

SINERGI Vol. 25, No. 3, October 2021: 381-392
http://publikasi.mercubuana.ac.id/index.php/sinergi

http://doi.org/10.22441/sinergi.2021.3.015

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 381

REDUCING OVERHEAD OF SELF-STABILIZING BYZANTINE
AGREEMENT PROTOCOLS FOR BLOCKCHAIN USING HTTP/3
PROTOCOL: A PERSPECTIVE VIEW

Nur Arifin Akbar1*, Andi Sunyoto1, M. Rudyanto Arief1, Wahyu Caesarendra2
1Department of Informatics Engineering, Universitas Amikom Yogyakarta, Indonesia
2Faculty of Integrated Technologies, Universiti Brunei Darussalam, Brunei

Abstract
Today, there is a tendency to reduce the dependence on local
computation in favor of cloud computing. However, this inadvertently
increases the reliance upon distributed fault-tolerant systems. In a
condition that forced to work together, these systems often need to
reach an agreement on some state or task, and possibly even in the
presence of some misbehaving Byzantine nodes. Although non-
trivial, Byzantine Agreement (BA) protocols now exist that are
resilient to these types of faults. However, there is still a risk for
inconsistencies in the application state in practice, even if a BA
protocol is used. A single transient fault may put a node into an
illegal state, creating a need for new self-stabilizing BA protocols to
recover from illegal states. As self-stabilization often comes with a
cost, primarily in the form of communication overhead, a potential
lowering of latency - the cost of each message - could significantly
impact how fast the protocol behaves overall. Thereby, there is a
need for new network protocols such as QUIC, which, among other
things, aims to reduce latency. In this paper, we survey current state-
of-the-art agreement protocols. Based on previous work, some
researchers try to implement pseudocode like QUIC protocol for
Ethereum blockchain to have a secure network, resulting in slightly
slower performance than the IP-based blockchain. We focus on
consensus in the context of blockchain as it has prompted the
development and usage of new open-source BA solutions that are
related to proof of stake. We also discuss extensions to some of
these protocols, specifically the possibility of achieving self-
stabilization and the potential integration of the QUIC protocol, such
as PoS and PBFT. Finally, further challenges faced in the field and
how they might be overcome are discussed.

This is an open access article under the CC BY-NC license

Keywords:
Blockchain;
Byzantine Agreement;
PBFT;
Proof of Work;
QUIC protocol;
Self-stabilization;

Article History:
Received: January 5, 2021
Revised: April 15, 2021
Accepted: May 17, 2021
Published: September 29, 2021

Corresponding Author:
Nur Arifin Akbar
Department of Informatics
Engineering, Universitas Amikom
Yogyakarta, Indonesia
Email:
nur.1233@students.amikom.ac.id

INTRODUCTION

This first section provides a background to
the agreement in distributed systems that are
prone to failures. After that, blockchain is
presented and how it utilizes distributed
agreement. Finally, the section is concluded with
the aim of this paper. Distributed systems are a
fundamental part of many services used Today,
and applications often require these systems to be
resilient to failures and malicious actors. These
systems utilize different sets of protocols to

maintain an agreement amongst themselves.
Being able to reach an agreement or consensus is
necessary as the system is expected to perform
coordinated tasks, such as removing misbehaving
nodes from the network. Misbehaving nodes,
meaning nodes that are not functioning correctly,
exist due to the nature of distributed systems,
where networks may fail, and malicious nodes
may be introduced to the system. In order to
provide resilience against malicious behavior,
nodes are considered to be able to act Byzantine.

http://creativecommons.org/licenses/by-nc/4.0/
mailto:nur.1233@students.amikom.ac.id
https://crossmark.crossref.org/dialog/?doi=10.22441/sinergi.2021.3.015&domain=pdf

SINERGI Vol. 25, No. 3, October 2021: 381-392

382 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

That is, they might exhibit arbitrary or malicious
behavior, which may hinder protocol progression.
Agreement protocols designed to function
correctly with Byzantine nodes are referred to as
the Byzantine Agreement (BA) protocols.
Additionally, to further strengthen the system's
fault tolerance, it can be designed to be self-
stabilizing. A self-stabilizing system guarantees
that it will always end up in a legal execution, such
as exhibiting correct behavior concerning the
system requirements, regardless of what state the
system might be starting in, a desirable property
production system.

In this paper, we will investigate the earlier
introduced challenges on the blockchain.
Blockchain, and its most well-known application,
Bitcoin [1], is a clear example of how distributed
systems in practice may reach an agreement. In
Bitcoin, nodes must agree on the set of valid
transactions and their order in the underlying
ledger. What might result from its popularity,
Bitcoin has spawned several potential successors
utilizing other BA protocols. Altogether, this
cryptocurrency ecosystem safeguards immense
amounts of money enabled by decades of
research in the field of distributed systems and
Byzantine fault-tolerance (BFT), a field that is still
rapidly evolving.

A well-known, popular blockchain
application is a cryptocurrency, a distributed
system that imposes strict requirements: most
significantly. It is crucial to avoid what is referred
to as double-spending. Users can spend their
money more than once, which would naturally
undermine the entire payment system. In order to
avoid this and other similar problems, robust
agreement protocols are used. Thereby, the
nodes providing the service can agree on the
system's current state, which for a blockchain is
the underlying ledger of blocks. These agreement
protocols need to be resilient and tolerate
Byzantine faults, which is achieved through
designing BFT protocols.

