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Abstract  
This research studies the first part of the failure of a compression 
member structure due to buckling. This unstable equilibrium 
collapse, exposes brittle failure which occurs suddenly and therefore 
should be avoided wherever possible. Unavoidable geometric 
imperfections due to structural fabrication, will weaken the structure 
against buckling. The behavior of bar under compression will be 
closely examined by taking a set of geometric imperfection data 
synthesized from previously available from the measurement of 
conical shells. Therefore, the two-dimensional surface imperfection 
is converted into several one-dimensional imperfection with some 
probability properties. In order to obtain a comparison tool for 
different type of imperfections, Fourier analysis is used to convert the 
imperfection into coefficients of trigonometric function. By examining 
the coefficients, geometric imperfection patterns introduced by a 
certain fabrication process are able to be identified. The study 
successfully demonstrates the applicability of Fourier analysis in 
representing inherent geometric imperfections as an initial step for 
conducting probabilistic buckling analysis. Fourier analysis has 
shown its capability to simultaneously characterize imperfections in 
two crucial parameters - the magnitude and configuration of the 
imperfection. 
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INTRODUCTION 

Concrete and steel are widely used 
materials in the construction industry. Concrete 
is favored for its versatility, durability, and cost-
effectiveness [1]. Steel, on the other hand, is 
highly popular due to its durability, strength, and 
affordability [2]. As the most commonly used 
metal in construction, steel is also recognized for 
its eco-friendly nature as it is the most recycled 
material worldwide. 

It is not known with certainty how much 
concrete is produced worldwide, but the total 
production of cement (which is the main 
component of concrete) worldwide will reach 2 
billion tons in 2022 [3]. As for steel, production 
reaches 1,879 million tons [4]. 

The modulus of elasticity of steel is 
approximately ten times higher than that of 
concrete, which contributes to its superior 
strength [5]. Steel poles/columns, therefore, tend 
to be slenderer compared to their concrete 
counterparts [6]. This characteristic allows steel 
structures to achieve excellent space efficiency 
while also offering enhanced esthetic appeal in 
comparison to concrete structures. 

However, for slender structures that are 
subjected to compressive loads (such as 
columns) will be very susceptible to buckling, 
even though the column is in a state of 
equilibrium. As it is widely accepted, if the 
energy in a continuum (a column for example) 
can be expressed by 𝐸, then the equilibrium 
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state can be expressed as a minimum (potential) 
energy [7], or 

𝑑𝐸

𝑑𝑣
= 0 (1) 

provided that 

𝑑2𝐸

𝑑𝑣2
> 0 (2) 

In (1) and (2), 𝐸 is energy stored in a continuum 

due to applied loads and 𝑣 is deformation 
parameter of the continuum. If the condition in 
Eq. (2) is not met, i.e., 

𝑑2𝐸

𝑑𝑣2
< 0 (3) 

then we still have equilibrium state but an 
unstable one [8]. “Unstable equilibrium is a 
condition in which displacement of a system from 
its equilibrium position results in a net force or 
torque in the same direction as the displacement 
from equilibrium. This means that the system will 
accelerate away from its original position at the 
slightest disturbance.” [9]. 

Buckling is an unstable equilibrium 
phenomenon [10]. In structural engineering, 
buckling is the sudden change in shape 
(deformation) of a structural component under 
load, such as the bowing of a column under 
compression. Buckling can occur in any 
structure that is loaded in compression, but it is 

most common in slender members, such as 
columns [11]. 

In order to systematically summarize the 
phenomenon mentioned above, Figure 1 
contrasts the difference in behavior between a 
stocky and a slender column in responding to 
compressive load. It should be noted that the 
collapse of a structure due to buckling is a 
sudden and brittle failure [12]. The collapse is 
sudden because the buckling load is typically 
much lower than the yield strength of the 
material. This means that the member does not 
have time to deform plastically before it 
collapses. The collapse is also brittle because 
there is no warning before it happens. The 
member may be perfectly fine one moment and 
then collapse the next. Hence, the instability 
equilibrium in the form of buckling should be 
avoided. 

