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Abstract  
As remote work and online education continue to gain prominence, 
the importance of clear audio communication becomes crucial. Deep 
Learning-based Speech Enhancement has emerged as a promising 
solution for processing data in noisy environments. In this study, we 
conducted an in-depth analysis of two speech enhancement models, 
RNNoise and DeepFilterNet3, selected for their respective strengths. 
DeepFilterNet3 leverages time-frequency masking with a Complex 
Mask filter, while RNNoise employs Recurrent Neural Networks with 
lower complexity. The performance evaluation in training revealed 
that RNNoise demonstrated impressive denoising capabilities, 
achieving low loss values, while DeepFilterNet3 showed superior 
generalization. Specifically, "DeepFilterNet3 (Pre-Trained)" exhibited 
the best overall performance, excelling in intelligibility and speech 
quality. RNNoise also performed well in subjective quality measures. 
Furthermore, we assessed the real-time processing efficiency of both 
models. Both RNNoise variants processed speech signals almost in 
real-time, whereas DeepFilterNet3, though slightly slower, remained 
efficient. The findings demonstrate significant improvements in 
speech quality, with "DeepFilterNet3 (Pre-Trained)" emerging as the 
top-performing model. The implications of this study have the 
potential to enhance video conference experiences and contribute to 
the improvement of remote work and online education. 
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INTRODUCTION  

As the world embraces remote work, video 
conferences have become essential 
communication tools [1]. They enable seamless 
connection and collaboration, overcoming 
physical distance in today's fast-paced world [2]. 
However, audio quality often suffers due to 
background noise, echo, and poor microphones, 
impacting clear communication [3]. While noise 
in online learning moderately affects students' 
task performance, overall noise levels don't 
significantly impact perceived performance 
difficulties [4]. 

Speech Enhancement techniques have 
gained significance [5] as they tackle the 
challenge of improving sound quality in video 
conferences. However, traditional noise 
reduction methods have limitations, leading to 

speech signal distortions. Therefore, there is a 
growing need for new and innovative 
approaches to ensure a better user experience 
[5]. 

Recent advance of deep learning method 
has been widely implemented in many sectors 
such as medical [6], industry, robotic [7], virtual 
reality, and so on. In sector virtual conference, 
deep learning-based of speech enhancement [8] 
have demonstrated promising results in 
addressing challenges related to processing 
data in noisy environments [9]. Complex value 
processing, particularly through the technique of 
time-frequency masking using a Complex Mask 
(CM) filter, has significantly improved Deep 
Learning for Speech Enhancement and signal 
extraction [10]. Unlike real-valued filters, CM 
allows phase modification, leading to enhanced 
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signal quality [11]. The application of CM in 
speech enhancement and signal extraction tasks 

has shown better outcomes [12]. 

Through the comparative study of various 
models for speech quality enhancement, 
including RNNoise [13], DCCRN [14], NSNet2 
[15], FullSubNet+ [16], GaGNet [17], FRCRN 
[18], DeepFilterNet [19], DeepFilterNet2 [20], 
and DeepFilterNet3[21], two models, RNNoise 
and DeepFilterNet3, were specifically chosen for 
in-depth analysis in this research due to their 
promising performance in different aspects. 
RNNoise was selected as a lightweight and 
efficient solution, while DeepFilterNet3 
demonstrated state-of-the-art speech quality 
enhancement with a good balance between 
computational efficiency and superior results. 

DeepFilterNet is an algorithmic model [21] 
that enhances speech quality using CM for 
speech enhancement through Deep Filtering. It 
consists of two stages: one for enhancing the 
spectral envelope with human frequency 
perception modeling [19], and another for 
enhancing periodic speech components using 
deep filtering. The approach leverages speech's 
perceptual nature and enforces network sparsity 
through separable and extensive grouping in 
linear and recurrent layers [9]. The same 
researchers extended the model to create 
DeepFilterNet2, optimized for real-time video 
conference Speech Enhancement, achieving 
better performance and running on embedded 
devices like Raspberry Pi 4 with a real-time 
factor of 0.42 [19]. This makes DeepFilterNet2 
ideal for speech enhancement in video 
conferences and real-time applications. The 
model was further refined into DeepFilterNet3, 
improving noise suppression performance, fixing 
bugs, and introducing attenuation limiting at the 
implementation level using the LADSPA plugin 
[20]. 