In this survey paper, we will provide an
overview of three consensus protocols with
varying applications. We discuss their limitations
and whether or not self-stabilization could be
introduced to target these weaknesses. As this
may result in increased performance overhead,
we will finally discuss the extent to which the
current internet network stack could limit the
performance of distributed blockchain
applications. The QUIC protocol will be introduced
and discussed as a solution in this context to
reduce this overhead increase. The following
section presents the theory needed to understand
the survey, and after that, Section 3 describes the
consensus protocols central to this paper. Section

4 discusses the differences and similarities
between these protocols and how some
improvements could be introduced. Section 5
describe previous work that combines UDP+TCP
for IP protocol experiment. Finally, Section 6
concludes our findings.

THEORY

This section presents the theory for the
different areas covered by this paper and aims to
introduce these topics. First, blockchain is
presented before the area of fault tolerance is
discussed. After that, the section is concluded by
a presentation of self-stabilization and the QUIC
protocol.

Blockchain

When designing algorithms for distributed
systems, such as blockchain, nodes' need to
agree on a particular task that often arises; they
might have to agree on the current state of the
underlying ledger, e.g., to appoint a single leader.
The process of reaching an agreement is non-
trivial in distributed systems, and this problem was
introduced by Pease et al. [2]. It is a well-studied
problem in computer science that essentially
outlines difficulties that arise when a set of nodes
wish to agree on a specific task, where a subset of
nodes might exhibit faulty behavior.

Figure 1. Blockchain Hash Mechanism

A standard, much-discussed usage of

distributed systems is blockchain. A blockchain is
a distributed record-keeping system structured as
a chain of blocks, as seen in Figure 1. Each block
contains a hash of the previous block, which acts
as a link to its predecessor in the chain, and some
transaction data. Transactions are broadcasted in
the system, and once in a while, some node has
created a block with the transactions that this node
has received.

Despite efficiently broadcast messages to
the whole network, a gossip protocol is often used.
Each node contacts a select few other nodes that
it will communicate with, and they, in turn,
communicate with some other nodes. When a
message is sent, it is quickly delivered to the
network, and eventually, all nodes will have a
consistent view of the global state.

Blockchain’s properties as a database with
no central authority make it optimal for systems
where trust plays a central part, such as
transaction systems. Bitcoin is one example of a

p-ISSN: 1410-2331 e-ISSN: 2460-1217

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 383

blockchain and possibly the most well-known and
widespread. However, many more so-called
cryptocurrencies and applications exist in other
domains, such as smart contracts [3].

As with many distributed systems, one of
the main challenges is that of distributed
agreement. Specifically, the blockchain
agreement is vital since the network needs to
agree upon the next block to be added to the
chain. Furthermore, the block contains the
transactions which are to be permanently
committed to the ledger, and should faulty
transactions be allowed therein. Thus, the
blockchain would be unusable in practice.

A fork can be started if the system decides
on two separate blocks with an identical
predecessor. Some protocols allow for forks due
to the system's often asynchronous nature as long
as they converge to a single truth, while others
require a final decision on each block. Forks are
unwanted since they split the truth, and as a result,
a coin may be spent in both blocks, and one of
these blocks has to be invalidated to keep the
record consistent and prevent double-spending.

Each block must be chosen correctly and
honestly. If there is a flaw in the consensus
protocol, an attacker could add invalid blocks
giving them an advantage and destroying the
system's trust. For example, suppose an attacker
could add an incorrect block and have it verified
by the system. In that case, they could create
arbitrary forks that would render the whole system
unusable since it would no longer maintain a
single truth, i.e., consensus. Furthermore, the
adversary could ignore transactions, and it would
be impossible for a user to distinguish this case
from the case where the transaction has simply
not yet reached the node creating the block.

Threshold Adversarial Model

It is common to define the relationship
between correct and faulty nodes in a distributed
system using an adversarial threshold model, as
outlined by Schmid [4]. The adversary is assumed
to control a predefined number of nodes and can
use them to break the system and hinder protocol
progression. In a blockchain, the ultimate goal for
an adversary might be to be able to double-spend
or ensure that the wrong fork gets chosen as the
system progresses. To easily be able to resonate
about these thresholds, a notation clearly outlining
the threshold is needed. This model introduces
two sets of nodes, namely n and f, which represent
the following, n is the total number of nodes in the
system and f is the total number of nodes
controlled by the adversary.

Expressing the nodes in the system in this
way enables the usage of thresholds based on

these two sets of nodes. For example, when an
adversary controls a minority of the nodes, that
would be expressed as n > 2f.

Byzantine Fault Tolerance

Protocols that are resilient to failures are
said to be fault-tolerant, the desired property of
distributed systems. An even stronger resilience
guarantee is referred to as Byzantine fault-
tolerance, or BFT, which means that the system
can run properly even when there are Byzantine
nodes present in the system. In the Byzantine
agreement, the system can agree on the desired
task even when there are Byzantine nodes
present.

BFT protocols often use the adversarial
threshold model to express the system
requirements to correct and Byzantine nodes. As
proven by Dolev [5], in order for a distributed
system to be BFT, at most one-third of the nodes
may be Byzantine. This constraint expressed
using the threshold adversarial model results in n
>= 3f + 1.