This article takes a closer look at slender 
columns. As previously mentioned, the 
compressive force on a slender column will 
cause the column to buckle, which is a 
phenomenon categorized as unstable 
equilibrium. Mathematically, buckling events 
belong to eigenvalue problems. In the 
eigenvalue problem, each eigenvalue has an 
eigenvector. Physically, the eigenvalues are the 
loads that make the structure buckles, while the 
eigenvectors are the shape of the structure when 
it buckles [13]. 

 
(a) Structure Behavior 

 
(b) 𝑃 vs end-shortening (∆) 

 
(c) 𝑃 vs out-of-plane displacement (𝛿) 

Figure 1. The Different Behavior for Stocky Column (left) and Slender Column (right) in 
Responding to Compressive Force 
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For a pin-ended slender column under 
compression, the formulated eigenvalue 
problem yields the following eigenvalues [14], 

𝑃 =
𝑛2𝜋2𝐸𝐼

𝐿2
 (4) 

In this equation, 𝐸, 𝐼 and 𝐿 are modulus 
elasticity, moment of inertia and length of the 
column, respectively and 𝑃 is the eigenvalue aor 

buckling load. Setting 𝑛 = 1, then the first 
eigenvalue is obtained which is the lowest 
buckling load. By taking 𝑛 = 2, 3, ⋯, the second, 
the third and so forth will be obtained. 

On the other hand, the eigenvectors or 
buckling mode corresponds to those buckling 
loads are shown in Figure 2. 

The buckling loads expressed in (4) and 
their corresponding buckling modes in Figure 2 
are related to a perfect column with no 
geometrical imperfection. For column with some 
geometric imperfection the buckling loads, i.e. 
the capacity of slender column to resist axial 
compression will be reduced [13]. Figure 3 
illustrates the drop of column capacity with the 
presence of geometrical imperfection. 

Apart from the amplitude of the 
imperfection, it can be easily understood that the 
reduction of the column capacity will be more 
pronounced if the form of the imperfection 
geometry is similar to buckling modes [14]. 
Therefore, a representation is needed to measure 
geometric imperfections based on two aspects at 
once, namely the amplitude and shape of the 
imperfections. This requirement can be met by 
using a Fourier Series which can decompose a 
series of numbers into the sum of trigonometric 
functions multiplied by a series of coefficients. As 
we all know, a periodic function 𝐹(𝑡) can be 
represented by the following Fourier Series [15]. 

𝐹(𝑡) = 𝑎0 + ∑(𝑎𝑛 cos 𝑛Ω𝑡 + 𝑏𝑛 sin 𝑛Ω𝑡)

∞

𝑛=1

 (5) 

 

 
     (a)           (b)              (c) 

Figure 2. The First (a), the Second (b) and the 
Third (c) Buckling Modes of a Pin-ended Column 

under Compression (taken from [13]) 
 

 
Figure 3. The reduction of slender column 

capacity in resisting axial compression with the 
presence of initial geometrical imperfection 

(adapted from [13]) 
 
In expression (5), 𝑎0, 𝑎1, ⋯, 𝑎𝑛 and 𝑏1, 𝑏2, 

⋯, 𝑏𝑛 are called Fourier coefficient and 𝜔 is the 
frequency. The coefficients can be determine 
using: 

 

𝑎0 =
1

𝑇
∫ 𝐹(𝑡) 𝑑𝑡

𝑡1+𝑇

𝑡1

 

𝑎𝑛 =
2

𝑇
∫ 𝐹(𝑡) cos 𝑛Ω𝑡 𝑑𝑡

𝑡1+𝑇

𝑡1

=
2

𝑇
∫ 𝐹(𝑡) cos

2𝑛𝜋

𝑇
𝑡 𝑑𝑡

𝑡1+𝑇

𝑡1

 

𝑏𝑛 =
2

𝑇
∫ 𝐹(𝑡) sin 𝑛Ω𝑡 𝑑𝑡

𝑡1+𝑇

𝑡1

=
2

𝑇
∫ 𝐹(𝑡) sin

2𝑛𝜋

𝑇
𝑡 𝑑𝑡

𝑡1+𝑇

𝑡1

 

(6) 

As can be seen in (5), the Fourier 
coefficients show how dominant the term is in the 
overall Fourier representation. A coefficient which 
has a large value indicates that the term is 
dominant and therefore, geometric imperfections 
are also dominated by the number of waves 
associated with that term. In (5), for example, if the 
second term (𝑎1 cos Ω𝑡) and the fourth term 

(𝑎2 𝑐𝑜𝑠 2𝛺𝑡) are taken, and supposed 𝑎1 > 𝑎2, 
then second term is more dominant than the 
fourth. 
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Furthermore, as the second has one full 
wave over the period and the fourth has two full 
waves, then it can be stated that the shape of 
geometrical imperfection is dominated by a single 
full wave. It also should be noted that if the Fourier 
series is used to express geometrical 
imperfections, then the coefficients of the Fourier 
series will demonstrate the amplitude of the 
imperfections, while the trigonometric functions 
will reflect the shape of the imperfections. 

