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Abstract  
Path planning is one of the most fundamental problems that must be 
solved before a robot can navigate and explore autonomously. Path 
planning needs to be integrated with path tracking to be applied to 
autonomous robots. This makes path tracking also important for 
autonomous robot navigation which cannot be separated from path 
planning. There are two path planning methods, the first is search-
based method, the second is sampling-based method. Both have 
their own advantages, but the popular and commonly used sampling-
based algorithm due to its fast convergence is preferred in path 
planning.  The RRT* algorithm was developed. This improvement 
initiated a major civilization in sampling-based algorithms, namely 
parent node selection and rewiring in RRT. Although there has been 
an improvement in optimality, RRT* still doesn't provide the distance 
optimality value as expected, due to its character that is still adopted 
from RRT.  The resulting path is still suboptimal and not smooth 
(jagged). On the other side, Path tracking has several methods, 
however, these path tracking methods are difficult to apply to 
autonomous robots and need to be adapted to the robot used. Based 
on the description above, there are still problems with path planning, 
namely paths that are still less than optimal and convergence that is 
still slow.  This research will add a way to shorten the distance in the 
RRT* algorithm with the triangular inequality method.  Meanwhile, for 
path tracking, we will apply the pose-to-pose method, which follows 
the waypoint that has been made by path planning.  
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INTRODUCTION 

A navigation system is a technology to 
determine the path and guide the autonomous 
robot to move along the path from the initial 
location to the destination location and   
independently. Choosing a navigation system is 
important to be appropriate and suitable for the 
type of robot and the tasks and objectives to be 
performed by the robot [1]. Navigation is important 
in robotics especially autonomous robots [2]. The 
most common problem for autonomous robot 
navigation is path planning [2]. This is supported 
by research [3], path planning is one of the very 

important topics in the development of mobile 
robot autonomous navigation. And then research 
[4], path planning is one of the most fundamental 
problems that must be solved before robots can 
navigate and explore autonomously. Path 
planning needs to be integrated with path tracking 
to be applied to an autonomous robot. This makes 
path tracking also important for autonomous robot 
navigation which is inseparable from path 
planning. This is supported by research [5], mobile 
robot tracking control is another important field of 
study in recent years. 
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There are two path planning methods, the 
first is searching based method, such as algorithm 
A* [4][6], algorithm D* [7] and algorithm Djiakstra 
[8]. The second is sampling based method, 
including algorithm RRT [9, 10, 11], algorithm 
RRT-Connect and similarly [12][13], algorithm 
RRT* [14][15]. Both have advantages, but the 
popular and commonly used is the sampling-
based algorithm because of the fast convergence 
that is preferred in path planning. However, the 
RRT algorithm does not guarantee the optimality 
of the path according to [9]. The proposed RRT-
Connect algorithm [16] then has two new ideas as 
methods to compensate for the weakness of the 
RRT algorithm. In short, RRT-Connect finds a path 
from a start point and an end point that then 
converge at a point. Path planning through the 
RRT-Connect algorithm can find a path faster than 
the RRT algorithm, but the 'Extend' method does 
not work well in complex environments with 
narrow paths and many obstacles and can be 
difficult. In addition, the path planned using the 
RRT-Connect algorithm is far from the optimal 
length, so it does not represent the optimality path. 

Because of this, a more optimal RRT was 
developed by [17] called RRT*. This improvement 
initiated a major civilization in sampling-based 
algorithms, that is, parent node selection and 
rewiring in RRT. Although there has been an 
optimality improvement, RRT* still does not 
provide the distance optimality value as expected, 
because its character is still adopted from RRT. It 
is still slow and the resulting path is still suboptimal 
and still not smooth (jagged) [18]. On the other 
side, Path tracking has several methods, such as 
Pure Pursuit [19], MPC (Model Predictive Control) 
[20] and Stanley Controller [21]. However, these 
path tracking methods are difficult to apply to 
autonomous robots and need to be adapted to the 
robot used. 

Based on the description above, there are 
still problems in path planning, which is a path that 
is still suboptimal and convergence is still slow, 
this is supported by research [18][ 22] and [23]. So 
there needs to be an approach that gives effect to 
the optimality of distance. As for path tracking, the 
existing method is still complex to apply to 
hexapod robots, so there needs to be a simpler 
approach that is easily applied to hexapod robots. 

