

SINERGI Vol. 28, No. 2, June 2024: 265-276
http://publikasi.mercubuana.ac.id/index.php/sinergi

http://doi.org/10.22441/sinergi.2024.2.007

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 265

Problem solving path planning and path tracking in a 3 DOF
hexapod robot using the RRT* algorithm with path
optimization and Pose-to-Pose

Heru Suwoyo1, Achmad Burhanudin1*, Yingzhong Tian2, Julpri Andika1
1Department of Electrical Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia
2School of Mechatronic Engineering and Automation, Shanghai University, China

Abstract
Path planning is one of the most fundamental problems that must be
solved before a robot can navigate and explore autonomously. Path
planning needs to be integrated with path tracking to be applied to
autonomous robots. This makes path tracking also important for
autonomous robot navigation which cannot be separated from path
planning. There are two path planning methods, the first is search-
based method, the second is sampling-based method. Both have
their own advantages, but the popular and commonly used sampling-
based algorithm due to its fast convergence is preferred in path
planning. The RRT* algorithm was developed. This improvement
initiated a major civilization in sampling-based algorithms, namely
parent node selection and rewiring in RRT. Although there has been
an improvement in optimality, RRT* still doesn't provide the distance
optimality value as expected, due to its character that is still adopted
from RRT. The resulting path is still suboptimal and not smooth
(jagged). On the other side, Path tracking has several methods,
however, these path tracking methods are difficult to apply to
autonomous robots and need to be adapted to the robot used. Based
on the description above, there are still problems with path planning,
namely paths that are still less than optimal and convergence that is
still slow. This research will add a way to shorten the distance in the
RRT* algorithm with the triangular inequality method. Meanwhile, for
path tracking, we will apply the pose-to-pose method, which follows
the waypoint that has been made by path planning.

This is an open access article under the CC BY-SA license

Keywords:
Hexapod;
Optimized-RRT*;
Path Planning;
Path Tracking;
Pose-to-Pose;

Article History:
Received: August 5, 2023
Revised: October 20, 2023
Accepted: December 4, 2023
Published: June 2, 2024

Corresponding Author:
Achmad Burhanudin
Department of Electrical
Engineering, Universitas Mercu
Buana, Indonesia
Email:
achmadburhan41@gmail.com

INTRODUCTION

A navigation system is a technology to
determine the path and guide the autonomous
robot to move along the path from the initial
location to the destination location and
independently. Choosing a navigation system is
important to be appropriate and suitable for the
type of robot and the tasks and objectives to be
performed by the robot [1]. Navigation is important
in robotics especially autonomous robots [2]. The
most common problem for autonomous robot
navigation is path planning [2]. This is supported
by research [3], path planning is one of the very

important topics in the development of mobile
robot autonomous navigation. And then research
[4], path planning is one of the most fundamental
problems that must be solved before robots can
navigate and explore autonomously. Path
planning needs to be integrated with path tracking
to be applied to an autonomous robot. This makes
path tracking also important for autonomous robot
navigation which is inseparable from path
planning. This is supported by research [5], mobile
robot tracking control is another important field of
study in recent years.

http://creativecommons.org/licenses/by-sa/4.0/

SINERGI Vol. 28, No. 2, June 2024: 265-276

266 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

There are two path planning methods, the
first is searching based method, such as algorithm
A* [4][6], algorithm D* [7] and algorithm Djiakstra
[8]. The second is sampling based method,
including algorithm RRT [9, 10, 11], algorithm
RRT-Connect and similarly [12][13], algorithm
RRT* [14][15]. Both have advantages, but the
popular and commonly used is the sampling-
based algorithm because of the fast convergence
that is preferred in path planning. However, the
RRT algorithm does not guarantee the optimality
of the path according to [9]. The proposed RRT-
Connect algorithm [16] then has two new ideas as
methods to compensate for the weakness of the
RRT algorithm. In short, RRT-Connect finds a path
from a start point and an end point that then
converge at a point. Path planning through the
RRT-Connect algorithm can find a path faster than
the RRT algorithm, but the 'Extend' method does
not work well in complex environments with
narrow paths and many obstacles and can be
difficult. In addition, the path planned using the
RRT-Connect algorithm is far from the optimal
length, so it does not represent the optimality path.

Because of this, a more optimal RRT was
developed by [17] called RRT*. This improvement
initiated a major civilization in sampling-based
algorithms, that is, parent node selection and
rewiring in RRT. Although there has been an
optimality improvement, RRT* still does not
provide the distance optimality value as expected,
because its character is still adopted from RRT. It
is still slow and the resulting path is still suboptimal
and still not smooth (jagged) [18]. On the other
side, Path tracking has several methods, such as
Pure Pursuit [19], MPC (Model Predictive Control)
[20] and Stanley Controller [21]. However, these
path tracking methods are difficult to apply to
autonomous robots and need to be adapted to the
robot used.