Meanwhile, the geometric imperfection is 
naturally not periodic. Hence, Fourier transforms 
should be used which converts a function of time 
or space into a function of frequency [16]. One-
dimensional function of time (or space) variable 
𝑓(𝑡) could be expressed as a linear combination 
of an infinite number of harmonic contributions 
[17]. 

𝑓(𝑡) =
1

𝜋
 [∫ 𝐴(𝑘) cos 𝑘𝑡

∞

0

𝑑𝑡

+ ∫ 𝐵(𝑘) sin 𝑘𝑡 𝑑𝑡

∞

0

] 

(7) 

The weighting factors that determine the 
significance of the various angular spatial 
frequency (𝑘) contributions, that is 𝐴(𝑘) and 𝐵(𝑘), 

are the Fourier cosine and sine transforms of 𝑓(𝑡) 
given by 

𝐴(𝑘) = ∫ 𝑓(𝑡) cos 𝑘𝑡

+∞

−∞

𝑑𝑡 (8) 

and 

𝐵(𝑘) = ∫ 𝑓(𝑡′) sin 𝑘𝑡′

+∞

−∞

𝑑𝑡 (9) 

Both equations can then be used to 
calculate Fourier coefficients of the unavoidable 
geometric imperfections. 
 
METHOD 

The world is not a place for something 
perfect. There is always imperfection in all objects. 

Likewise, in the manufacture of steel columns. The 
impacts of imperfections are identified in at least 
three aspects. Firstly, imperfection will reduce 
compressive capacity: Imperfections act as 
initiation points for buckling, where the column 
bends under load. Slender columns have less 
material to resist this bending, leading to a more 
significant decrease in capacity. Secondly, 
imperfection will induce eccentric loading: Even 
minor imperfections can cause the applied load to 
act off-center, further amplifying the bending 
effect. Thirdly, imperfection initiates unpredictable 
behavior: The exact impact of imperfections is 

difficult to predict due to their complex shapes and 
variations. 

The slender the column is, the more likely 
geometric imperfections will occur which will result 
in, as previously mentioned, a decrease in the 
column's capacity to withstand compressive 
forces. This research is mostly carried out 
quantitatively. As mentioned earlier, geometry 
imperfections that inevitably occur due to 
fabrication, with Fourier analysis, are broken down 
into a summation of trigonometric functions with 
coefficients indicating the degree of dominance. In 
addition, performing Fourier analysis can also 
result in quantitively measure the similarity 
between the geometric imperfection to buckling 
modes. 

The diagram in Figure 4 illustrates the 
comprehensive workflow undertaken to acquire 
proposals intended for inclusion in the pressure 
bar design standards, known as SNI in Indonesia. 
This process is driven by the understanding that 
structural members under compressive loads are 
significantly affected by geometric imperfections. 
Due to the diverse nature and intensity of these 
imperfections, the analysis for buckling load 
reduction necessitates running the model 
numerous times, as indicated in the lower right 
corner of Figure 4. Hence, it is imperative to 
employ rational statistical methods to minimize the 
number of iterations required while still achieving 
consistent results. This underscores the utilization 
of probabilistic buckling analysis techniques [18]. 

 

 

Figure 4. The systematic workflow of the 
present study 
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At least there are two ways of representing 
geometric imperfection for probabilistic analysis. 
Firstly, by using the equivalent load method. This 
approach involves defining the initial geometrical 
imperfections in analytical models by applying an 
approximate evaluation of the equivalent load [19]. 
Another approach in representing the geometric 
imperfection involves using Fourier analysis. This 
method decomposes the geometric imperfections 
into their constituent frequencies represented by 
Fourier series coefficients [20]. 