This research will be adding a way to be 
able to shorten the distance in the RRT* algorithm 
with the triangular inequality method. With the 
addition of approaches like this, it is believed that 
there will be an increase in path optimality, 
measured from the distance of the path formed 
and its convergence time. As for path tracking, it 
will apply the pose-to-pose method, which is 

following the waypoints created by path planning. 
However, it can still follow the path accurately. 

The next of this paper is organized as 
follows; Methods and Materials are described in 
section 2, Experimental Results are described and 
discussed in Section 3, and the conclusion is 
presented in section 4. 

 
METHOD 

A hexapod robot with 3 DOF is used to 
apply the proposed method. Specifications of the 
hexapod robot legs; the joint on this hexapod robot 
is a revolute joint which means that the angle of 
rotation is a variable value with certain limitations. 
The length of coxa = 25 mm, femur = 50 mm, and 
tibia = 70 mm.  The robot is designed with a rigid 
body made of acrylic and some parts are 3D 
printed from PLA. Several components, such as 
OpenRB-150 microcontroller, Dynamixel XL430 
servo motor with a power source of 11.1 Volt Li-
Po 3s battery are placed in the slot on the robot 
body. OpenRB-150 is used as a controller for the 
rotation of the servo motor. The size of the robot 
is 28 cm wide, 24 cm long and 10 cm high.  

The robot can move translationally and 
rotationally. Rotational movement is the 
movement of the robot's perspective by pivoting 
(without displacing center of body robot's). 
Translational movement is the movement of the 
robot from one position to another without 
changing the robot's facing direction (straight 
motion). The appearance of this robot can be seen 
in Figure 1.  
 
Algoritma RRT 

RRT was introduced by Steven M. LaValle 
and James J. Kuffner in 1998, the RRT algorithm 
is one of the most popular path planning 
algorithms to the modern time. The key idea is that 
RRT builds trees using random sampling in the 
search space. 

 

 
Figure 1. Hexapod Robot 
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The latest research on the application of RRT is in 
research [10] which applies the RRT algorithm to 
unmanned ship. 

RRT builds a tree using random sampling in 
the search space. The RRT tree starts from an 
initial state let's say q.init and expands to find a 
path to a goal state let's say q.goal. The tree 
gradually expands as iterations continue. During 
each iteration, q.rand is randomly selected in the 
search space. If the random sample rand z lies in 
a barrier-free region, then the nearest node 
(q.near) is based on its euclidean or metric 
distance. If appropriate, then q.rand is connected 
to q.near. Otherwise, it generates a new vertex 
(q.new) that aligns with q.rand and connects it to 
q.near, as in Figure 2. Then a collision checking 
process is performed to ensure a collision-free 
path between the new vertex and the nearest 
vertex. This process continues until it reaches the 
specified number of iterations, and or the specified 
time has expired, and or has reached the 
destination node or the desired goal is achieved. 

Pseduocode RRT Algoritm [18]: 
T = (V, E) ← RRT (z init) 
1 T← InitializeTree(); 
2 T← InsertNode(Ɵ, z init, T); 
3 for i=0 to i=N do 
4 z rand ← Sample(i); 
5 z nearest  ← Nearest(T, z rand); 
6 (z new , U new) ← Steer (Z near, Z rand); 
7 If ObstacleFree (z new) then 
8  T ← InsertNode ( z min, z new, T); 
9 return T 

Further detail of some major functions is 
described as the following: 
1. Sample: This function generates a random 

zrand position from the search space in the 
free Z obstacle-free region. 

2. Nearest: This function returns the nearest node 
from Ƭ = (V, E) to zrand according to the cost 
function. 

3. Steer: This function gives a control input u [0, 
T] which moves the system from z(0) = z.rand 
to z(T)= z.near the path z:[0,T] → Z giving znew 
at a distance Δq from znear to zrand where Δq 
is the incremental distance. 

4. CollisionCheck: This function is used to check 
for collision detection of tree branches and 
returns true if it is located in a barrier-free 
region, i.e., whether the path z: [0, T] lies in the 
Zfree region for all t=0 to t=T. 