In other way RNNoise, which shares the 
same function but relies on Recurrent Neural 
Networks (RNN) with lower complexity [13]. 
While DeepFilterNet3 and RNNoise has shown 
promising results in offline scenarios [20], its 
real-time performance, especially in video 
conferences for remote learning, remains 
understudied. This study aims to 
comprehensively evaluate both performance in 
real-time speech enhancement during video 
conferences through simulation. The 
assessment will cover training, validation, and 
final testing using selected samples. The model 
will be compared against Both models will be 
trained on the Voicebank + DEMAND dataset, 
containing multi person speech and noise 
samples [22], for comparative analysis. 

Additionally, the MIT IR Survey dataset of Room 
Impulse Responses (RIR) [23] will be used for 
training DeepFilterNet3. 

The evaluation will compare two models in 
Speech Enhancement using samples from the 
JL Corpus dataset [24] for Clean Speech and the 
ESC 50 dataset [25] for background sounds. Key 
metrics include PESQ [26], STOI [27], "CSIG" 
(Signal-to-Noise Ratio improvement), "CBAK" 
(distortion introduced), and "COVL" (coherence) 
[28]. Additional metrics are SegSNR [29] and 
SiSDR [30]. Model parameters (Params[M]) [31], 
computational complexity (MACS[G]) [32], and 
Real-Time Factor (RTF) [33] will also be 
considered. These comparisons will identify 
each model's strengths and weaknesses for 
specific applications. 

In conclusion, this research aims to 
analyze the performance of Speech 
Enhancement in audio for video conferences 
using the DeepFilterNet3 model and RNNoise as 
the tested implementation in online learning 
cases. The study can potentially enhance video 
conference experiences and improve remote 
work and online education. 

 
MATERIALS AND METHODS 

This chapter explores the selected speech 
enhancement models and the datasets used in 
our study. 

 
DeepFilterNet3 

DeepFilterNet3 [21] is an advanced real-
time speech enhancement model, an evolution of 
the DeepFilterNet framework. It utilizes deep 
filtering to estimate complex filters in the frequency 
domain, effectively leveraging short-term 
correlations in speech signals. The model 
achieves high efficiency by combining domain 
knowledge of speech production and 
psychoacoustic perception while providing 
comparable performance to state-of-the-art 
speech enhancement benchmarks. 
DeepFilterNet3 has been trained on a multilingual 
dataset, delivering improved results on objective 
evaluation metrics. The model's real-time 
capabilities enable users to experience enhanced 
audio directly, with the flexibility to configure noise 
suppression settings dynamically. Additionally, 
DeepFilterNet3 can be applied for direct noise 
reduction during activities like video calls, making 
it a valuable tool for various speech processing 
and communication systems. DeepFilterNet 
processes audio signals at a high 48 kHz sampling 
rate, making it well-suited for high-fidelity speech 
enhancement applications. It operates on 20 ms 
frames, using a 10 ms hop size to overlap 
windows, which helps maintain temporal 
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consistency. The additional 2-frame look-ahead 
contributes to a total latency of 40 ms, which, while 
slightly higher than real-time, is still low enough for 
many interactive applications such as voice 
communication or hearing aids. 

