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Abstract  
The concept of digital farming can help farmers increase their 
agricultural production yield. One of the technologies to support 
digital farming is robotics, which can be utilized to complete a 
redundant task efficiently for 24 hours. This paper presents a simple 
and effective harvesting robot that is applied to harvest a ripe 
strawberry. The mechanical and electrical design is kept simple to 
ensure it is reproducible. The input from a proximity sensor and 
image detection by a Pi camera is utilized by FLC (Fuzzy Logic 
Controller) to improve the effectiveness of the harvesting task. The 
image processing method in this study is image segmentation, which 
fits with the limited source of the microcontroller available in the 
market. The experiment included 60 times (20 times center, left, and 
right position) harvesting using the FLC algorithm and 60 times 
without FLC to show the effectiveness of the proposed method. From 
60 experiments without an FLC experiment, there is an 80% hit rate 
for strawberries positioned in the middle of an image plane and 55% 
for left and right strawberries. From 60 times of FLC experiment, 95% 
hit rate for strawberries positioned in the middle of an image plane, 
80% for left and right strawberries. The average time required to 
finish the task without FLC for strawberries in the middle is 13.51 s, 
the left is 11.04 s, and the right is 17.28 s. While the average time 
required to finish the task with FLC for strawberry in the middle is 
12.90 s, the left side is 11.71 s, and the right side is 10.93 s. This 
study is intended to show that simple designs can be helpful and 
affordable when applied to greenhouse farming in Indonesia.  
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INTRODUCTION  

Located in an equatorial climate, Indonesia 
benefits from favorable agricultural conditions 
throughout the year, making agriculture a key 
driver of economic growth. The adoption of digital 
farming technologies can address agricultural 
yield production. Digital farming entails the 
application of automated systems in agriculture, 
such as automatic greenhouses [1][2]. This 

concept can potentially enhance farming 
efficiency and performance [1, 2, 3, 4, 5, 6, 7, 8]. 

Robotics applications in agriculture are one 
of the technologies that can be used to achieve 
digital farming. Robots can be employed as 
automatic harvesting devices, and the most 
suitable robot type is the arm robot manipulator 
since its arm can be customized to imitate humans 
[9, 10, 11, 12, 13, 14, 15, 16]. The robotics system 
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is made possible for farmers due to the lower cost 
of the components needed to build a robot. A robot 
used in agriculture does not have to be 
sophisticated [17]; an arm robot equipped with 
some sensors (camera and proximity sensors) is 
sufficient for a harvesting robot. Image processing 
for target detection is one of the crucial things to 
be considered. The problem with image 
processing is that it requires a high computational 
resource to complete the task [18, 19, 20, 21, 22]; 
hence, the challenge is designing an image 
processing system that can fit into the limited 
memory of current microcontrollers. 

Visual servoing controls robot motion by 
using the feedback from image detection provided 
by the camera [12, 18, 19, 20]. Image detection 
provides information on fruit distance and position. 
The problem is that fruit position is dynamic from 
plant to plant, and lighting is also a problem in 
target detection. However, sophisticated methods 
require longer computational time and more 
resources, while in this agriculture application, the 
simple yet effective robot is more desired.  

This paper presents a simple and effective 
harvesting robot that is applied to pick up ripe 
strawberries using image segmentation for target 
detection whose computational time fits the limited 
source of the current microcontroller available in 
the market. Fuzzy Logic Controller (FLC) is 
implemented to enhance the efficiency of the 
proposed method [23, 24, 25, 26, 27]. The 
kinematics design is also discussed to achieve an 
ideal robot model. Experiments are conducted to 
demonstrate the effectiveness of the proposed 
method, which shows the hit-and-miss of 
strawberry harvesting. The robot design is 
presented in this paper to show the affordability 
and reproducibility of the proposed robot. 
 
METHOD 

The harvesting robot prototype proposed in 
this study implements the method shown in Figure 
1. Image segmentation is utilized for object 
detection, which in this study is the strawberry 
coordinate position.  

As the robot detects the target position, the 
microcontroller moves the servo motors attached 
to the base, joints, and end-effector. The servo 
motion speeds are regulated based on the 
distance between the end-effector and the target, 
which is indicated by proximity sensor detection 
and controlled by FLC. 

The robot is moved by six motor servos for 
the base, joint 1, joint 2, the wrist of the end-
effector, the scissor, and the gripper. The scissor 
and gripper positions are adjusted to imitate the 
human hand while harvesting fruits. 

 
Figure 1. Diagram block of the proposed method 
 
Robot Mechanical and Electrical and Design 

The robot considered in this study is a 
3DOF arm robot designed to harvest strawberries 
in a greenhouse setting. The robot design is 
shown in Figure 2 and Figure 3. The mechanical 
design is shown in Figure 2a, which shows the 
servos moving the joints and end-effector.  
 