5. Near: This function returns the nearest node in 
the tree. 

6. InsertNode: This function adds node znew to V 
in the tree Ƭ = (V, E) to connect node zmin as 
its parent. 

 
 

 
Figure 2. RRT Tree Expansion Process 

 
Algoritma RRT-Connect 

The RRT-Connect algorithm that has been 
suggested [24] incorporates two novel concepts to 
make up for the RRT algorithm's shortcoming. The 
first is that the destination and beginning point are 
both extended in each direction sequentially and 
included as root nodes. A flaw in the RRT method 
is that the two trees that extend from the start point 
and the destination point grow as though they are 
pulling on one another, preventing trees from 
growing in the direction that is not determined by 
the destination. This lengthens the amount of 
planning time needed to identify a route. The 
second is the idea of "Extend," which, should there 
be no collisions with impediments while the tree 
stretches, keeps going to the other side. This 
allows the path to be planned more quickly 
because, in contrast to the RRT algorithm, which 
increases the maximum extension length as 
samples are generated and entered into the tree, 
the tree continues to extend towards the goal if 
there are no collisions with barriers. way planning 
using the RRT-Connect algorithm can locate a 
way more quickly than the RRT algorithm; 
however, the 'Extend' technique can be 
challenging and less effective in complicated 
situations with plenty of barriers and limited paths. 
Furthermore, the RRT-Connect algorithm-planned 
path deviates significantly from the ideal length, 
failing to represent optimality. 

Pseduocode RRT-Connect [24]: 
CONNECT(T, z) 
1 repeat 
2  S ← EXTEND (T, z); 
3 until not (S = Advanced); 
4 Return S; 
 
RRT_CONNECT(z init, z goal) 
1 Ta init (z init); Tb init (z goal); 
2 for k = 1 to K do 
3 z rand ← RANDOM_CONFIG(); 
4 if not (EXTEND(Ta, z rand) = Trupped) 
then 
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5 if (CONNECT(Tb, z new) = Reached) 
then 
6 Return PATH(Ta, Tb); 
7 SWAP(Ta, Tb); 
8 Return Failure 

 
Algoritma RRT* 

The RRT* algorithm is a variation of the 
RRT algorithm developed to improve its 
performance and ability to find optimal paths [25]. 
The RRT* algorithm was first proposed by 
Karaman and Frazolli [17] This algorithm aims to 
overcome the shortcomings of the RRT algorithm 
which is not optimal value convergence. 

The RRT* algorithm combines sampling 
techniques with optimization techniques to 
improve performance and the ability to find optimal 
paths. The basic principle of RRT* is the same as 
RRT, but there are two additional steps in the 
RRT* algorithm that make it better than RRT [17] 

Initially, RRT* measures the separation 
between each vertex and its parent vertex. The 
node cost is the name given to this. The 
neighbourhood of vertices within a set radius of 
the newly discovered vertex is inspected after the 
closest vertex has been located. The less 
expensive node replaces the proximal node if one 
is identified with a lower node cost. The addition of 
fan-shaped branches to the tree structure 
illustrates the impact of this feature. RRT's cubic 
structure is left out. 

The rewiring of the tree is the second 
change that RRT* makes. The neighbouring node 
is examined once again once a node is linked to 
the one that is closest in price. It is determined 
whether reconnecting the nearby node to the 
recently added node will lower its cost. The 
neighbour gets reconnected to the newly added 
node if the cost is actually lower. The path is 
smoothed out by this feature. The most recent 
study on ship path planning using RRT* is found 

in [14]. Figure 3 shows a RRT* Tree Expansion 
process. 

 

 
Figure 3. RRT* Tree Expansion Process 

The functions in the RRT* algorithm are 
the same as the previous RRT, but with the 
addition of the following functions: 
1. Rewire: This function checks if the cost to 
znear incoming nodes is less through znew 
compared to their old cost, then the parent is 
changed to z.new. 
2. ChooseParent: This function chooses the best 
parent z.new from nearby nodes. 

Pseduocode RRT* [18] : 
T = (V, E) ← RRT* (z init) 
1 T← InitializeTree(); 
2 T← InsertNode(Ɵ, z init, T); 
3 for i=0 to i=N do 
4 z rand ← Sample(i); 
5 z nearest  ← Nearest(T, z rand); 
6 (z new , U new) ← Steer (Z near, Z rand); 
7 If ObstacleFree (z new) then 
8    z near ← Near(T, z new, |V|); 
9    z min ← Chooseparent (z near, z nearest, z  
     new); 
10  T ← InsertNode ( z min, z new, T); 
11 return T 

 
Pose-to-Pose 

The principle of Pose-to-Pose is that the 
results of Path Planning in the form of points or 
waypoints will be used as input. This involves a 
series of points or waypoints that must be 
followed, so that the robot's movement control 
follows the resulting point by point path planning 
until it gets to the very end point (Goal or 
destination) of the path [26]. Waypoint is used to 
store and/or remember a position-based point 
from a location on the map [27, 28, 29]. 