Self Stabilization

Self-stabilization is a system property that
provides an even stronger fault tolerance since the
system can recover from faults without human
intervention, which is often desirable for
distributed systems. However, some terms need
explanation in the context of self-stabilization.
Whenever the system executes concerning the
system requirements, it is said to be in a legal
execution. If the system is in a legal execution, it
will continue executing correctly in the absence of
faults and thus stay in its legal execution.
However, the system might be put into an arbitrary
state with stale information and no guarantees
other intact program code due to transient faults.
A self-stabilizing system is guaranteed to
converge to a legal execution and exhibit correct
behavior within a bounded number of execution
steps, starting in an arbitrary system state [6]. This
is a stricter fault model than Byzantine fault-
tolerance, yet highly desirable since the system
may recover from more severe failures as long as
no transient faults occur during the recovery
period.

QUIC Protocol

QUIC, a protocol introduced and developed
by Google and now standardized by IETF, aims to
lower the latency and overhead while
implementing the main properties of TCP, TLS,
and HTTP. QUIC could thereby provide increased
performance for many applications which currently
use part of this network stack.

SINERGI Vol. 25, No. 3, October 2021: 381-392

384 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

Figure 2. HTTP/3 QUIC Protocol

As outlined in Figure 2, QUIC runs on top of

UDP. As a result, it is possible to maintain
backward compatibility with the current internet
infrastructure while significant changes can be
made to the QUIC protocol itself. In essence,
QUIC is not too unlike the current HTTP/2 stack
as it contains many TLS 1.3 and TCP features.
However, using a thin UDP packet for transport, it
is possible to encrypt many of the fields that
otherwise would be in plaintext for TCP, as these
fields are placed in the encrypted QUIC payload
instead. Moreover, as the underlying UDP
protocol is session less, QUIC can enable a
customized session initiation procedure that
dramatically lessens the initial setup time than
TCP. Specifically, for TCP, the handshake takes
three Round-Trip Times (RTT), which is improved
to one RTT for QUIC, and even down to zero if the
server has been communicated earlier. Another
benefit with the use of the minimal transport layer
protocol UDP is that most of the protocol stack can
reside in user space. Thereby, it is much easier to
customize the QUIC protocol than if vital pieces
were implemented in kernel space, as would be
for TCP. However, this move to user space comes
with a slight CPU overhead.

Additionally, a QUIC session can consist of
multiple data streams with its buffer, which can
have some benefits for lossy links [7]. Finally, with
QUIC, multipath routing can be introduced more
efficiently, proposed with the modified protocol
MPQUIC [8]. This modification to QUIC provides
much-increased performance compared to the
earlier multipath TCP implementation (MPTCP),
both as the handshake for each connection is
faster and the protocol itself is more flexible [9].

In practice, QUIC performs worse than
HTTP/2 in low latency networks. However, the
protocol excels in lossy or high latency
environments where it outperforms HTTP/2 in
both speed and latency [10][11].

STATE OF THE ART AGREEMENT PROTOCOL

This section is intended to summarize three
of the leading state-of-the-art agreement protocols
by providing high-level descriptions of the various
protocols. First, an overview of Practical Byzantine
Fault Tolerance (PBFT) is presented before
Nakamoto Consensus , and BA iis discussed. The
reason for selecting these three protocols, in
particular, is that PBFT was the first protocol to
show practical usage of BFT protocols, Nakamoto
Consensus is used in the popular cryptocurrency
Bitcoin, and BA is used by the first pure Proof-of-
Stake (PoS) blockchain Algorand.

Practical Byzantine Fault Tolerance

Another application of the agreement, as
part of a state machine replication algorithm,
agreeing on the current state, is Practical
Byzantine Fault Tolerance (PBFT), introduced by
Castro and Liskov. The first work showed practical
usage of BFT algorithms for asynchronous
systems, where up to one-third of the number of
nodes are allowed to act Byzantine. In addition,
they showcased the performance of their protocol
by implementing a Byzantine fault-tolerant
network file system. Their evaluation results
showed a mere 3% performance degradation for
their Byzantine fault-tolerant implementation,
emphasizing that BFT systems can be used in
practice.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 385

Figure 3. PBFT Consensus

PBFT makes use of a three-phase commit

protocol orchestrated by a leader to agree on the
ordering of requests. Even though the leader is
mainly responsible for system progression,
quorums are used throughout the agreement of
re- quests. Then the leader makes sure that
enough nodes agree on what operation should be
executed next. This means that a certain number
of nodes need to agree on a task before the
system continues, and the size of this quorum is
set to make sure that the Byzantine nodes cannot
corrupt the system. PBFT is proven to provide
safety when at most a third of the total number of
nodes are Byzantine, which can be expressed as
n>3f+1 using the adversarial threshold model
introduced.

One usage of quorums is whenever a client
sends a request, and it waits for f + 1 identical
responses in order to make sure that the result
obtained has been carried out by correct nodes .
Should the leader be suspected as faulty by
enough correct nodes in the system, a leader
replacement process is triggered, which elects a
new leader through a predefined scheme.