Based on the description above, there are
still problems in path planning, which is a path that
is still suboptimal and convergence is still slow,
this is supported by research [18][22] and [23]. So
there needs to be an approach that gives effect to
the optimality of distance. As for path tracking, the
existing method is still complex to apply to
hexapod robots, so there needs to be a simpler
approach that is easily applied to hexapod robots.

This research will be adding a way to be
able to shorten the distance in the RRT* algorithm
with the triangular inequality method. With the
addition of approaches like this, it is believed that
there will be an increase in path optimality,
measured from the distance of the path formed
and its convergence time. As for path tracking, it
will apply the pose-to-pose method, which is

following the waypoints created by path planning.
However, it can still follow the path accurately.

The next of this paper is organized as
follows; Methods and Materials are described in
section 2, Experimental Results are described and
discussed in Section 3, and the conclusion is
presented in section 4.

METHOD

A hexapod robot with 3 DOF is used to
apply the proposed method. Specifications of the
hexapod robot legs; the joint on this hexapod robot
is a revolute joint which means that the angle of
rotation is a variable value with certain limitations.
The length of coxa = 25 mm, femur = 50 mm, and
tibia = 70 mm. The robot is designed with a rigid
body made of acrylic and some parts are 3D
printed from PLA. Several components, such as
OpenRB-150 microcontroller, Dynamixel XL430
servo motor with a power source of 11.1 Volt Li-
Po 3s battery are placed in the slot on the robot
body. OpenRB-150 is used as a controller for the
rotation of the servo motor. The size of the robot
is 28 cm wide, 24 cm long and 10 cm high.

The robot can move translationally and
rotationally. Rotational movement is the
movement of the robot's perspective by pivoting
(without displacing center of body robot's).
Translational movement is the movement of the
robot from one position to another without
changing the robot's facing direction (straight
motion). The appearance of this robot can be seen
in Figure 1.

Algoritma RRT

RRT was introduced by Steven M. LaValle
and James J. Kuffner in 1998, the RRT algorithm
is one of the most popular path planning
algorithms to the modern time. The key idea is that
RRT builds trees using random sampling in the
search space.

Figure 1. Hexapod Robot

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 267

The latest research on the application of RRT is in
research [10] which applies the RRT algorithm to
unmanned ship.

RRT builds a tree using random sampling in
the search space. The RRT tree starts from an
initial state let's say q.init and expands to find a
path to a goal state let's say q.goal. The tree
gradually expands as iterations continue. During
each iteration, q.rand is randomly selected in the
search space. If the random sample rand z lies in
a barrier-free region, then the nearest node
(q.near) is based on its euclidean or metric
distance. If appropriate, then q.rand is connected
to q.near. Otherwise, it generates a new vertex
(q.new) that aligns with q.rand and connects it to
q.near, as in Figure 2. Then a collision checking
process is performed to ensure a collision-free
path between the new vertex and the nearest
vertex. This process continues until it reaches the
specified number of iterations, and or the specified
time has expired, and or has reached the
destination node or the desired goal is achieved.

Pseduocode RRT Algoritm [18]:
T = (V, E) ← RRT (z init)
1 T← InitializeTree();
2 T← InsertNode(Ɵ, z init, T);
3 for i=0 to i=N do
4 z rand ← Sample(i);
5 z nearest ← Nearest(T, z rand);
6 (z new , U new) ← Steer (Z near, Z rand);
7 If ObstacleFree (z new) then
8 T ← InsertNode (z min, z new, T);
9 return T

Further detail of some major functions is
described as the following:
1. Sample: This function generates a random

zrand position from the search space in the
free Z obstacle-free region.

2. Nearest: This function returns the nearest node
from Ƭ = (V, E) to zrand according to the cost
function.

3. Steer: This function gives a control input u [0,
T] which moves the system from z(0) = z.rand
to z(T)= z.near the path z:[0,T] → Z giving znew
at a distance Δq from znear to zrand where Δq
is the incremental distance.

4. CollisionCheck: This function is used to check
for collision detection of tree branches and
returns true if it is located in a barrier-free
region, i.e., whether the path z: [0, T] lies in the
Zfree region for all t=0 to t=T.

5. Near: This function returns the nearest node in
the tree.

6. InsertNode: This function adds node znew to V
in the tree Ƭ = (V, E) to connect node zmin as
its parent.

Figure 2. RRT Tree Expansion Process

Algoritma RRT-Connect

The RRT-Connect algorithm that has been
suggested [24] incorporates two novel concepts to
make up for the RRT algorithm's shortcoming. The
first is that the destination and beginning point are
both extended in each direction sequentially and
included as root nodes. A flaw in the RRT method
is that the two trees that extend from the start point
and the destination point grow as though they are
pulling on one another, preventing trees from
growing in the direction that is not determined by
the destination. This lengthens the amount of
planning time needed to identify a route. The
second is the idea of "Extend," which, should there
be no collisions with impediments while the tree
stretches, keeps going to the other side. This
allows the path to be planned more quickly
because, in contrast to the RRT algorithm, which
increases the maximum extension length as
samples are generated and entered into the tree,
the tree continues to extend towards the goal if
there are no collisions with barriers. way planning
using the RRT-Connect algorithm can locate a
way more quickly than the RRT algorithm;
however, the 'Extend' technique can be
challenging and less effective in complicated
situations with plenty of barriers and limited paths.
Furthermore, the RRT-Connect algorithm-planned
path deviates significantly from the ideal length,
failing to represent optimality.