In this research, Pose-to-Pose functions as 
a translator of the results of Path Planning in the 
form of Waypoints so that they can be 
programmed and used to control robot motion. To 
simplify the orientation, the Pose-to-Pose 
representation is made on the XY axis. A Robot's 
representation of the XY axis is represented in 
Figure 4. 

 
Figure 4. Robot's representation of the XY axis 
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The green line is assumed to be the result of path 
planning and the blue dots are the nodes or 
waypoints. L is the length of the distance between 
one point to another.  α is the angular angle, which 
is the orientation of the robot's face towards the X 
axis. The calculation of α and x is described in (1) 
and (2). 

L = √𝑎2 + 𝑏2    (1) 

α = tan−1 (
𝑏

𝑎
)     (2) 

L is the length of the distance between 
points, a is the y-axis coordinate point, b is the x-
axis coordinate point while α = the angle between 
the robot's direction based on the x-axis. 

Pose-to-Pose motion control consists of 
rotational motion and translational motion. 
Rotational motion is controlled using (1), the 
equation is to determine the angular angle of the 
robot, so that it can be known how many degrees 
and in which direction the robot will rotate or 
rotate. While translational motion is controlled 
using (2), the equation is to find out how much 
distance between one point to the next point, so 
that it can be known how far the robot will move 
straight. In general, the flowchart sytem of this 
research is depicted in Figure 5. 
 
RESULTS AND DISCUSSION 

This experiment aims to improve the path 
planning optimality and convergence time. The 
proposed method is RRT* algorithm with path 
optimization. There are some problem limitations 
in this paper, first, the autonomous robot designed 
and used is a six-legged robot with three DOF in 
each leg. Second, Implement the triangular 
inequality method for path optimization of the 
RRT* algorithm. Third, Path Planning testing is 
being done with MATLAB simulation. Fourth, Path 
Planning simulation results is used as Path 
Tracking Input. Fifth, Implement the concept of 
Pose-to-Pose approach for Path Tracking. Sixth, 
the test is carried out on the environmental 
information that has been given, with a static 
environment. Seventh, Motion Model is non-
dynamic. 

In order to make the suggested triangle 
inequality-based RRT* algorithm more optimum 
than RRT*, it rewires the path planned by the 
RRT* algorithm using the notion of triangle 
inequality between nodes. This study presents a 
rewiring approach known as the "Triangular-
Rewiring" method, which is based on the triangle 
inequality concept. Figure 6 shows the 

Triangular-Rewiring process graphically.  
 

 

 
Figure 5. Flowchart System 

 

 
Figure 6. Triangular-Rewiring Process 

 
Pseduocode RRT* Path Optimization 

T = (V, E) ← RRT* Path Optimization (z init) 
1 T← InitializeTree(); 
2 T← InsertNode(Ɵ, z init, T); 
3 for i=0 to i=N do 
4 z rand ← Sample(i); 
5 z nearest  ← Nearest(T, z rand); 
6 (z new , U new) ← Steer (Z near, Z rand); 
7 If ObstacleFree (z new) then 
8    z near ← Near(T, z new, |V|); 
9    z min ← Chooseparent (z near, z nearest, 
z  

new); 
10  T ← InsertNode ( z min, z new, T); 
11   T ← Rewire (T, z near, z min, z new); 
12 if InitialPathFound then 
13   n ← i; 
14   (T, directcost) ← Path Optimization(T, z 
init,  

z goal); 
15 if (directcost new < directcostold) then 
16   Z beacons ← PathOptimization(T, Z ini, 
Z  

goal); 
17 return T 

To support an ideal comparison, the 
observations made assume that all knowledge 
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about the environment is already present in the 
robot because the robot has already solved the 
SLAM problem. For testing there are 2 maze-like 
maps. The difference between the maps is the 
width of the path, map 1 has a wider path and map 
2 has a narrower path. 