Nakamoto Consensus

Nakamoto Consensus is the agreement
protocol used in Bitcoin. It uses a concept called
Proof-of-Work (PoW) to ensure that it is
challenging to modify a record retroactively. Proof
of Work is a consensus that maintains block in the
chain contains data and the hash from the
previous block linking them together, as shown in
Figure 4. No hash will be accepted; it needs to
start with a predetermined number of zeroes
defined by the protocol. The block's hash is
created with a one-way hash function that uses the
previous block's hash, the current block's
transactions, and a random nonce. The only way

to find this hash, in practice, is to try a large
number of nonces, which is quite tricky and
requires much guessing before the correct hash is
found. By making sure that work is needed to find
the next hash, this concept is called a PoW. The
difficulty can be tuned by adjusting the number of
zeroes required; the more that is needed, the
fewer hashes will exist, and thus the difficulty to
find the nonce increases. The difficulty depends
on the number of nodes in the network so that the
expected time required to find the next block is
kept nearly constant.

If an attacker modifies a block, the hash will
change, and thus, they would have to change the
hash of every subsequent block. However, if many
other blocks succeed a block, it is regarded as
practically infeasible to modify it, and therefore the
integrity of the block is considered safe.

Transactions are broadcasted to every
node in the network, and any node can propose to
add their block of transactions to the chain. To
propose, the node needs to find a PoW for the
current set of transactions it has received. When a
block is proposed, it is also broadcasted, and
nodes receiving it will quit working on finding a
PoW for their current block and instead start
working on a new block. Before doing this will
validate all transactions in the block received so
that none of the transactions interferes with the
previous. This means that any proposed block is a
validation of all previous blocks in the chain.
When starting to find a PoW, the nodes choose the
end of the longest chain with valid transactions as
the predecessor since that block has the most
work put into it, and as such, most nodes agree on
it. Validating all transactions before finding the
PoW makes it improbable for a maliciously created
block to be part of the final chain.

SINERGI Vol. 25, No. 3, October 2021: 381-392

386 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

Figure 4. Proof of Work Mechanism [12]

Figure 5. Byzantine Agreement with Pure Proof of Stack Consensus [13]

However, if an adversary controls more

than half of the network's processing power, it can
create blocks faster than the honest nodes. This
means that it has complete control of the
blockchain and can create arbitrary blocks with
arbitrary transactions. With an extensive system
like Bitcoin, this is unlikely to occur but still
possible.

With this in mind, a Byzantine fault-tolerant
consensus protocol is less resilient against
majority attacks since an attacker needs to gain
control of fewer nodes than a substantial majority
(one-third is enough). Still, they have other
properties that are desired.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 387

Byzantine Agreement (BA)
Instead of relying on PoW for safety, one

can use a byzantine agreement protocol called
BA, which Gilad et al. in Algorand, as shown in
Figure 5. This protocol guarantees that the system
will reach consensus given that 2/3 of the stake is
possessed by honest nodes. Instead of proposing
a block with PoW, the protocol uses cryptographic
sortition. This means that with a given random
seed, each node can determine if they have been
chosen to propose a block or not. The sortition
"chooses" a small fraction of nodes each round,
and each of these nodes will broadcast their block
together with proof of their participation. They
participate in the block proposal with a single
message, eliminating an attack against a selected
node. In the same message, each node also
includes a proposal for a new random seed used
in the sortition for the next round. Each node
computes this seed with a Verifiable Random
Function, which uses the current seed and round
number as input. This makes it difficult for an
adversary to be part of the committee more often
to affect the seed [14].

When blocks have been proposed by the
selected nodes (called the committee), a vote is
started. Each voting step starts, as the block
proposal, with sortition. Only a selected few can
vote in each step, and they vote by broadcasting
their selection of the block that should be added,
which it will choose depending on the priority of the
blocks received. This is where PoS is used; priority
is determined depending on the stake of the
block's sender [15]. A user with a higher stake is
deemed more honest since they have invested
more in the system. Again, this is a single
message containing the vote together with proof
of participation. Since all blocks might not reach all
nodes, the committee members might vote on
different blocks due to the gossiping protocol and
not reach a consensus. Therefore, this is repeated
until some threshold of committee members reach
consensus.

The sortition is needed to prevent a
committee member from being targeted by a
malicious actor and make it difficult for an
adversary to affect their election. If the committee
members were chosen in advance, it would be
possible for malicious users to prevent them from
sending the message. Preventing everyone from
sending messages is infeasible, but targeting a
single node could be done relatively quickly with
some Denial of Service attack. The protocol
cannot, and should not, guard a specific node
against an attack but rather protect the protocol
and system as a whole. Therefore, each node can
verify whether they are in the committee or not,
and they only need to send one message to

participate. Each node needs its private key to
verify the participation, and this makes targeted
attacks very difficult.

Since there is no need for processing power
to create a block (as in Nakamoto Consensus),
there needs to be another mechanism to prevent
an adversary from creating multiple clients and
increase the probability of being in the committee
in each step. As mentioned before, BA uses the
concept of PoS, which has previously been found
difficult to use in practice. Stakeholders can try to
invalidate a branch without losing any resources,
among other reasons [16]. While many attempts
to use PoS have tried to replace PoW directly, BA
uses it only for sortition. The PoS is, as such, not
responsible for the safety of the protocol. It should
be noted that the probability of being selected may
be heavily increased should a malicious actor
invest a significant amount of money in the
system, which is acknowledged by Gilad et al.