In the first stage, DeepFilterNet uses the 
real-valued ERB (Equivalent Rectangular 
Bandwidth) domain, a perceptually-motivated 
scale that mirrors how the human ear processes 
sound. Here, 32 ERB-scaled gains are predicted, 
which are then pointwise multiplied with the noisy 
spectrum. This process helps reconstruct the 
speech envelope, which is essential for 
maintaining the naturalness and intelligibility of 
speech while reducing noise. The second stage 
focuses on refining lower-frequency components 
by applying a 5-tap complex filter, limited to the 
lowest 96 frequency bins, corresponding to 
frequencies up to 4.8 kHz. This focus on lower 
frequencies is important, as speech intelligibility 
largely depends on these frequencies. For higher 
frequencies, the model leverages the ERB-gain 
output from the first stage, which is 
computationally efficient and helps preserve the 
finer details of the speech signal.By combining the 
DF output for lower frequencies with the ERB gain 
output for higher frequencies, DeepFilterNet 
effectively balances computational efficiency and 
enhancement quality, making it suitable for real-
time or near-real-time applications in noise 
suppression, such as in teleconferencing, hearing 
aids, or mobile devices. Figure 1 represent 
DeepFilterNet framework. 

The mixture signal can be identified as 𝑥(𝑘), 
where combine the clean speech signal 𝑠(𝑘) and 

the interfering background noise 𝑧(𝑘), can be 
formulated as,  

𝑥(𝑘) = 𝑠(𝑘) + 𝑧(𝑘) (1) 

Additionally, the noise reduction can be operated 
in time domain, can be formulated as,  

𝑋(𝑡, 𝑓) = 𝑆(𝑡, 𝑓) + 𝑍(𝑡, 𝑓) (2) 

where 𝑋(𝑡, 𝑓) is the STFT representation of the 
time domain signal in 𝑥(𝑘) and 𝑡, and 𝑓 represents 
as time and frequency bins. Deep filtering for a 
complex filter in TF-domain can be formulated as 

𝑌(𝑘, 𝑓) = ∑ 𝐶(𝑘, 𝑖, 𝑓). 𝑋(𝑘 − 𝑖 + 𝑙, 𝑓)𝑁
𝑖=0  (3) 

where 𝐶 is the complex coefficients or filter order 

𝑁 that are applied to the input spectrogram 𝑋, and 
𝑌 is the spectrogram enhacement.  
 
RNNoise 

The RNNoise [13] speech enhancement 
model is a real-time noise suppression algorithm 
that combines classic signal processing with deep 
learning techniques. 

 
Figure 1. DeepFilterNet3 Block Diagram 

 
It utilizes Gated Recurrent Units (GRUs), a 

type of recurrent neural network, to model time 
sequences, enabling effective noise estimation 
and suppression. The input to the neural network 
consists of cepstral coefficients based on the Bark 
scale, along with derivatives, pitch period, pitch 
gain, and a non-stationarity value. The neural 
network computes per-band gains to attenuate 
noise while preserving the speech signal. The 
model's deep architecture comprises three GRU 
layers, which map to the traditional steps of noise 
suppression (presented in Figure 2). Training data 
is generated by combining separate recordings of 
clean speech and various types of noise. The 
design and training of the neural network are 
performed in Python using Keras, while the 
runtime code is implemented in C to achieve real-
time processing. The resulting model is small and 
efficient, making it suitable for deployment on 
resource-constrained devices like the Raspberry 
Pi. 

 

 
Figure 2. Topology of the RNNoise 
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Datasets 
The study makes use of the following 

datasets: 
a. Clean Speech Training Dataset [22] 

(Voicebank): This dataset comprises 23,074 
samples collected from 56 different speakers, 
with a combined size of 6.12 GB. 

b. Noise Training Dataset [22] (DEMAND): The 
noise training dataset consists of 272 
samples obtained from 17 distinct 
environmental scenarios, totaling 7.29 GB. 

c. Room Impulse Response (RIR) Training 
Dataset [23] (MIT IR Survey): This dataset 
contains 271 samples recorded at 14 
different locations and is 16.4 MB in size. 

d. Clean Speech Test Dataset [24] (JL Corpus): 
For the purpose of testing, 6 random samples 
(951 KB) are selected, featuring 3 female and 
3 male voices. 

e. Noise Test Dataset [25] (ESC 50): Also, for 
testing purposes, the noise test dataset, 
named ESC 50, includes 6 random samples 
(2.52 MB) of environmental background 
noises. 

