 which is located in the lower-right of the PCA graph (Figure 5a). This is supported 

by the boxplot (Figure 5b) that shows the difference each cluster where Cluster 0 has the 

highest median repair cost, supporting our earlier assumption based on the PCA graph that 

this cluster is dominated by defects with higher repair costs. Clusters 1 and 2 have lower and 

relatively similar median repair costs. However, Cluster 1 exhibits a wider data distribution, 

indicating greater variability in repair costs within this cluster. Table 1 shows that cluster 0 

is dominated by functional defects (average defect_type 959.620), mostly located internally 

(average defect_location 942.993), with a severity leaning towards minor but including some 

moderate cases (average severity 1.023.753). Cluster 1 mostly contains cosmetic defects 

(average defect_type 338.462), found predominantly on the surface (average defect_location 

1.380.769), with minor severity (average severity 807.692). Cluster 2 is dominated by 

structural defects (average defect_type 1.727.273), occurring across all locations but slightly 

favoring internal areas (average defect_location 849.530), with a severity leaning towards 

minor but including some moderate cases (average severity 1.050.157). 

 

Table 1. Average feature each cluster 
Cluster defect_type defect_location severity 

0 959.620 942.993 1.023.753 

1 338.462 1.380.769 807.692 

2 1.727.273 849.530 1.050.157 
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Cluster 0, comprising 421 data points, is characterized by the highest average repair 

cost (mean 0.97, median 0.98), indicating expensive repairs. The defect type in this cluster 

is predominantly "functional", while defects are mostly located internally and have a severity 

level categorized as "minor". Cluster 1, with the smallest count of 260 data points, exhibits 

the lowest average repair cost (mean -0.77, median -0.72), suggesting inexpensive repairs. 

Defects in this cluster are primarily "cosmetic" and predominantly located on the surface, 

with a severity level also classified as "minor." Cluster 2, the largest cluster with 319 data 

points, displays relatively low repair costs (mean -0.66, median -0.64). The defect type in 

this cluster is primarily "structural," with defect locations more evenly distributed but 

slightly skewed toward "component" locations. The severity in this cluster is classified as 

"minor" but trends closer to "moderate." 

 

Table 2. Descriptive Statistics each Cluster 
k Fitur count mean std min 25% 50% 75% max 

0 defect_type 421.0 959.620 781.198 0.0 0.0 1.0 2.0 2.0 

0 defect_location 421.0 942.993 817.417 0.0 0.0 1.0 2.0 2.0 

0 severity 421.0 1.023.7

53 

801.431 0.0 0.0 1.0 2.0 2.0 

0 repair_cost 421.0 979.471 453.846 -56.471 616.255 984.33 1.385.1 1.699 

1 defect_type 260.0 338.462 474.099 0.0 0.0 0.0 1.0 1.0 

1 defect_location 260.0 1.380.7 728.101 0.0 1.0 2.0 2.0 2.0 

1 severity 260.0 807.692 801.506 0.0 0.0 1.0 1.0 2.0 

1 repair_cost 260.0 -772.40 606.535 -1.718.285 -1.343.1 -721.02 -264.98 628.0 

2 defect_type 319.0 1.727.2

73 

446.061 1.0 1.0 2.0 2.0 2.0 

2 defect_location 319.0 849.530 821.828 0.0 0.0 1.0 2.0 2.0 

2 severity 319.0 1.050.1 783.472 0.0 0.0 1.0 2.0 2.0 

2 repair_cost 319.0 -663.11 611.548 -1.717.525 -1.214.1 -646.01 -124.83 526.5 

 

From this observation, Cluster 0 stands out with significantly higher repair costs, 

while Clusters 1 and 2 have relatively lower repair costs. In terms of defect types, Cluster 0 

is dominated by "functional" defects, Cluster 1 by "cosmetic" defects, and Cluster 2 by 

"structural" defects. Defect locations also vary, with Cluster 0's defects predominantly 

"internal," Cluster 1's defects more prevalent on the "surface," and Cluster 2 showing a 

relatively balanced distribution with a slight skew toward "component" defects. Although 

all clusters are largely associated with "minor" severity, Cluster 2 leans closer to "moderate." 

Cluster 0 requires prioritization for repairs due to its high costs and the need for skilled 

technicians and larger budgets. For Cluster 1, less specialized resources can be allocated to 

manage inexpensive "cosmetic" defects on the surface. Cluster 2 warrants further 

investigation into assembly processes and materials to address "structural" defects.  

 

3. Model Validation 

The validation is to measure if this model can be deployed to future data, we use internal 

validation and external validation. External validation evaluates how well the model 

generalizes to new, unseen data, which consist of silhouette score and  the davies-bouldin 

index are used to evaluate clustering K-Means algorithm (Suraya, 2024). The test set 

silhouette score is 0.232, indicates that the model generalizes fairly well, as it reflects 

adequate clustering on unseen data. Internal validation measures the quality of clustering on 
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the training dataset. The silhouette score for the entire training data of 0.228, shows a quite 

good clustering performance. Additionally, the Davies-Bouldin Index of 1.213 reveals that 

there is noticeable overlap between clusters, as lower values typically indicate better-defined 

clusters. Overall, K-Means model demonstrates sufficient capability in segmenting 

manufacturing defect data into clusters. It generalizes well to new data, but the overlap 

between clusters suggests there is room for further refinement and optimization. 

 

CONCLUSION 

This study demonstrates that the defect analysis does not stop only in visual 

inspection, for further analysis, industries can put that on a structured data to enhance the 

quality control (QC). Clustering in this study can help managers to determine which defect 

should be prioritized. This study prove that there is positive correlation between repair costs 

and severity, highlighting the increased expense associated with fixing more severe defects. 

A relationship between defect location and defect type, indicating that certain types of 

defects are more likely to occur in specific locations within the product. The analysis reveals 

significant variability within each cluster, underscoring the diverse characteristics that 

defects can exhibit even within the same cluster. PCA visualization effectively distinguishes 

clusters based on repair costs, with one cluster incurring the highest expenses and the other 

clusters showing lower costs. This financial disparity is further supported by the boxplot 

analysis, which confirms the higher median repair cost for the high-cost cluster. This study 

contribute to a deeper understanding of defect patterns in manufacturing and provide a robust 

framework for prioritization in QC. The K-Means model successfully identifies distinct 

clusters based on defect characteristics, enabling targeted QC prioritization in 

manufacturing.     
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