PBFT laid the foundation for continued
work, and as outlined by Natoli et al., blockchain
solutions such as PeerCensus [17] and ByzCoin
[18] utilize agreement protocols based on PBFT.
These protocols are designed to function in
partially- synchronous environments [19] rather
than asynchronous such as PBFT.

DISCUSSION

This section starts by comparing Bitcoin
and Algorand, which use two of the surveyed
protocols. After that, the possible introduction of
self-stabilization to the surveyed protocols is
discussed before a more practical approach to
optimize using the transport layer network protocol
QUIC is presented.

Algorand & Bitcoin

The availability and widespread usage of
Bitcoin make it difficult for any other
cryptocurrency to enter the market. However, with
its flaws, there are many opportunities for new
protocols and systems such as Algorand, which
tackles several of the more discussed problems of
Bitcoin. As previously mentioned, Bitcoin uses
PoW, and while this is a suitable mechanism for
safety and immutability, it requires many
resources. According to a study conducted by De
Vries, the Bitcoin network consumes at least 2.55
gigawatts (at the time of publication) which is
comparable to Ireland's consumption, which is
about 3.1 gigawatts [20]. This has, of course,
raised a debate whether or not it is a practical
system, and it has received much criticism as
other, primarily non-blockchain systems, use a
fraction of that power [21].

SINERGI Vol. 25, No. 3, October 2021: 381-392

388 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

Figure 6. Unconfirmed Transaction at 2009-2021.

Algorand solves this issue by not using

PoW while still being able to retain distributed
properties and safety. It also solves other issues
with Bitcoin, namely transaction throughput. The
maximum size of a block is 1MB in Bitcoin, making
scaling a bit difficult since the block time has to be
constant. Experiments carried out by Gilad et al.
suggests that Algorand has a throughput that is
125 times higher than Bitcoin. As can be seen in
Figure 3, Bitcoin has, at times, big problems with
throughput. In this diagram, the number of
unconfirmed transactions peaks at over 17 000,
but historically this number has reached over 80
000. Since block size and block time are both
fixed, this might look even worse in the future if the
use of Bitcoin grows further. Another situation
where Algorand shines compared to Bitcoin is in
confirmation speed: a transaction can be
confirmed in the order of minutes. This is important
if the system is ever intended to be used for
financial transactions. Although it is still prolonged
compared to current card transactions, it is much
faster than Bitcoin, which needs several hours to
confirm a transaction [22]. For Bitcoin, six blocks
are deemed necessary since an entity with 40%
computing power has less than a 50% chance of
succeeding in an attack. Each block takes on
average ten minutes to complete, but a single
block can take much longer as some have taken
more than sixty minutes [23]. The Unconfirmed
Transaction from 2009-2021 is depicted in Figure
6.

One thing that favors Bitcoin is its simplicity;
with some knowledge in cryptography, it is trivial
to understand why it works and is safe. Algorand,
on the other hand, is quite complex, and one can
not expect many users to understand it fully.
Instead, the users have to trust the community to
verify its security which many people do not mind,
given that they already trust the third party to
handle their money [24].

With this in mind, Algorand seems like a
very potent substitute or addition to Bitcoin.
However, a thorough review and performance

comparison is still needed, and it remains to be
seen how well it works in practice under the same
conditions.

Self-Stabilization of Agreement Protocols

This section outlines ideas and suggestions
relevant to introducing the self-stabilization
property to two agreement protocols: BA and
PBFT. We chose not to look at Nakamoto
Consensus as well in this regard because
introducing more overhead as part of the self-
stabilization would most likely not be worth it due
to poor performance. As we have shown earlier,
Bitcoin already suffers performance problems,
and other blockchain technologies seem more
promising going forward. We, therefore, chose to
focus on the other two protocols [25].

One could argue that introducing self-
stabilization to the protocol would be beneficial to
make BA even more resilient to failures and
malicious behaviour. Other self-stabilizing
Byzantine Agreement protocols exist [26], such as
the one introduced by Daliot and Dolev [27]. Self-
stabilization often comes with some form of
overhead, though, so the added resilience and
robustness will most likely yield a performance
degradation of some kind. Further work presented
by Daliot and Dolev suggests a way of
"converting" Byzantine Fault-Tolerant (BFT)
protocols to self-stabilizing versions while only
introducing an overhead of O(f t) communication
rounds, where f t is the number of actual faults
[28]. BA might be extended using some of the
techniques presented in and make it even more
resilient to failures and malicious behavior while
not adding too much communication overhead.
Naturally, this added resilience would need to be
efficient enough not to slow down the system too
much since one of the main selling points of the
blockchain using BA, Algorand, is its speed and
efficiency.

PBFT is a well-known BFT protocol and has
consequently laid the foundation for continued
research based on PBFT and self-stabilization.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 389

Dolev et al. introduced the first self-stabilizing BFT
replicated state machine based on failure
detectors inspired by PBFT [29][30]. Since it is
based on self-stabilizing failure detectors, this
solution can provide self-stabilizing BFT with
weaker synchrony requirements than when using,
for example, clock synchronization. A preliminary
evaluation of the protocol carried out by Niklasson
and Petersson [31, 32, 33] validated the self-
stabilizing property of the system. The evaluation
also showed promising results for practical usage
for certain types of state machines, further
indicating that adding the self-stabilizing criteria to
a system such as PBFT is practical and desirable.
Given that the evaluation of the protocol
introduced by Dolev et al. was performed as a
Master's Thesis and considered preliminary, a
more full-blown evaluation of the system would be
interesting. Should the results from such an
evaluation be promising, the barrier for introducing
self-stabilization to this kind of system could be
lowered.