Pseduocode RRT-Connect [24]:
CONNECT(T, z)
1 repeat
2 S ← EXTEND (T, z);
3 until not (S = Advanced);
4 Return S;

RRT_CONNECT(z init, z goal)
1 Ta init (z init); Tb init (z goal);
2 for k = 1 to K do
3 z rand ← RANDOM_CONFIG();
4 if not (EXTEND(Ta, z rand) = Trupped)
then

SINERGI Vol. 28, No. 2, June 2024: 265-276

268 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

5 if (CONNECT(Tb, z new) = Reached)
then
6 Return PATH(Ta, Tb);
7 SWAP(Ta, Tb);
8 Return Failure

Algoritma RRT*

The RRT* algorithm is a variation of the
RRT algorithm developed to improve its
performance and ability to find optimal paths [25].
The RRT* algorithm was first proposed by
Karaman and Frazolli [17] This algorithm aims to
overcome the shortcomings of the RRT algorithm
which is not optimal value convergence.

The RRT* algorithm combines sampling
techniques with optimization techniques to
improve performance and the ability to find optimal
paths. The basic principle of RRT* is the same as
RRT, but there are two additional steps in the
RRT* algorithm that make it better than RRT [17]

Initially, RRT* measures the separation
between each vertex and its parent vertex. The
node cost is the name given to this. The
neighbourhood of vertices within a set radius of
the newly discovered vertex is inspected after the
closest vertex has been located. The less
expensive node replaces the proximal node if one
is identified with a lower node cost. The addition of
fan-shaped branches to the tree structure
illustrates the impact of this feature. RRT's cubic
structure is left out.

The rewiring of the tree is the second
change that RRT* makes. The neighbouring node
is examined once again once a node is linked to
the one that is closest in price. It is determined
whether reconnecting the nearby node to the
recently added node will lower its cost. The
neighbour gets reconnected to the newly added
node if the cost is actually lower. The path is
smoothed out by this feature. The most recent
study on ship path planning using RRT* is found

in [14]. Figure 3 shows a RRT* Tree Expansion
process.

Figure 3. RRT* Tree Expansion Process

The functions in the RRT* algorithm are
the same as the previous RRT, but with the
addition of the following functions:
1. Rewire: This function checks if the cost to
znear incoming nodes is less through znew
compared to their old cost, then the parent is
changed to z.new.
2. ChooseParent: This function chooses the best
parent z.new from nearby nodes.

Pseduocode RRT* [18] :
T = (V, E) ← RRT* (z init)
1 T← InitializeTree();
2 T← InsertNode(Ɵ, z init, T);
3 for i=0 to i=N do
4 z rand ← Sample(i);
5 z nearest ← Nearest(T, z rand);
6 (z new , U new) ← Steer (Z near, Z rand);
7 If ObstacleFree (z new) then
8 z near ← Near(T, z new, |V|);
9 z min ← Chooseparent (z near, z nearest, z
 new);
10 T ← InsertNode (z min, z new, T);
11 return T

Pose-to-Pose

The principle of Pose-to-Pose is that the
results of Path Planning in the form of points or
waypoints will be used as input. This involves a
series of points or waypoints that must be
followed, so that the robot's movement control
follows the resulting point by point path planning
until it gets to the very end point (Goal or
destination) of the path [26]. Waypoint is used to
store and/or remember a position-based point
from a location on the map [27, 28, 29].

In this research, Pose-to-Pose functions as
a translator of the results of Path Planning in the
form of Waypoints so that they can be
programmed and used to control robot motion. To
simplify the orientation, the Pose-to-Pose
representation is made on the XY axis. A Robot's
representation of the XY axis is represented in
Figure 4.

Figure 4. Robot's representation of the XY axis

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 269

The green line is assumed to be the result of path
planning and the blue dots are the nodes or
waypoints. L is the length of the distance between
one point to another. α is the angular angle, which
is the orientation of the robot's face towards the X
axis. The calculation of α and x is described in (1)
and (2).

L = √𝑎2 + 𝑏2 (1)

α = tan−1 (
𝑏

𝑎
) (2)

L is the length of the distance between
points, a is the y-axis coordinate point, b is the x-
axis coordinate point while α = the angle between
the robot's direction based on the x-axis.