Both methods, the equivalent load method, 
and Fourier analysis, have their advantages and 
limitations. The equivalent load method is simpler 
and more straightforward to implement, as it 
involves adding a load to the structure to represent 
the geometric imperfection. However, it may not 
capture the full complexity of the imperfection, 
especially for complex shapes. 

On the other hand, Fourier analysis allows 
for a more detailed representation of the 
geometric imperfection by decomposing it into a 
series of Fourier coefficients. This method can 
capture the spatial distribution of the imperfection 
more accurately, which is particularly useful for 
structures with complex geometries. However, it 
requires more computational resources and may 
be more challenging to implement [21]. The 
present work utilizes Fourier analysis, the second 
approach, to represent geometric imperfections. 

It should be underlined that incorporating 
Fourier analysis in representing geometric 
imperfection is the first step towards the 
implementation of probabilistic techniques. 
Fourier analysis is a powerful tool for 
understanding and quantifying geometric 
imperfections in steel columns and their impact on 
buckling behavior. It works by treating the 
imperfection profile of a column as a wavy line and 
decomposing this function into a series of sine and 
cosine waves with different frequencies and 
amplitudes. Each wave has a corresponding 
coefficient that represents its strength or 
"dominance" within the overall imperfection 
profile. This method has been used to study the 
buckling behavior of steel columns, such as H-
section columns and I-beams, providing analytical 
solutions to the generalized elastic thin-walled 
column buckling problem for different boundary 
conditions. 

The geometric imperfections data are 
synthesized based on measurements that have 
been made on a shell surface [22]. The 
measurement results of geometric imperfections 
on a truncated conical shell are as shown in Figure 
5 (a). This figure was taken as a part of shell 
buckling experimental program; hence a post 
buckling deformation measurement is also 

included but will not be utilized in the present 
analysis. 

As can be seen, the imperfection readings 
consist of 14 rows. In each row, reading in the 
circumferential direction is taken. For the whole 
readings, the maximum imperfection was found to 
be -2.33 mm (outward) and +1.63 (inward). 

Since the result of the geometry 
imperfection measurement experiment is only in 
the form of an image, it is necessary to digitize the 
image. For this purpose, the image is then 
processed using WebPlotDigitizer [23] which 
converts a curve image in Fig. 4 into pairs of 𝑥 and 

𝑦 values. 
 

 
Figure 5 (a). Geometry Imperfections and Post-

Bending Deformation of a Truncated Conical 
Shells, Row 1 to Row 14 (taken from [26]) 

 

Figure 5 (b). Comparison of imperfections 
between measurement result (top, bold line) and 

result using [23] (bottom, blue line) 
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When contrasted, for example for row 1 
and line 14, the comparison between the 
imperfections in Figure 5 (a) (above line) and the 
plot of the data (low line) looks like in Figure 5 (b). 
As can be seen, the use of WebPlotDigitizer [23] 
has successfully created reliable digital data from 
an image. The data resulted from running the 
software were then used for further representing 
geometric imperfection using Fourier Series. 
Therefore, it can be concluded that the limitation 
due to the inability to carry out direct 
measurements in the laboratory can be reduced 
by performing a synthesis of measurements that 
have been carried out by previous investigator. 
 
RESULTS AND DISCUSSION 

Figure 6 shows a portion of geometric 
imperfection data produced by running the 
WebPlotDigitizer program [23]. As mentioned 
earlier, this data is the readings from the shell 
surface imperfection which consists of 40 rows, 
each of which is a complete circle (360o). The first 
column of each row is the circular angle 
coordinates in degrees. In total there are about 
3,800 readings were taken on the shell surface 
which should be sufficient to simulate the 
imperfection of compression members. 

In order to produce a sufficient number of 
simulations for compressive bars, the imperfect 
surface was divided into 60 longitudinal strips, 
each at the same distance of 6 degrees. The 
geometric imperfection data for each bar is 
calculated by interpolation from the shell surface 
data in Figure 6.  

Figure 7 shows some sample of geometric 
imperfection data on the rod which is a cut at 
positions 6, 12, 18, 354 and 360 degrees [24]. As 
discussed earlier, Figure 7 also confirms that the 
imperfections have a non-periodic nature, 
therefore coefficient of Fourier Transforms in form 
of (8) and (9) will be adopted. The computation 
resulted in coefficients which are presented in 
Figure 8 [24]. 