HTTP/3 Approach

We believe that the current internet protocol
stack, most significantly TCP, is holding back
some blockchain implementations. TCP is
beholden to its legacy specifications, which can
not be changed due to the plethora of middleboxes
and other networking devices that may drop
unknown protocols. Therefore, TCP's issues will
remain; TCP has a slow handshake, its proposed
multipath implementation is complicated and
inefficient, and the protocol itself is inflexible and
slow to modify. Here, QUIC shows great promise,
which is outlined in the next section.

It is possible to replace the underlying
protocol stack To increase the performance of
consensus protocols. Here we will look at TCP,
which is widely used in blockchain protocols such
as Bitcoin and Ethereum.

In peer-to-peer networks, such as the
consensus protocols looked at in this survey, the
expected behavior is to talk to many different
nodes very briefly. For BA, communication
between nodes often includes only a single
message. Here QUIC could provide a noticeable
improvement as the initial handshake requires
RTT instead of three compared to TCP. Moreover,
QUIC outperforms TCP in environments with high
loss, high latency, and high congestion, which
may arise in peer-to-peer networks due to the
geographically sparse distribution, and low-cost
nodes may be used [34].

As mentioned in previous section, multipath
routing in QUIC is much faster than MPTCP. We
believe that this addition could provide better
performance when sending large datasets, such
as when the client is initially synchronizing
(downloading) the blockchain ledger. This lowers
the difficulty of entering the network, which might
encourage additional users to join, making the
system increasingly robust, as more honest nodes
would be present [35]. QUIC has another benefit;
namely, it is more configurable than TCP - both as
it implements more features above the transport
layer protocol (in this case, UDP) and as it runs in
userspace. Thereby, blockchain-specific
implementations can more easily be created.
Although this move to user space comes at a CPU
overhead, possibly not an issue in modern
devices.

Figure 7. Implementation of QUIC Protocol at Ethereum Ledger using PoW mechanism

SINERGI Vol. 25, No. 3, October 2021: 381-392

390 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

Consensus Comparison
According to section 3, we can compare

that some consensus works as listed in Table 1.

Table 1. Consensus Usage
Name PoW BA (PoS) PBFT

Usage Ethereum,
Bitcoin

Algorand ByzCoin

Fault
Tolerance

50% 50% 33%

Power
Consumption

Large Less Negligible

Type Probabilistic-
finality

Probabilistic-
finality

Absolute-
finality

RELATED WORK

Previously, a study was conducted by
Aleksandar Vorkapic in order to build some proof
of concept to secure communication networks in
BGP routing and blockchain networks [36]. It has
several VM for the different regions, which are
expected to have a more secure platform by

combining UDP and TCP as QUIC protocol did for
Ethereum that use a Proof-of-Work mechanism
called SCION project [26], as shown in Figure 8
and listed in Table 2 and Table 3.

Table 2. IP Performance

IP Germany USA South Korea

Avg RTT (ms) 28.781 126.005 287.131
Std dev RTT (ms) 1.395 8.947 15.597
Avg hops 15.2 18 18.6
Std dev hops 1.4 0.0 0,9
Packet loss (%) 1.4 0.0 0.0

Table 3. SCION Performance

SCION Germany USA South Korea

Avg RTT (ms) 62.568 150.734 301.898
Std dev RTT (ms) 3.246 6.213 6.247
Avg hops 7.7 7.7 8.8
Std dev hops 0.5 0.9 0.7
Packet loss (%) 0.0 0.0 0.0

Figure 8. Scion vs. ordinary IP Protocol

Implementation of Covid-19 Program

Refer to Figure 7, we implemented
blockchain protocol on our product called
PlasmaNation [36], which enables Patient that
suffer from covid-19 to get some Plasma Donation
from anyone who just gets recovered from this
disease. This site uses smart contracts to enable
an incentivized mechanism for successful donors
by participating in some business sponsors. In
addition, it will enable a speed recovery for covid-
19 economic using fair mechanism whereas
vaccines were not available during the day of the
beginning phase of a virus outbreak.

CONCLUSION

This survey has presented three state-of-
the-art protocols for reaching Byzantine
Agreement: PBFT, Nakamoto Consensus, and
BA (PoS). Both Nakamoto Consensus and PBFT

are widely used Today; Bitcoin utilizes Nakamoto
Consensus, and PBFT has laid the foundation for
various other projects, ranging from BFT
protocols to cryptocurrencies. BA is used in the
PoS cryptocurrency Algorand. A comparison of
applications that use BA (Algorand) and
Nakamoto Consensus (Bitcoin) has been
presented, along with ideas of making protocols
more resilient to failures through self- stabilization.
The comparison between BA and Nakamoto
Consensus showed that Algorand is a serious
contender even though more thorough
performance evaluations are needed.

A more practical approach to optimize the
protocols with the introduction of QUIC has also
been discussed by the SCION project. SCION
resulted slightly slower than ordinary IP-Based
Performance for Proof of Work consensus.
However, there has still needed more practical

p-ISSN: 1410-2331 e-ISSN: 2460-1217

N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols … 391

investigations of the protocols and optimization
possibilities for another consensus, such as BA
(using PoS) and PBFT, which remain unexplored.