Pose-to-Pose motion control consists of
rotational motion and translational motion.
Rotational motion is controlled using (1), the
equation is to determine the angular angle of the
robot, so that it can be known how many degrees
and in which direction the robot will rotate or
rotate. While translational motion is controlled
using (2), the equation is to find out how much
distance between one point to the next point, so
that it can be known how far the robot will move
straight. In general, the flowchart sytem of this
research is depicted in Figure 5.

RESULTS AND DISCUSSION

This experiment aims to improve the path
planning optimality and convergence time. The
proposed method is RRT* algorithm with path
optimization. There are some problem limitations
in this paper, first, the autonomous robot designed
and used is a six-legged robot with three DOF in
each leg. Second, Implement the triangular
inequality method for path optimization of the
RRT* algorithm. Third, Path Planning testing is
being done with MATLAB simulation. Fourth, Path
Planning simulation results is used as Path
Tracking Input. Fifth, Implement the concept of
Pose-to-Pose approach for Path Tracking. Sixth,
the test is carried out on the environmental
information that has been given, with a static
environment. Seventh, Motion Model is non-
dynamic.

In order to make the suggested triangle
inequality-based RRT* algorithm more optimum
than RRT*, it rewires the path planned by the
RRT* algorithm using the notion of triangle
inequality between nodes. This study presents a
rewiring approach known as the "Triangular-
Rewiring" method, which is based on the triangle
inequality concept. Figure 6 shows the

Triangular-Rewiring process graphically.

Figure 5. Flowchart System

Figure 6. Triangular-Rewiring Process

Pseduocode RRT* Path Optimization

T = (V, E) ← RRT* Path Optimization (z init)
1 T← InitializeTree();
2 T← InsertNode(Ɵ, z init, T);
3 for i=0 to i=N do
4 z rand ← Sample(i);
5 z nearest ← Nearest(T, z rand);
6 (z new , U new) ← Steer (Z near, Z rand);
7 If ObstacleFree (z new) then
8 z near ← Near(T, z new, |V|);
9 z min ← Chooseparent (z near, z nearest,
z

new);
10 T ← InsertNode (z min, z new, T);
11 T ← Rewire (T, z near, z min, z new);
12 if InitialPathFound then
13 n ← i;
14 (T, directcost) ← Path Optimization(T, z
init,

z goal);
15 if (directcost new < directcostold) then
16 Z beacons ← PathOptimization(T, Z ini,
Z

goal);
17 return T

To support an ideal comparison, the
observations made assume that all knowledge

SINERGI Vol. 28, No. 2, June 2024: 265-276

270 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

about the environment is already present in the
robot because the robot has already solved the
SLAM problem. For testing there are 2 maze-like
maps. The difference between the maps is the
width of the path, map 1 has a wider path and map
2 has a narrower path.

The difference between maps 1 and 2 is in
the level of complexity. Map 1 has wider and
easier routes than map 2. But map 1 is larger in
dimension at 100x100 while map 2 is 80x80. The
green node is the robot's initial point (Start Node)
and the red node is the robot's final point (Goal
Node). Figure 7 and Figure 8 show the Map 1 and
Map 2.

Path Planning testing was carried out by
comparing 2 Path Planning algorithms, the RRT*
Algorithm with the RRT* Algorithm using Path
Optimization in MATLAB software, which was
carried out 10 times. The comparison has 4
parameters, which are:
1. Time. Time is the length of time the algorithm is

executed in software or a simulation, in this
case in MATLAB, if the faster the time then the
execution of the algorithm is faster, it is better.

2. Number of iterations. The number of iterations
shows the effort in finding a more optimal
solution, if the smaller the number of iterations
then the effort made to find a solution is low, it
is better.

Figure 7. Map 1

Figure 8. Map 2

3. Distance. Distance is the length of the path
resulting from the algorithm's solution and is
directly proportional to cost. The cost of the
path considered as an estimate of the length of
the path traveled in path planning, meaning
that if the distance is shorter, it is better.

4. Number of nodes. Many vertices are how many
vertices are traveled on the solution path, in its
application the number of nodes represents the
number of turns to be traveled, the fewer
vertices or turns it will make it easier for the
robot to reach its destination, it is better.

In map 1, based on the test results in Table
1 and Table 2, it is shown that RRT* with Path
Optimization is better than RRT*. Of the 4
parameters, RRT* with Path Optimization is better
in 3 parameters, namely the computation time of
RRT* Path Optimization is faster, with an average
result of 5.72 seconds compared to 10.448
seconds. The number of iterations of RRT* Path
Optimization is less with an average result of 130
compared to 222.2. RRT* Path Optimization has
fewer vertices with an average result of 11.8
compared to 23.8. While RRT* is only slightly
superior in distance, the results of RRT* distance
are shorter with an average result of 90.35
compared to 93.33. The data also shows that in
general the consistency or stability of the results is
better RRT* Path Optimization than RRT*. For the

RRT* Path Optimization test data on map 1 can
be seen in Table 2.