Figure 8 provides some of the results of 
calculating the Fourier coefficients. Columns show 
the Fourier coefficients, while rows show the cut 
position in degrees from 6o to 360o with 6o 
increments. The calculated coefficients are limited 
to 15 coefficients (from 𝐴(0) to 𝐴(7) and 𝐵(0) to 

𝐵(7)) because higher coefficients give very small 
value and can be ignored. Even in some cut 
positions, the values of 𝐴(7) and 𝐵(7) are already 
very small. 

As demonstrated in Figure 9, the original 
imperfection curve of a bar (at a 6-degree cut) can 
be precisely reproduced by employing the 
corresponding Fourier coefficients. This implies 
that, instead of the full geometric imperfection 
shape, we can effectively encode and represent it 
using a series of these coefficients. A complete 
comparison of the geometrical imperfections of all 
the bars is presented in [25]. 

As mentioned previously, the circular 
coordinates are divided into intervals of 6 degrees, 
resulting in 60 bars with imperfect data. This 
number is sufficient to be used as a basis for 
statistical studies of geometric imperfections. 
 

 

 
Figure 6. A portion of geometrical imperfection data resulted from [23] 
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Figure 7. Longitudinal imperfection of some section (6, 12, 18, 354 and 360) 

 

 
Figure 8. The Fourier coefficient is obtained from the Fourier Transform equation, namely (8) and (9) 

 
The Fourier series provides an excellent 

representation of actual geometric imperfections, 
allowing them to be replaced by a series of Fourier 
coefficients, such as 𝐴(1), 𝐴(2), ⋯, 𝐴(7), 𝐵(1), 
𝐵(2), ⋯, 𝐵(7) and 𝜔. These coefficients not only 
able to replace actual geometric imperfections but 
also indicate the dominant shape of a geometric 
imperfection. This is because each coefficient is a 
multiplier of trigonometric terms with clear periods 
and waveforms. 

The coefficients 𝐴(1), 𝐴(2), ⋯, for example, 

is a multiplier of the term cos 𝜔𝑥, cos 2𝜔𝑥, ⋯. 
Meanwhile the terms cos 𝜔𝑥, cos 2𝜔𝑥, 

⋯.themselves represent geometric functions that 
form one, two, etc., waves along the bar. 
Therefore, if 𝐴(1) is bigger than 𝐴(2), for example, 
then the imperfection is more dominated by a 
single cosine wave. 
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Figure 9. Comparison between the original imperfection (the dots) and the one formed based on the 

obtained Fourier coefficients (blue curve) 
 

Figure 10 displays the Fourier coefficient 
values obtained from the geometric imperfection 

data of Bar 6. The figure shows that the absolute 

value of the largest coefficient is 𝐵(2), indicating 

that the imperfection in Bar 6 is dominated by two 

sine waves. 
The complete calculation of Fourier 

coefficients for other bars are presented in [21]. As 
previously mentioned, the direction of the 
circumference of the shell surface is divided into 
60, resulting in 60 bars, each with their own size 
and shape of the geometric imperfection. These 
imperfections are then decomposed into Fourier 
coefficients, resulting in 15 coefficients (namely 
𝐴(1), 𝐴(2), ⋯, 𝐴(7), 𝐵(1), 𝐵(2), ⋯, 𝐵(7)) for each 
bar.  

The large numbers of calculated Fourier 
coefficients enable the execution of statistical 
analysis to determine the distribution behavior of 
these coefficients. This is particularly significant as 
all bars are manufactured in the same manner at 
the factory. Therefore, it is reasonable to predict 
that all bars will exhibit similar patterns or 
tendencies of geometric imperfections. The 
statistical analysis of the Fourier coefficients is 
believed to be capable of identifying the size and 
shape of imperfections that are directly associated 
with the bar fabrication process in the factory. 

Figure 11 demonstrates the value of the 
Fourier coefficient 𝐴(1) for 60 bars. As previously 
mentioned, coefficient 𝐴(1) is associated with 
geometric imperfections in the form of a cosine 
wave. The diversity in the values of 𝐴(1) for 
different bars illustrates that not all bars have 
geometric imperfections dominated by a single 
cosine waveform. In fact, some bars have very 
small 𝐴(1) values (for example, bar 102° to 120°), 

indicating that the geometric imperfections for 
these bars do not contain a cosine waveform. 