The difference between maps 1 and 2 is in 
the level of complexity. Map 1 has wider and 
easier routes than map 2. But map 1 is larger in 
dimension at 100x100 while map 2 is 80x80. The 
green node is the robot's initial point (Start Node) 
and the red node is the robot's final point (Goal 
Node). Figure 7 and Figure 8 show the Map 1 and 
Map 2. 

Path Planning testing was carried out by 
comparing 2 Path Planning algorithms, the RRT* 
Algorithm with the RRT* Algorithm using Path 
Optimization in MATLAB software, which was 
carried out 10 times. The comparison has 4 
parameters, which are: 
1. Time. Time is the length of time the algorithm is 

executed in software or a simulation, in this 
case in MATLAB, if the faster the time then the 
execution of the algorithm is faster, it is better.  

2. Number of iterations. The number of iterations 
shows the effort in finding a more optimal 
solution, if the smaller the number of iterations 
then the effort made to find a solution is low, it 
is better.  

 

 
Figure 7. Map 1 

 

 
Figure 8. Map 2 

 

3. Distance. Distance is the length of the path 
resulting from the algorithm's solution and is 
directly proportional to cost. The cost of the 
path considered as an estimate of the length of 
the path traveled in path planning, meaning 
that if the distance is shorter, it is better.  

4. Number of nodes. Many vertices are how many 
vertices are traveled on the solution path, in its 
application the number of nodes represents the 
number of turns to be traveled, the fewer 
vertices or turns it will make it easier for the 
robot to reach its destination, it is better. 

In map 1, based on the test results in Table 
1 and Table 2, it is shown that RRT* with Path 
Optimization is better than RRT*. Of the 4 
parameters, RRT* with Path Optimization is better 
in 3 parameters, namely the computation time of 
RRT* Path Optimization is faster, with an average 
result of 5.72 seconds compared to 10.448 
seconds. The number of iterations of RRT* Path 
Optimization is less with an average result of 130 
compared to 222.2. RRT* Path Optimization has 
fewer vertices with an average result of 11.8 
compared to 23.8. While RRT* is only slightly 
superior in distance, the results of RRT* distance 
are shorter with an average result of 90.35 
compared to 93.33. The data also shows that in 
general the consistency or stability of the results is 
better RRT* Path Optimization than RRT*. For the 

RRT* Path Optimization test data on map 1 can 
be seen in Table 2. 

 
Table 1. RRT* Data On Map1 

No. Time 
Numbers 

of 
Iterations 

Distance 
Number 
of Nodes 

1. 6.73 s 176 93.86 26 
2. 39.26 s 592 107 29 
3. 8 s 208 84.74 23 
4. 5.36 s 142 83.15 22 
5. 10 s 181 102.9 27 
6. 7.44 s 201 86.45 20 
7. 9.9 s 242 88.76 23 
8. 7 s 183 79.11 21 
9. 7.43 s 195 91.61 24 
10. 3.36 s 102 86 23 
x̄ 10.448 222.2 90.35 23.8 

 
Table 2. RRT* Path Optimization Data On Map 1 

No. Time 
Numbers 

of 
Iterations 

Distance 
Number 
of Nodes 

1. 4.22 s 72 94.37 12 
2. 3.63 s 99 107,9 13 
3. 8.9 s 156 93.99 12 
4. 5.92 s 147 88 12 
5. 2.79 s 77 74 10 
6. 6.97 s 166 94.95 12 
7. 2.92 s 79 98.98 11 
8. 11.4 s 242 108 15 
9. 5.11 s 131 85.2 10 
10. 5.39 s 131 88 11 
x̄ 5.72 s 130 93.33 11.8 
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The results path of the RRT* and RRT* Path 
Optimization on map 1can be seen in Figure 9-
Figure 12. Figure 9. is the best path of RRT* on 
Map 1. The path is less smooth (jagged), it is 
because there are many nodes on the path. This 
causes the path to be longer. Figure 10 is the best 
path from RRT* Path Optimization. It can be seen 
that the path is smoother and there are less nodes. 
Thus the path will be shorter. 

Figure 11 The bad path of RR* in the test, 
similar to Figure 9. the resulting path is less 
smooth and jagged, and this path is much longer 
because it passes through the top unlike the 
optimal path through the bottom. 