When looking at the improvement ideas
presented in Sections 4.1 and 4.2, it becomes
clear that more thorough, in-depth research is
needed to investigate the possible performance
gains. For instance, comprehensive performance
evaluations of these research areas are needed to
fully grasp the proposed solutions' validity. If it
were possible to add self-stabilization to
blockchain solutions while keeping the
performance high enough for practical usage, that
would naturally be very desirable and make
blockchain even more attractive for various
applications. It could also be interesting to
investigate further how much performance could
be increased in popular agreement protocols if
QUIC were introduced. Given that it reduces the
number of round-trips needed, some algorithms
might be re-designed to utilize this and
consequently exhibit better performance fully.

Furthermore, the development of multipath
transport layer protocols may be put into practice
with QUIC. Where the userspace protocol enables
a solution to much easier be put into production.
The benefits of multipath routing only become
apparent when much data traverses the
connection, thereby showing benefits only for
some blockchain implementations. Finally, QUIC
is a reasonably new protocol and might need to be
researched further. For instance, there might be
environments where this protocol is currently not
allowed, and can the increased CPU overhead be
an issue for blockchain applications.

REFERENCES
[1] S. Nakamoto, Bitcoin: A Peer-to-Peer

Electronic Cash System, 2009
[2] M. Pease and L. Lamport, “Reaching

Agreement in the Presence of Faults,”
Journal of the AssoctaUon for Compmmg
Machinery, vol. 27, no 2, pp. 228-234, 1980

[3] D. Wood, “Ethereum: A Secure Decentralised
Generalised Transaction Ledger,” Undefined,
2014.

[4] R. W. Ahmad, H. Hasan, I. Yaqoob, K. Salah,
R. Jayaraman, and M. Omar, “Blockchain for
aerospace and defense: Opportunities and
open research challenges,” Computers &
Industrial Engineering, vol. 151, ID: 106982,
2021, doi: 10.1016/j.cie.2020.106982

[5] D. Dolev, “The Byzantine generals strike
again,” Journal of Algorithms, vol. 3, no. 1,
pp. 14-30, 1982, doi: 10.1016/0196-
6774(82)90004-9

[6] S. Dolev, Self-Stabilization, MIT Press, UK,
2000

[7] A. Langley et al., “The QUIC Transport
Protocol: Design and Internet-Scale
Deployment,” Proceedings of the Conference
of the ACM Special Interest Group on Data
Communication, August 2017, pp. 183-196,
doi: 10.1145/3098822.3098842v

[8] Q. De Coninck and O. Bonaventure,
“Multipath QUIC: Design and Evaluation.”,
Proceedings of the 13th International
Conference on emerging Networking
EXperiments and Technologies, 2017, pp.
160-166, doi: 10.1145/3143361. 3143370

[9] T. Viernickel, A. Froemmgen, A. Rizk, B.
Koldehofe and R. Steinmetz, "Multipath
QUIC: A Deployable Multipath Transport
Protocol," 2018 IEEE International
Conference on Communications (ICC), 2018,
pp. 1-7, doi: 10.1109/ICC.2018.8422951

[10] G. Carlucci, L. De Cicco, and S. Mascolo,
“HTTP over UDP: An experimental
investigation of QUIC,” in Proceedings of the
ACM Symposium on Applied Computing,
2015, vol. 13-17-April-2015, pp. 609–614,
doi: 0.1145/2695664.2695706

[11] C S. Cook, B. Mathieu, P. Truong and I.
Hamchaoui, "QUIC: Better for what and for
whom?" 2017 IEEE International Conference
on Communications (ICC), 2017, pp. 1-6, doi:
10.1109/ICC.2017.7997281

[12] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and
N. Zeldovich, “Algorand: Scaling Byzantine
Agreements for Cryptocurrencies,”
Proceedings of the 26th Symposium on
Operating Systems Principles, October 2017,
pp. 51-68, 2017, doi: 10.1145/3132747.
3132757

[13] M. Castro and B. Liskov, “Practical Byzantine
Fault Tolerance,” Proceedings of the Third
Symposium on Operating Systems Design
and Implementation, New Orleans, USA,
1999, pp. 1-14

[14] S. M. Fati, A. Muneer, N. A. Akbar, and S. M.
Taib, “A Continuous Cuffless Blood Pressure
Estimation using Tree-Based Pipeline
Optimization Tool,” Symmetry, vol. 13, no. 4,
pp. 686, 2021, doi: 10.3390/ sym13040686

[15] A. Kiayias, A. Russell, B. David, and R.
Oliynykov, “Ouroboros: A provably secure
proof-of-stake blockchain protocol,” in
Lecture Notes in Computer Science, vol.
10401, Springer, Cham 2017

[16] I. Bentov, A. Gabizon, and A. Mizrahi,
“Cryptocurrencies without Proof of Work,”
Clark J., Meiklejohn S., Ryan P., Wallach D.,
Brenner M., Rohloff K. (eds) Financial
Cryptography and Data Security. FC 2016.
Lecture Notes in Computer Science, vol