Table 1. RRT* Data On Map1

No. Time
Numbers

of
Iterations

Distance
Number
of Nodes

1. 6.73 s 176 93.86 26
2. 39.26 s 592 107 29
3. 8 s 208 84.74 23
4. 5.36 s 142 83.15 22
5. 10 s 181 102.9 27
6. 7.44 s 201 86.45 20
7. 9.9 s 242 88.76 23
8. 7 s 183 79.11 21
9. 7.43 s 195 91.61 24
10. 3.36 s 102 86 23
x̄ 10.448 222.2 90.35 23.8

Table 2. RRT* Path Optimization Data On Map 1

No. Time
Numbers

of
Iterations

Distance
Number
of Nodes

1. 4.22 s 72 94.37 12
2. 3.63 s 99 107,9 13
3. 8.9 s 156 93.99 12
4. 5.92 s 147 88 12
5. 2.79 s 77 74 10
6. 6.97 s 166 94.95 12
7. 2.92 s 79 98.98 11
8. 11.4 s 242 108 15
9. 5.11 s 131 85.2 10
10. 5.39 s 131 88 11
x̄ 5.72 s 130 93.33 11.8

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 271

The results path of the RRT* and RRT* Path
Optimization on map 1can be seen in Figure 9-
Figure 12. Figure 9. is the best path of RRT* on
Map 1. The path is less smooth (jagged), it is
because there are many nodes on the path. This
causes the path to be longer. Figure 10 is the best
path from RRT* Path Optimization. It can be seen
that the path is smoother and there are less nodes.
Thus the path will be shorter.

Figure 11 The bad path of RR* in the test,
similar to Figure 9. the resulting path is less
smooth and jagged, and this path is much longer
because it passes through the top unlike the
optimal path through the bottom.

Figure 9. The Best Path of RRT* on Map 1

Figure 10. The Best Path of RRT* Path

Optimization on Map 1

Figure 11. The Bad Path of RRT* on Map 1

Figure 12. The Bad Path of RRT* Path

Optimization on Map 1

Visually, RRT* with Path Optimization looks
more smooth, which will make it easier for the
robot to follow the path when applied in real or live.
And it can be seen that the number of nodes
actually represents the smoothness and number
of turns on the path. Paths such as RRT* will be
more difficult and longer in tracing the path, it is
because there are many waypoints that must be
computed so that it takes longer.

In map 2, based on the data in Table 3 and
Table 4, it is shown that RRT* with Path
Optimization is better than RRT*, even in all
parameters tested, RRT*, namely RRT* Path
Optimization computation time is faster, with an
average result of 10 seconds against 12.39
seconds. The number of iterations of RRT* Path
Optimization is less with an average result of
186.2 against 227.8. The number of RRT* Path
Optimization nodes is less with an average result
of 12.2 against 26.3. The path distance result of
RRT* Path Optimization is shorter with an average
result of 91.96 against 95.76. For the RRT* Path
Optimization test data on map 2 can be seen in
Table 4. If we just look at the best path, then RRT*
is better.

However, when compared with the bad path
and the average test results, it can be seen that
there is a large gap between the best path of RRT*
and the bad path of RRT*.

Table 3. RRT* Data On Map 2

No. Time
Numbers

of
Iterations

Distance
Number
of Nodes

1. 6.73 s 176 93.86 26
2. 39.26 s 592 107 29
3. 8 s 208 84.74 23
4. 5.36 s 142 83.15 22
5. 10 s 181 102.9 27
6. 7.44 s 201 86.45 20
7. 9.9 s 242 88.76 23
8. 7 s 183 79.11 21
9. 7.43 s 195 91.61 24
10. 3.36 s 102 86 23
x̄ 10.448 222.2 90.35 23.8

SINERGI Vol. 28, No. 2, June 2024: 265-276

272 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

Table 4. RRT* Path Optimization Data On Map 2

No. Time
Numbers

of
Iterations

Distance
Number
of Nodes

1. 4,22 s 72 94,37 12
2. 3,63 s 99 107,9 13
3. 8,9 s 156 93,99 12
4. 5,92 s 147 88 12
5. 2,79 s 77 74 10
6. 6,97 s 166 94,95 12
7. 2,92 s 79 98,98 11
8. 11,4 s 242 108 15
9. 5,11 s 131 85,2 10
10. 5,39 s 131 88 11
x̄ 5,72 s 130 93,33 11,8

When compared to the test results of RRT* Path
Optimization, it can be seen that the data
generated shows better consistency of results
than RRT*.

The results path of the RRT* and RRT* Path
Optimization on map 1 can be seen in Figure 13-
Figure 16. Figure 13 is the best path of RRT*
based on testing. This path is already quite
optimal. Figure 14 is the best path of RRT* Path
Optimization based on testing. This path is already
better than path in Figure 16. Figure 15 is the bad
path of RR* based on testing. It can be seen that
there is a route selection on the side of Figure 13.
In this bad path, the route passes through the top
of the map.