The average and standard deviation of the 
Fourier coefficient 𝐴(1) for the 60 bars can be 
calculated to reflect how the Fourier coefficients 
are related to the geometric imperfections arising 
in the manufacturing process at the factory. For 
coefficient 𝐴(1), the average obtained is 3.09 with 
a standard deviation of 4.19. These statistical 
characteristics provide insights into the nature of 
the geometric imperfections and their consistency 
across the manufactured bars. 

The comprehensive outcomes of the 
statistical property calculations, presented in 
Figure 12, reveal a lack of discernible patterns in 
the average and standard deviation values. 
Notably, the standard deviation consistently 
surpasses the average across all coefficients, 
underscoring the fluctuating nature of the Fourier 
coefficients. This variability is attributed to the 
geometric imperfection data sourced from the 
shell surface.  

The distinct processes involved in 
manufacturing shell surfaces and bars contribute 
to the imprecision when synthesizing imperfection 
data for compression bars from shell surface 
scans. Despite this, the analytical framework 
outlined in the study is anticipated to be applicable 
in scenarios where precise data on geometrical 
imperfections in compression members can be 
procured. 

The methodology for representing 
geometric imperfections through a Fourier series 
is inherently significant. As previously elucidated, 
employing the Fourier series not only quantifies 
the magnitude of imperfections but also 
characterizes their form. 
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The magnitude and configuration of these 
imperfections play pivotal roles in determining the 
extent to which the load-carrying capacity of a bar 
diminishes under compression. Consequently, 
design regulations for compressed bars typically 
specify a factor that reduces the bar’s capacity 
when subjected to compressive forces. The 
efficacy of this reduction factor is contingent on the 
consideration of geometric imperfections. 
Unfortunately, in the design standards for bars in 
Indonesia, specifically under SNI, encompassing 
both hot-rolled [26] and cold-rolled [27] categories, 
there is an absence of provisions addressing 
these imperfections. 

The procedure discussed in this paper for 
expressing geometric imperfections using Fourier 
coefficients, followed by efforts to obtain statistical 
characteristics of these coefficients, enables the 
probabilistic buckling analysis of compressed 
members to be performed. This approach aims to 
obtain a reasonable reduction factor for the 
compression member capacity. Thus, a proposal 
can be made that SNI for designing steel 
structures in Indonesia, especially for designing 
compression members, can contain this reduction 
factor. 

 

 
Figure 10. The value of Fourier coefficient of 60-bar 

 

 
Figure 11. The value of 𝐴(1) coefficients for various bars  
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Figure 12. The mean and standard deviation of each Fourier coefficient 

 
 
CONCLUSION 

The article explains how to use Fourier 
series to represent geometric imperfections in 
steel structures. In terms of material properties, 
steel is known to be strong in resisting both tensile 
and compressive loads. However, structurally, 
compressive components are weaker than tensile 
components due to the presence of buckling 
phenomenon. Buckling is an unstable state in a 
compressive structure even though the forces 
acting on it are balanced. Geometric 
imperfections, such as those that occur due to the 
manufacturing process, can significantly reduce 
the compression capacity when they reach the 
buckling state. Both the size and shape of the 
imperfection greatly influence the reduction in the 
compression capacity of the structure. Fourier 
series can be used to quantitatively measure the 
similarity between imperfections and buckling 
modes. 

The current design regulations for 
compression members in Indonesia only consider 
the magnitude of geometric imperfections and not 
their shape. This can lead to inaccurate designs. 
To address this, the article suggests incorporating 
the Fourier series method to represent both the 
magnitude and shape of these imperfections. This 
allows for a more accurate statistical analysis of 
their impact on compression members. 

By understanding the statistical patterns of 
imperfections, engineers can utilize a probabilistic 
approach to analyze buckling loads. This leads to 
more reliable designs and facilitates the 
implementation of reduction factors in building 
regulations. 

The article acknowledges the lack of data on 
steel bar imperfections in Indonesia but proposes 
using existing data from other sources as a 
starting point for developing the processing 
procedure. Further data collection is necessary for 
a more precise understanding of the local 
manufacturing case. The probabilistic buckling 
analysis of bars under compression is beyond the 
scope of this paper. 
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