 

 
Figure 9. The Best Path of RRT* on Map 1 

  

 
Figure 10. The Best Path of RRT* Path 

Optimization on Map 1 
 

 
Figure 11. The Bad Path of RRT* on Map 1 

 
Figure 12. The Bad Path of RRT* Path 

Optimization on Map 1 
 

Visually, RRT* with Path Optimization looks 
more smooth, which will make it easier for the 
robot to follow the path when applied in real or live. 
And it can be seen that the number of nodes 
actually represents the smoothness and number 
of turns on the path. Paths such as RRT* will be 
more difficult and longer in tracing the path, it is 
because there are many waypoints that must be 
computed so that it takes longer. 

In map 2, based on the data in Table 3 and 
Table 4, it is shown that RRT* with Path 
Optimization is better than RRT*, even in all 
parameters tested, RRT*, namely RRT* Path 
Optimization computation time is faster, with an 
average result of 10 seconds against 12.39 
seconds. The number of iterations of RRT* Path 
Optimization is less with an average result of 
186.2 against 227.8. The number of RRT* Path 
Optimization nodes is less with an average result 
of 12.2 against 26.3. The path distance result of 
RRT* Path Optimization is shorter with an average 
result of 91.96 against 95.76. For the RRT* Path 
Optimization test data on map 2 can be seen in 
Table 4. If we just look at the best path, then RRT* 
is better.  

However, when compared with the bad path 
and the average test results, it can be seen that 
there is a large gap between the best path of RRT* 
and the bad path of RRT*. 

 
Table 3. RRT* Data On Map 2 

No. Time 
Numbers 

of 
Iterations 

Distance 
Number 
of Nodes 

1. 6.73 s 176 93.86 26 
2. 39.26 s 592 107 29 
3. 8 s 208 84.74 23 
4. 5.36 s 142 83.15 22 
5. 10 s 181 102.9 27 
6. 7.44 s 201 86.45 20 
7. 9.9 s 242 88.76 23 
8. 7 s 183 79.11 21 
9. 7.43 s 195 91.61 24 
10. 3.36 s 102 86 23 
x̄ 10.448 222.2 90.35 23.8 
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Table 4. RRT* Path Optimization Data On Map 2 

No. Time 
Numbers 

of 
Iterations 

Distance 
Number 
of Nodes 

1. 4,22 s 72 94,37 12 
2. 3,63 s 99 107,9 13 
3. 8,9 s 156 93,99 12 
4. 5,92 s 147 88 12 
5. 2,79 s 77 74 10 
6. 6,97 s 166 94,95 12 
7. 2,92 s 79 98,98 11 
8. 11,4 s 242 108 15 
9. 5,11 s 131 85,2 10 
10. 5,39 s 131 88 11 
x̄ 5,72 s 130 93,33 11,8 

 
When compared to the test results of RRT* Path 
Optimization, it can be seen that the data 
generated shows better consistency of results 
than RRT*. 

The results path of the RRT* and RRT* Path 
Optimization on map 1 can be seen in Figure 13- 
Figure 16. Figure 13 is the best path of RRT* 
based on testing. This path is already quite 
optimal. Figure 14 is the best path of RRT* Path 
Optimization based on testing. This path is already 
better than path in Figure 16. Figure 15 is the bad 
path of RR* based on testing. It can be seen that 
there is a route selection on the side of Figure 13. 
In this bad path, the route passes through the top 
of the map. 

 

 
Figure 13. The Best Path of RRT* on Map 2 

 

 
Figure 14. The Best Path of RRT* Path 

Optimization on Map 2 
 

 

 
Figure 15. The Bad Path of RRT* on Map 2 

 

 
Figure 16. The Bad Path of RRT* Path 

Optimization on Map 2 
 

Figure 16 is the bad path of RRT*  Path 
Optimization based on  testing. It can be seen that 
there is a route selection on the side of Figure 18. 
In this bad path, the route passes through the top 
of the map. 

On map 2 with a narrower path, it can be 
seen that the RRT* path optimization results 
remain smoother than the RRT* path optimization 
results. 

After the experiment, it can be concluded 
that there is an increase in the optimality of the 
path resulting from RRT* path optimization. Then 
next will be testing the Path Tracking pose-to-pose 
approach applied to the hexapod robot. The path 
that will be tracked is the best path resulting from 
RRT* Path Optimization as shown in Figure 14. 
Figure 17 shows a pose-to-pose flowchart. 