The carefully selected datasets are vital for 
conducting research experiments and 
evaluations. They provide a wide variety of speech 
and noise samples, crucial for training and 
evaluating the proposed models. 

 
METHODS 

The research process is outlined through a 
system flowchart diagram (Figure 3), simplifying 
the steps in studying Speech Enhancement 
models, specifically DeepFilterNet3 and RNNoise. 
It begins with model selection based on dataset 
characteristics and research objectives. The 
source code is obtained from the official repository 
and uploaded to Google Drive, accessible through 
Google Colab for development and training. The 
dataset is preprocessed, organized, and 
converted to hdf5 format before training the 
selected model using default hyperparameters. In 
order to ensure consistency and fair comparison 
between the models, common hyperparameters 
are set, such as a maximum epoch of 120 and a 
batch size of 32. The dataset is preprocessed, 
organized, and converted to hdf5 format before 
training the selected model using these shared 
hyperparameters. 

During the evaluation phase, the models' 
effectiveness is compared using relevant 
performance metrics, and the default model are 
among those compared to identify areas that 
require improvement.  

 
 

 
Figure 3. Research Flowchart Diagram 
 
The research findings are then interpreted, 

leading to conclusive observations and 
recommendations for future investigations in 
Speech Enhancement. Throughout the research, 
cloud resources, including an Intel E5-2686 v4 
CPU, GPU T4, and GPU V100, handle 
computational demands efficiently. This ensures 
comprehensive exploration and analysis of 
selected models, optimizing productivity and 
yielding valuable insights for the study. 

To enhance overall efficiency, a block 
diagram (Figure 4) represents research 
components and their interconnected flow. The 
visual representation aids in identifying potential 
obstacles and streamlining the research process. 
These diagrams combination facilitates a 
thorough investigation of Speech Enhancement 
models. 

 
RESULTS AND DISCUSSION 

This chapter thoroughly discusses the 
chosen speech enhancement model's training 
process and performance metrics.  
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Figure 4. Research Block Diagram 

 
The goal is to examine the training results and 
evaluate the models’ accuracy and speed in 
speech enhancement operations. 

This study presents a comprehensive 
evaluation of two speech enhancement models, 
DeepFilterNet3 and RNNoise, in both pre-trained 
and self-trained conditions. The models are 
assessed based on several perceptual quality and 
intelligibility metrics, including STOI, PESQ, CSIG, 
CBAK, COVL, SegSNR, and SiSDR, as well as 
computational performance metrics such as 
parameters, MACs, average sample time, 
processing time, and real-time factor (RTFavg). 
These results are compared to baseline 
performance before enhancement and a 
theoretical upper limit for each metric. 

 
Models Training Result 

In this technical comparison of training 
results, we assess two speech enhancement 
models: RNNoise and DeepFilterNet3. It's crucial 
to acknowledge that directly comparing their "loss" 
results might lead to misconceptions as their 
respective authors interpret these values 
differently. To ensure a fair evaluation using 
common data, both models were trained on the 
combined dataset of Voicebank and DEMAND. 
The obtained results are depicted in Figure 5. 

RNNoise underwent training for 120 
epochs, accomplishing this in an impressive 21 
minutes, with an average epoch time of 10.8 
seconds. The model achieved remarkably low loss 
values, ranging from 0.0014 to 0.000446118, 
indicating effective denoising according to its 
specific loss function. However, it also displayed 
signs of overfitting in the early epochs. 

On the other hand, DeepFilterNet3 also 
underwent 120 epochs of training, but this process 
took significantly longer, lasting 15 hours and 8 
minutes. Throughout the training, both the training 
and validation losses consistently decreased, 
although a slight validation loss increase was 

observed towards the end, indicating a potential 
issue with overfitting. It's crucial to remember that 
the interpretation of loss values is unique to 
DeepFilterNet3's loss function. 