Figure 13. The Best Path of RRT* on Map 2

Figure 14. The Best Path of RRT* Path

Optimization on Map 2

Figure 15. The Bad Path of RRT* on Map 2

Figure 16. The Bad Path of RRT* Path

Optimization on Map 2

Figure 16 is the bad path of RRT* Path
Optimization based on testing. It can be seen that
there is a route selection on the side of Figure 18.
In this bad path, the route passes through the top
of the map.

On map 2 with a narrower path, it can be
seen that the RRT* path optimization results
remain smoother than the RRT* path optimization
results.

After the experiment, it can be concluded
that there is an increase in the optimality of the
path resulting from RRT* path optimization. Then
next will be testing the Path Tracking pose-to-pose
approach applied to the hexapod robot. The path
that will be tracked is the best path resulting from
RRT* Path Optimization as shown in Figure 14.
Figure 17 shows a pose-to-pose flowchart.

Then the test arena is made based on map
1, but the test arena is made 3x the size of the map
for the Path Planning simulation, to 3 meters x 3
meters. Waypoints will be (60, 90), (81, 81), (93,
87), (117, 90), (141, 96), (165, 98), (186, 105),
(201, 129), (228, 123), (249, 135), (270, 150).
Waypoints in the test are marked with white and
green endpoints, as shown in Figure 18.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 273

Figure 17. Pose-to-Pose Flowchart

Figure 18. Robot in the arena of testing

The advance speed of the hexapod robot

is 23.8 seconds to reach 100 cm or an average of
4.2 cm/s and the rotation speed of the robot is 9
seconds to reach 90° or an average of 10°/s.

Then the result of walking time is obtained
as shown in Table 5. Then for the gap between the
waypoints and the robot test results are shown in
Table 6.

Table 5. Data Robot’s Spent Time
Description Distance Time

1st to 2nd node 18 cm 19 s
2nd to 3rd node 11 cm 11 s
3rd to 4th node 27.5 cm 10 s
4th to 5th node 25 cm 9 s
5th to 6th node 29 cm 19 s
6th to 7th node 13.9 cm 14 s
7th to 8th node 29.6 cm 11 s
8th to 9th node 28.6 cm 16 s
9th to 10th node 20.2 cm 11 s

10th to 11th node 31.6 cm 10 s

Total 234.4 cm 130 s

SINERGI Vol. 28, No. 2, June 2024: 265-276

274 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

Table 6. (X, Y) position data between waypoints
and test

Node Waypoints
Test

Result
Gap
(X,Y)

Gap
Distance

1 (60, 90) (60, 90) (0,0) 0 cm
2 (81, 81) (77, 84) (4, 3) 5 cm
3 (93, 87) (88, 83) (5, 4) 6,4 cm
4 (117, 90) (114, 92) (3, 2) 3,6 cm
5 (141, 96) (139, 93) (2, 3) 3,6 cm
6 (165, 98) (168, 94) (3, 4) 5 cm
7 (186, 105) (181, 99) (5, 6) 7,8 cm
8 (201, 129) (197, 124) (4, 5) 6,4 cm
9 (228, 123) (225, 118) (3, 5) 5,8 cm

10 (249, 135) (244, 125) (5, 10) 11, 1 cm
11 (270, 150) (274, 135) (4,15) 15, 5 cm

Based on the data in Table 6, the gap

between waypoints and test results is the lowest
at 3.6 cm and the longest at 15.5 cm. The distance
is calculated by finding the Euclidean distance
between the waypoints and the test result points
using (2). Node one is not considered because it
is the starting point of the robot where the robot is
placed exactly the same as the waypoints.

As a result, there is a gap between the x,y
position of the waypoints and the test results. The
gap between the x coordinate nearest is 2, the
longest is 5. While the gap between the y
coordinate nearest is 2, the longest is 15. This can
be caused by several factors, such as a design
that is not symmetrical, the condition of the testing
ground that is not perfectly flat, and does not apply
body kinematic to the robot and does not use
sensors. So when there is So when there is a
slight deviation, it will gradually become more and
more deviant because there is no feedback for the
robot.

CONCLUSION

The conclusion of this research is that there
is an increase in the optimality of the path resulted
by RRT* Path Optimization and it is proven to be
better than RRT*. RRT* with Path Optimization
excels in all parameters tested, such as time,
number of iterations, distance and number of
nodes. The application of Pose-to-Pose on the
hexapod robot successfully makes the hexapod
robot follow the path that has been resulted by
Path Planning RRT* Path Optimization nicely
without crashing. With the nearest distance gap of
3.6 cm and the longest distance gap of 15.5 cm to
the waypoints. Thus, it can be concluded that in
general the application of Path Planning and Path
Tracking on the 3 DOF hexapod robot is
successful and there is an increase in the
performance of the hexapod robot in terms of
mobility and navigation to be more optimal and
faster time to reach the destination point. The
robot travel time is 130 seconds for a path length
of 234.4 cm.prospects of further studies into the

next (based on result and discussion) can also be
added.