Then the test arena is made based on map 
1, but the test arena is made 3x the size of the map 
for the Path Planning simulation, to 3 meters x 3 
meters. Waypoints will be (60, 90), (81, 81), (93, 
87), (117, 90), (141, 96), (165, 98), (186, 105), 
(201, 129), (228, 123), (249, 135), (270, 150). 
Waypoints in the test are marked with white and 
green endpoints, as shown in Figure 18. 
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Figure 17. Pose-to-Pose Flowchart 

 

 
Figure 18. Robot in the arena of testing 

 
The advance speed of the hexapod robot 

is 23.8 seconds to reach 100 cm or an average of 
4.2 cm/s and the rotation speed of the robot is 9 
seconds to reach 90° or an average of 10°/s.  

Then the result of walking time is obtained 
as shown in Table 5. Then for the gap between the 
waypoints and the robot test results are shown in 
Table 6.  

 
 
 

Table 5. Data Robot’s Spent Time  
Description Distance Time 

1st to 2nd node 18 cm 19 s 
2nd to 3rd node 11 cm 11 s 
3rd to 4th node 27.5 cm 10 s 
4th to 5th node 25 cm 9 s 
5th to 6th node 29 cm 19 s 
6th to 7th node 13.9 cm 14 s 
7th to 8th node 29.6 cm 11 s 
8th to 9th node 28.6 cm 16 s 
9th to 10th node 20.2 cm 11 s 

10th to 11th node 31.6 cm 10 s 

Total 234.4 cm 130 s 
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Table 6. (X, Y) position data between waypoints 
and test 

Node Waypoints 
Test 

Result   
Gap 
(X,Y) 

Gap 
Distance 

1 (60, 90) (60, 90) (0,0) 0 cm 
2 (81, 81) (77, 84) (4, 3) 5 cm 
3 (93, 87) (88, 83) (5, 4) 6,4 cm 
4 (117, 90) (114, 92) (3, 2) 3,6 cm 
5 (141, 96) (139, 93) (2, 3) 3,6 cm 
6 (165, 98) (168, 94) (3, 4) 5 cm 
7 (186, 105) (181, 99) (5, 6) 7,8 cm 
8 (201, 129) (197, 124) (4, 5) 6,4 cm 
9 (228, 123) (225, 118) (3, 5) 5,8 cm 

10 (249, 135) (244, 125) (5, 10) 11, 1 cm 
11 (270, 150) (274, 135) (4,15) 15, 5 cm 

 
Based on the data in Table 6, the gap 

between waypoints and test results is the lowest 
at 3.6 cm and the longest at 15.5 cm. The distance 
is calculated by finding the Euclidean distance 
between the waypoints and the test result points 
using (2). Node one is not considered because it 
is the starting point of the robot where the robot is 
placed exactly the same as the waypoints. 

As a result, there is a gap between the x,y 
position of the waypoints and the test results. The 
gap between the x coordinate nearest is 2, the 
longest is 5. While the gap between the y 
coordinate nearest is 2, the longest is 15. This can 
be caused by several factors, such as a design 
that is not symmetrical, the condition of the testing 
ground that is not perfectly flat, and does not apply 
body kinematic to the robot and does not use 
sensors. So when there is So when there is a 
slight deviation, it will gradually become more and 
more deviant because there is no feedback for the 
robot.  
 
CONCLUSION 

The conclusion of this research is that there 
is an increase in the optimality of the path resulted 
by RRT* Path Optimization and it is proven to be 
better than RRT*. RRT* with Path Optimization 
excels in all parameters tested, such as time, 
number of iterations, distance and number of 
nodes. The application of Pose-to-Pose on the 
hexapod robot successfully makes the hexapod 
robot follow the path that has been resulted by 
Path Planning RRT* Path Optimization nicely 
without crashing. With the nearest distance gap of 
3.6 cm and the longest distance gap of 15.5 cm to 
the waypoints. Thus, it can be concluded that in 
general the application of Path Planning and Path 
Tracking on the 3 DOF hexapod robot is 
successful and there is an increase in the 
performance of the hexapod robot in terms of 
mobility and navigation to be more optimal and 
faster time to reach the destination point. The 
robot travel time is 130 seconds for a path length 
of 234.4 cm.prospects of further studies into the 

next (based on result and discussion) can also be 
added.  
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