Despite the differing interpretations of loss, 
both models demonstrated improved speech 
quality on the common dataset. RNNoise proved 
to be particularly adept at denoising, while 
DeepFilterNet3 exhibited better generalization 
with a lower validation loss. For a comprehensive 
assessment of practical speech enhancement, it is 
advisable to consider additional metrics and 
conduct real-world testing on various datasets. 
This aspect will be explored in the next two 
sections. 

 
Accuracy Metrics Analysis 

Both Accuracy and Speed testing is done 
through 5 synthetic samples created using 
random selected sample from JL Corpus and ESC 
50. Accuracy metrics result can be analyzed from 
the data presented in Table 1. The first model, 
"DeepFilterNet3 (Pre-Trained)," demonstrates 
promising results across various metrics. It 
achieves a high Short-Time Objective Intelligibility 
(STOI) score of 0.810, indicating that the 
enhanced speech is highly intelligible compared to 
the original. Moreover, the Perceptual Evaluation 
of Speech Quality (PESQ) score of 1.553 
suggests that the quality of the enhanced speech 
is good. The model also performs well in terms of 
the Subjective Mean Opinion Scores (CSIG and 
CBAK), which measure the subjective quality of 
speech and background noise, respectively. 
Additionally, it yields respectable results in terms 
of the Overall Mean Opinion Score for Listening 
Quality (COVL) and the Segmental Signal-to-
Noise Ratio (SegSNR). 

On the other hand, the "DeepFilterNet3 
(Self Trained)" model exhibits comparatively lower 
performance across all metrics. The STOI score 
drops to 0.653, indicating a decrease in 
intelligibility compared to the pre-trained version. 
The PESQ score of 1.145 also suggests a decline 
in speech quality. Furthermore, both CSIG and 
CBAK scores decrease, reflecting a reduction in 
subjective quality for speech and background 
noise. The Overall Mean Opinion Score for 
Listening Quality (COVL) and the Segmental 
Signal-to-Noise Ratio (SegSNR) also show a 
decrease, indicating a drop in the overall listening 
experience and increased noise interference. 

 Moving on to the "RNNoise (Pre-Trained)" 
model, we observe mixed results. While the STOI 
score of 0.743 indicates reasonably good 
intelligibility, the PESQ score of 1.233 suggests 
that the speech quality is acceptable but not 
exceptional.  
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Figure. 5 RNNoise and DeepFilterNet3 Model Training Result 

 

Table 1. Summary of Accuracy Metrics Before and After Speech Operations 

Model STOI PESQ CSIG CBAK COVL SegSNR SiSDR 

DeepFilterNet3 (Pre-Trained) 0.810 1.553 2.786 2.423 2.081 5.711 7.717 

DeepFilterNet3 (Self Trained) 0.653 1.145 2.167 1.870 1.565 1.511 0.545 

RNNoise (Pre-Trained) 0.743 1.233 2.228 1.586 1.620 -2.800 -10.637 

RNNoise (Self-Trained) 0.719 1.095 1.765 1.273 1.333 -7.401 -1.776 

Before Speech Enhancement 0.727 1.101 2.001 1.613 1.444 -2.461 -0.885 

Theoretical Upper Limit 1.000 4.644 5.000 5.000 5.000 35.000 80.681 

 
However, the model's performance in terms 

of subjective quality (CSIG and CBAK) is still 
decent. Interestingly, the Segmental Signal-to-
Noise Ratio (SegSNR) and the Scale-Invariant 
Signal-to-Distortion Ratio (SiSDR) for this model 
are negative, indicating that the speech 
enhancement process has introduced some 
distortion and noise to the speech signal, leading 
to a worse listening experience. 

The "RNNoise (Self-Trained)" model also 
faces challenges in performance. Its STOI score 
of 0.719 indicates a decrease in intelligibility 
compared to the pre-trained version. The PESQ 
score of 1.095 suggests a reduction in speech 
quality, and the subjective quality scores (CSIG 
and CBAK) also show a decline. Similar to the pre-
trained RNNoise model, the Segmental Signal-to-
Noise Ratio (SegSNR) and the Scale-Invariant 
Signal-to-Distortion Ratio (SiSDR) are negative, 
indicating introduced distortion and noise. 