ACKNOWLEDGMENT

This research is supported by the Center for
Research and Community Service of Universitas
Mercu Buana, with funding from the international
cooperation research scheme.

REFERENCES
[1] F. Ferro, F. Nardi, S. Cooper, and L.

Marchionni, “Robot control and navigation:
ARI’s autonomous system,” 29th IEEE
International Conference on Robot & Human
Interactive Communication ROMAN-2020,
2020, pp. 1-3, doi: 10.36227/techrxiv.
14350571.v1

[2] F. Gul, W. Rahiman, and S. S. Nazli Alhady,
“A comprehensive study for robot navigation
techniques,” Cogent Engineering, vol. 6, no.
1. Cogent OA, Jan. 01, 2019, doi:
10.1080/23311916.2019.1632046.

[3] H. Liu, “Rail transit robots in manufacturing,”
in Robot Systems for Rail Transit
Applications, Elsevier, pp. 1–36, 2020, doi:
10.1016/B978-0-12-822968-2.00001-2.

[4] H. Y. Zhang, W. M. Lin, and A. X. Chen, “Path
planning for the mobile robot: A review,”
Symmetry (Basel), vol. 10, no. 10, 2018, doi:
10.3390/sym10100450.

[5] N. A. I. Ruslan, N. H. Amer, K. Hudha, Z. A.
Kadir, S. A. F. M. Ishak, and S. M. F. S.
Dardin, “Modelling and control strategies in
path tracking control for autonomous tracked
vehicles: A review of state of the art and
challenges,” Journal of Terramechanics, vol.
105. Elsevier Ltd, pp. 67–79, Feb. 01, 2023,
doi: 10.1016/j.jterra.2022.10.003.

[6] J. Gao, Y. Zheng, K. Ni, Q. Mei, B. Hao, and
L. Zheng, “Fast path planning for firefighting
UAV based on A-star algorithm,” in Journal of
Physics: Conference Series, IOP Publishing
Ltd, Sep. 2021, doi: 10.1088/1742-
6596/2029/1/012103.

[7] F. A. Raheem and U. I. Hameed, “Path
Planning Algorithm using D* Heuristic
Method Based on PSO in Dynamic
Environment,” American Scientific Research
Journal for Engineering, vol. 49, no. 1, pp.
257-271, 2018.

[8] A. Ubaidillah and H. Sukri, “Application of
Odometry and Dijkstra Algorithm as
Navigation and Shortest Path Determination
System of Warehouse Mobile Robot,” Journal
of Robotics and Control (JRC), vol. 4, no. 3,
2023, doi: 10.18196/jrc.v4i3.18489.

[9] Q. Zhang, L. Li, L. Zheng, and B. Li, “An
Improved Path Planning Algorithm Based on

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod … 275

RRT,” in 2022 11th International Conference
of Information and Communication
Technology (ICTech)), IEEE, Feb. 2022, pp.
149–152. doi: 10.1109/ICTech55460.2022.
00037.

[10] Z. Li, L. Li, W. Zhang, W. Wu, and Z. Zhu,
“Research on Unmanned Ship Path Planning
based on RRT Algorithm,” in Journal of
Physics: Conference Series, Institute of
Physics, 2022. doi: 10.1088/1742-
6596/2281/1/012004.

[11] Y. Shi, Q. Li, S. Bu, J. Yang, and L. Zhu,
“Research on Intelligent Vehicle Path
Planning Based on Rapidly-Exploring
Random Tree,” Mathematical Problems in
Engineering, vol. 2020, 2020, doi:
10.1155/2020/5910503.

[12] L. Jin, H. Chaowei, and P. Minqiang, “Path
Planning Algorithms for Self-Driving vehicle
based on improved RRT-Connect,”
Transportation Safety and Environment, vol.
5, no. 3, Jun. 2022, doi: 10.1093/tse/tdac061.

[13] H. Jin, W. Cui, and H. Fu, “Improved RRT-
Connect Algorithm for Urban low-altitude
UAV Route Planning,” in Journal of Physics:
Conference Series, IOP Publishing Ltd, Jun.
2021, doi: 10.1088/1742-6596/1948/1/
012048.

[14] T. T. Enevoldsen and R. Galeazzi,
“Grounding-aware RRT* for path planning
and safe navigation of marine crafts in
confined waters,” in IFAC-PapersOnLine,
Elsevier B.V., 2021, pp. 195–201. doi:
10.1016/j.ifacol.2021.10.093.