SINERGI Vol. 25, No. 3, October 2021: 381-392

392 N. A. Akbar et al., Reducing Overhead of Self-Stabilizing Byzantine Agreement Protocols …

9604, Springer, Berlin, Heidelberg, doi:
10.1007/978-3-662-53357-4_10

[17] C. Decker, J. Seidel, & R. Wattenhofer,
“Bitcoin Meets Strong Consistency,” ACM
International Conference Proceeding Series,
04-07-January-2016. Retrieved from
http://arxiv.org/abs/1412.7935

[18] E. K. Kogias et al., “Enhancing Bitcoin
Security and Performance with Strong
Consistency via Collective Signing,”
Conference of USENIX Security Symposium
2016, 2016

[19] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-
Verissimo, “Deconstructing Blockchains: A
Comprehensive Survey on Consensus,
Membership and Structure,” arXiv, Aug.
2019. S. Nakamoto, “Bitcoin: A Peer-to-Peer
Electronic Cash System,” 2009

[20] A. de Vries, “Bitcoin’s Growing Energy
Problem,” Joule, vol. 2, no. 5. pp. 801–805,
May 2018, doi: 10.1016/j.joule.2018.04.016

[21] C. S. You, J. S. Yeom, and B. C. Jung,
“Cooperative maximum-ratio transmission
with multi-antenna relay nodes for tactical
mobile ad-hoc networks,” ICT Express, vol. 6,
no. 2, pp. 87–92, Jun. 2020

[22] NN, Blockchain Charts, [Online]. Available:
https://www.blockchain.com/en/charts/memp
ool-count?timespan=24h. [Accessed: 14-
Apr-2021]

[23] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang,
“Cryptographic primitives in blockchains,”
Journal of Network and Computer
Application, vol. 127, pp. 43–58, Feb. 2019

[24] C. V. Helliar, L. Crawford, L. Rocca, C.
Teodori, and M. Veneziani, “Permissionless
and permissioned blockchain diffusion,”
International Journal of Information
Management, vol. 54, Oct. 2020

[25] D. Berdik, S. Otoum, N. Schmidt, D. Porter,
and Y. Jararweh, “A Survey on Blockchain for
Information Systems Management and
Security,” Information Processing &
Management, vol. 58, no. 1, 2021, doi:
10.1016/j.ipm.2020.102397

[26] L. Lamport, R. Shostak, and M. Pease, “The
Byzantine Generals Problem,” ACM
Transactions on Programming Languages
and Systems, vol. 4, no. 3, pp. 382–401,
1982

[27] A. Daliot and D. Dolev, “Self-stabilizing
Byzantine Agreement,” Proceedings of the
twenty-fifth annual ACM symposium on
Principles of distributed computing, 2009, pp.
143-152, doi: 10.1145/ 1146381.1146405C

[28] S. You, J. S. Yeom, and B. C. Jung,
“Cooperative maximum-ratio transmission
with multi-antenna relay nodes for tactical
mobile ad-hoc networks,” ICT Express, vol. 6,
no. 2, pp. 87–92, Jun. 2020

[29] A. Daliot and D. Dolev, “Self-stabilization of
Byzantine protocols,” in Lecture Notes in
Computer Science, vol. 3764 LNCS, pp. 48–
67, 2005, doi: 10.1007/11577327_4

[30] S. Dolev, C. Georgiou, I. Marcoullis, and E.
M. Schiller, “Self-stabilizing Byzantine
Tolerant Replicated State Machine Based on
Failure Detectors,” In: Dinur I., Dolev S.,
Lodha S. (Eds) Cyber Security Cryptography
and Machine Learning. CSCML 2018, vol
10879. Springer, Cham, doi: 10.1007/978-3-
319-94147-9_7

[31] S. Gilbert and N. Lynch, “Brewer’s conjecture
and the feasibility of consistent, available,
partition-tolerant web services,” ACM
SIGACT News, vol. 33, no. 2, pp. 51-59, Jun.
2002

[32] N. A. Akbar, A. Sunyoto, M. Rudyanto Arief
and W. Caesarendra, "Improvement of
decision tree classifier accuracy for
healthcare insurance fraud prediction by
using Extreme Gradient Boosting algorithm,"
2020 International Conference on
Informatics, Multimedia, Cyber and
Information System (ICIMCIS), 2020, pp.
110-114, doi: 10.1109/ICIMCIS51567.2020.
9354286

[33] A. Langley et al., “The QUIC Transport
Protocol: Design and Internet-Scale
Deployment,” Proceedings of the Conference
of the ACM Special Interest Group on Data
Communication, August 2017, pp. 183-196,
doi: 10.1145/3098822.3098842v

[34] R. Wasim Ahmad, H. Hasan, I. Yaqoob, K.
Salah, R. Jayaraman, and M. Omar,
“Blockchain for aerospace and defense:
Opportunities and open research
challenges,” Computers & Industrial
Engineering, vol. 151, ID: 106982, 2021, doi:
10.1016/j.cie.2020.106982

[35] S. Zhang and J. H. Lee, “Analysis of the main
consensus protocols of blockchain,” ICT
Express, vol. 6, no. 2, pp. 93–97, 2020, doi:
10.1016/j.icte.2019.08.001

[36] R. Wasim Ahmad, H. Hasan, I. Yaqoob, K.
Salah, R. Jayaraman, and M. Omar,
“Blockchain for aerospace and defense:
Opportunities and open research
challenges,” Computers & Industrial
Engineering, vol. 151, ID: 106982, 2021, doi:
10.1016/j.cie.2020.106982