Comparing the model results to the "Before 
Speech Enhancement" state reveals that the 
speech enhancement process generally improves 
intelligibility (STOI increases) but may not 
consistently improve speech quality (mixed results 
in PESQ). The subjective quality scores (CSIG 
and CBAK) vary across models, suggesting that 
different models may excel in enhancing certain 
aspects of the speech signal. 

Finally, the "Upper Limit" represents an 
ideal performance achievable with perfect speech 
enhancement. The scores are significantly higher 
across all metrics, with maximum values for CSIG, 
CBAK, COVL, SegSNR, and SiSDR. This upper 
limit serves as a reference for the best possible 
performance that current models should aim to 

approach. Figure 6 shows how all speech 
enhancement model operation affects the 
spectrogram of a sample. In conclusion, the 
"DeepFilterNet3 (Pre-Trained)" model 
demonstrates the best overall performance 
among the evaluated models, achieving higher 
scores in most metrics. However, there is still 
room for improvement, as all models fall short of 
the ideal upper limit 

 

 
Figure 6. Qualitative Speech Enhancement 

Operation 
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Speed Metrics Analysis 
Each model in this section was tested on a 

total of 5 different speech samples to ensure a 
comprehensive evaluation across various 
scenarios. For each speech sample, the testing 
process was repeated 5 times, and the times 
taken for each run were recorded. The recorded 
times were then averaged to obtain the "Average 
Sample Time" and "Average Process Time" 
metrics. This approach of averaging over multiple 
runs and samples helps mitigate the impact of any 
outliers or random variations, resulting in more 
reliable and representative performance metrics. 
Speed metrics results can be analyzed from the 
data presented in Table 2. 

Starting with the architecture, both 
DeepFilterNet3 and RNNoise models seem to 
have a relatively small number of parameters and 
operations (MACS), which indicates their 
efficiency in terms of memory and computational 
requirements. The fact that they have similar 
values for parameters and MACS suggests that 
they might share some similarities in design or 
complexity. However, without more detailed 
information on the model architectures, it is 
challenging to make direct comparisons. 

Moving on to the computational efficiency, 
the provided metrics show the average sample 
time and average process time. The average 
sample time, which represents the time taken to 
process a single sample, is consistent at 2.175 
seconds for all models. This indicates that the 
models process each input sample in 
approximately the same amount of time, 
regardless of their complexity or the type of 
training. 

The most critical metric for real-time 
applications is the Real-Time Factor (RTFavg). This 
metric reveals how well the models perform in 
real-time scenarios, with values close to 1 
indicating real-time processing. Both Pre-Trained 
and Self-Trained RNNoise models achieve 
remarkable RTFavg values of around 0.001, which 
implies that they can process speech signals 
nearly in real-time. This is a highly desirable 
feature, particularly for applications that require 

immediate feedback, such as live communication 
systems or voice assistants. 

On the other hand, the DeepFilterNet3 
models, both Pre-Trained and Self-Trained, have 
slightly higher RTFavg values, around 0.081 and 
0.088, respectively. While these values are not as 
impressive as RNNoise, they still suggest that 
DeepFilterNet3 models can process speech in a 
reasonably efficient manner, being roughly 8 to 9 
times slower than real-time. 
 
Computational Efficiency  

RNNoise, with just 0.060 million parameters 
and 0.040 MACs, has a minimal processing time 
of 0.003 seconds (pre-trained) and 0.002 seconds 
(self-trained). These figures translate to an 
RTFavg of 0.001, meaning that RNNoise can 
process audio nearly in real-time with minimal 
computational resources. This makes RNNoise 
highly suitable for large-scale deployment, where 
efficiency and speed are paramount. Its low 
processing time and resource requirements 
suggest it could be easily scaled across 
thousands of devices in real-time communication 
systems or online platforms, without significant 
strain on computational infrastructure. RNNoise is 
inherently more scalable due to its lightweight 
architecture and extremely low processing 
requirements. It can be deployed across a wide 
range of devices, including low-power mobile 
phones, tablets, and laptops, without 
overwhelming the hardware. This makes it ideal 
for large-scale applications such as remote 
classrooms, online meetings, or virtual 
conferences, where thousands of participants may 
need real-time speech enhancement. Its minimal 
computational footprint also allows for deployment 
in edge computing environments, where 
processing is done locally on the device, reducing 
the need for server-based processing and 
minimizing latency. 