[15] I. Noreen, A. Khan, and P. Zulfiqar Habib,
“Optimal Path Planning using RRT* based
Approaches: A Survey and Future
Directions,” International Journal of
Advanced Computer Science and
Applications(IJACSA), vol. 7, no. 11, pp. 97-
107, 2016, doi: 10.14569/IJACSA.2016.
071114.

[16] J. J. Kuffner and S. M. LaValle, "RRT-
connect: An efficient approach to single-
query path planning," Proceedings 2000
ICRA. Millennium Conference. IEEE
International Conference on Robotics and
Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA,
2000, pp. 995-1001 vol. 2, doi:
10.1109/ROBOT.2000.844730.

[17] S. Karaman and E. Frazzoli, “Sampling-
based Algorithms for Optimal Motion
Planning,” The International Journal of
Robotics Research, vol. 30, no. 7, May 2011,
doi: 10.1177/0278364911406761

[18] I. Noreen, A. Khan, and Z. Habib, “A
Comparison of RRT, RRT* and RRT*-Smart

Path Planning Algorithms,” International
Conference on Mechatronics and Automation
(ICMA), 2016, doi: 10.1109/ICMA.2012.
6284384

[19] M. Samuel, M. Maziah, M. Hussien, and N. Y.
Godi, “Control of Autonomous Vehicle Using
Path Tracking: A Review,” Advanced Science
Letters, vol. 24, no. 6, pp. 3877–3879, Apr.
2018, doi: 10.1166/asl.2018.11502.

[20] H. Wu, H. Zhang, and Y. Feng, “MPC-Based
Obstacle Avoidance Path Tracking Control
for Distributed Drive Electric Vehicles,” World
Electric Vehicle Journal, vol. 13, no. 12, Dec.
2022, doi: 10.3390/wevj13120221.

[21] S. Tippannavar, Y. S D, H. R, and S. Jain,
“Stanley Controller based Autonomous Path
planning and Tracking in Self-Driving Cars,”
International Journal of Innovative Research
in Advanced Engineering, vol. 10, no. 03, pp.
40–48, Mar. 2023, doi: 10.26562/ijirae.2023.
v1003.01.

[22] H. Wang, G. Li, J. Hou, L. Chen, and N. Hu,
“A Path Planning Method for Underground
Intelligent Vehicles Based on an Improved
RRT* Algorithm,” Electronics (Switzerland),
vol. 11, no. 3, Feb. 2022, doi:
10.3390/electronics11030294.

[23] D. Wang, S. Zheng, Y. Ren, and D. Du, “Path
planning based on the improved RRT∗
algorithm for themining truck,” Computers,
Materials and Continua, vol. 71, no. 2, pp.
3571–3587, 2022, doi: 10.32604/cmc.2022.
022183.

[24] J. J. Kuffner and S. M. LaValle, "RRT-
connect: An efficient approach to single-
query path planning," Proceedings 2000
ICRA. Millennium Conference. IEEE
International Conference on Robotics and
Automation. Symposia Proceedings (Cat.
No.00CH37065), San Francisco, CA, USA,
2000, pp. 995-1001 vol.2, doi:
10.1109/ROBOT.2000.844730.

[25] H. Suwoyo, A. Adriansyah, J. Andika, A. U.
Shamsudin, and M. F. Zakaria, “An integrated
RRT*Smart-A* algorithm for solving the
global path planning problem in a static
environment,” IIUM Engineering Journal, vol.
24, no. 1, pp. 269–284, 2023, doi:
10.31436/iiumej. v24i1.2529.

[26] W. K. Yousif and A. A. Ali, “Simulation of
Pose to Pose Moving of the Mobile Robot
with Specified GPS Points,” Journal of
Engineering, vol. 26, no. 11, pp. 195–208,
Nov. 2020, doi: 10.31026/j.eng.2020.11.13.

[27] A. A. Ashari, E. Setiawan, and D. Syauqi,
“Sistem Navigasi Waypoint Pada Robot
Beroda Berdasarkan Global Positioning
System Dan Filter Kalman,” Jurnal

SINERGI Vol. 28, No. 2, June 2024: 265-276

276 H. Suwoyo et. al, Problem solving path planning and path tracking in a 3 DOF hexapod …

Pengembangan Teknologi Informasi Dan
Ilmu Komputer, vol. 4, no. 7, pp. 2075-2082,
2020.

[28] N. Lilansa, M. N. Rizal, P. Anggraeni, N. J.
Ramadhan,”Implementation consensus
algorithm and leader-follower of multi-robot
system formation,” SINERGI, vol. 27, no. 1,

2023, pp. 45-56, doi: 10.22441/sinergi.2023.
1.006

[29] F. H. Kristanto & Z. Iklima,”Collision
avoidance of mobile robot using Alexnet and
NVIDIA Jetson Nano B01,” Journal of
Integrated and Advanced Engineering
(JIAE), vol. 4, no. 1, pp. 9-20, 2024, doi:
10.51662/jiae.v4i1.118