DeepFilterNet3 requires significantly more 
computational resources. With 2.135 million 
parameters and 0.340 MACs, its average 
processing time is 0.175 seconds for the pre-
trained model, resulting in an RTFavg of 0.081.  

 
 

Table 2. Summary of Speech Enhancement Speed Metrics 

Model 
Params 

(M) 
MACS 

(G) 

Average 
Sample 

Time (sec) 

Average 
Process 

Time (sec)  
RTFavg  

DeepFilterNet3 (Pre-Trained) 2.135 0.340 

2.175 

0.175 0.081 

DeepFilterNet3 (Self-Trained) 2.135 0.340 0.189 0.088 

RNNoise (Pre-Trained) 0.060 0.040 0.003 0.001 

RNNoise (Self-Trained) 0.060 0.040 0.002 0.001 
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While this is still within acceptable real-
time processing limits, it is much less efficient than 
RNNoise. The self-trained DeepFilterNet3 
requires slightly more time, with an RTFavg of 
0.088. These values indicate that, while 
DeepFilterNet3 offers superior performance in 
terms of speech enhancement quality, its 
computational demands could pose a challenge 
for large-scale deployment in environments where 
bandwidth, processing power, or battery life are 
limited. DeepFilterNet3, while offering better 
speech quality, would face challenges in terms of 
scalability, particularly for users with limited 
hardware capabilities or in resource-constrained 
environments. Its higher computational 
requirements mean that it would be more suitable 
for environments where performance is prioritized 
over resource efficiency, such as high-end 
workstations or dedicated audio processing 
servers. In large-scale deployments, it could be 
used in cloud-based systems where server-side 
processing handles the audio enhancement 
before streaming it to the client. However, this 
would introduce potential challenges such as 
increased latency and higher costs associated 
with cloud infrastructure. 

To further analyze the trade-offs between 
these models, more information about their 
architectures, training data, and specific use 
cases is needed. Additionally, it would be 
beneficial to compare their speech enhancement 
performance in terms of objective metrics like 
signal-to-noise ratio (SNR) improvement and 
subjective evaluations with human listeners. 

In conclusion, the provided deep technical 
analysis indicates that both RNNoise models (Pre-
Trained and Self-Trained) demonstrate 
exceptional computational efficiency, enabling 
them to process speech signals almost in real-
time. The DeepFilterNet3 models, while slightly 
slower, still exhibit reasonably efficient speech 
enhancement capabilities. Depending on the 
specific application requirements and 
performance considerations, choosing the most 
suitable model would require a more in-depth 
investigation and evaluation. 

  
CONCLUSION 
 This comprehensive analysis of two 
speech enhancement models, RNNoise and 
DeepFilterNet3, has provided valuable insights 
into their training process, accuracy metrics, and 
speed performance. Both models demonstrated 
improvements in speech quality on a common 
dataset, with RNNoise excelling at denoising and 
DeepFilterNet3 exhibiting better generalization. 
The accuracy metrics highlighted that the 
"DeepFilterNet3 (Pre-Trained)" model achieved 

the best overall performance, with high scores in 
intelligibility and speech quality, while the 
"RNNoise (Pre-Trained)" model also showed 
reasonable performance in subjective quality 
measures. However, all models fell short of the 
ideal upper limit in terms of performance. On the 
speed front, the RNNoise models showcased 
exceptional computational efficiency, enabling 
them to process speech signals nearly in real-
time, while DeepFilterNet3 models, though slightly 
slower, demonstrated reasonable efficiency. 
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