 
 

(a) Mechanical  (b) End-effector  

 
(c) Robot dimension 

Figure 2. Robot’s mechanical design 
 

 
Figure 3. The electrical design of the robot is in 

Figure 2. 
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The end-effector consists of a scissor to cut the 
fruit and a gripper to grab the fruit, and Figure 2b 
shows the position of the scissor, camera, and 
gripper. The camera is positioned as the eye in the 
hand of the robot, which is beneficial to avoid 
occlusion. Figure 2c shows the robot's 
dimensions, which are designed based on the size 
of a strawberry plant, and the electrical connection 
is shown in Figure 3.  

As the target coordinates are located, the 
robot is moved by the servo motors within a range 
of 15o to 165o for the base. The second servo is 
the actuator to move joint 1 within the motion 
range of 25o to 105o, and the servo for joint 2 within 
the motion range of 135o to 175o. The joint 
between link 2 and the end-gripper is designed to 
move from 135o to 175o. The gripper servo moves 
within the motion range of 5o to 80o, and the 
scissor servo is within the motion range of 0o to 
180o. The distance of the end-effector to the object 
is set to be 9 cm. 
 
Robot Kinematics Modeling 

Kinematics modeling is the process of 
modeling the robot by analyzing the robot's motion 
without considering the force and torque applied 
to the robot. Kinematics modeling is started by 
transferring the robot's links and joints in Figure 4 
into the Denavit-Hartenberg (DH) Table (Table 1) 
to find the best parameters for the robot.  

The transformation matrix 𝑇0
3  is given by 

T1
0 (𝑞1), T(𝑞2)2

1 , and T3
2 (𝑞3), which are resulted to 

rotation matrices as follow: 

𝑅1
0 = [

𝑐1 0 𝑠1
𝑠1 0 −𝑐1
0 1 0

], 𝑅2
1 = [

𝑐2 −𝑠2 0
𝑠2 𝑐2 0
0 0 1

], 

and 𝑅3
2 = [

𝑐3 −𝑠3 0
𝑠3 𝑐3 0
0 0 1

], 

(1) 

where 𝑐1 is cos 𝑞1, 𝑠1 is sin 𝑞1, 𝑐2 is cos 𝑞2, 𝑠2 is 

sin 𝑞2, 𝑐3 is cos 𝑞3, and 𝑠3 is sin 𝑞3. 
 

  
(a) Frames (b) parameters 

Figure 4. Arm robot frames for DH Table 
 
Table 1. DH Convention for the robot in Figure 4. 

i 𝜶𝒊 𝒅𝒊 𝒂𝒊 𝜽𝒊 

1 
𝜋

2
 d 0 𝑞1 

2 0 0 𝑎2 𝑞2 
3 0 0 𝑎3 𝑞3 

 

Therefore, the position (𝒑 = [px py pz] 𝑻) 

of the origin 𝑂3 of frame 3 is given by  

 [
𝒑
1
] = T1

0 (𝑞1) T(𝑞2)2
1 T3

2 (𝑞3) [
0
1
], (2) 

and resulted in  

𝑝 = 𝒇(𝒒) = [

𝑐1(𝑎2𝑐2 + 𝑎3𝑐23)

𝑠1(𝑎2𝑐2 + 𝑎3𝑐23)

𝑑 + 𝑎2𝑠2 + 𝑎3𝑠23

], (3) 

or px is 𝑐1(𝑎2𝑐2 + 𝑎3𝑐23), py is 𝑠1(𝑎2𝑐2 + 𝑎3𝑐23), 

and pz is 𝑑 + 𝑎2𝑠2 + 𝑎3𝑠23. 
The inverse kinematics solution is achieved 

by multiplying both sides from (3) as follows. 

𝑝𝑥
2 + 𝑝𝑦

2 + (𝑝𝑧 − 𝑑)
2 = 𝑐1

2(𝑎2𝑐2 + 𝑎3𝑐23)
2 +

𝑠1
2(𝑎2𝑐2 + 𝑎3𝑐23)

2 + (𝑎2𝑠2 + 𝑎3𝑠23)
2, 

(4) 

then 

𝑝𝑥
2 + 𝑝𝑦

2 + (𝑝𝑧 − 𝑑)
2

= 𝑎2
2 + 𝑎3

2

+ 2𝑎2𝑎3(𝑐2𝑐23 + 𝑠2𝑠23)
= 𝑎2

2 + 𝑎3
2 + 2𝑎2𝑎3𝑐3,  

(5) 

and by rearranging (5), yield 

𝑐3 =
(𝑝𝑥
2+𝑝𝑦

2+(𝑝𝑧−𝑑)
2−𝑎2

2−𝑎3
2)

2𝑎2𝑎3
, (6) 

where 𝑐3 ∈ (−1,1) to ensure the robot is inside its 
workspace and 

𝑠3 = ±√1 − 𝑐3
2, (7) 

in which resulted in 𝑞3 = 𝑎𝑡𝑎𝑛(𝑠3, 𝑐3) for positive 
(+) result and 𝑞3 = 𝑎𝑡𝑎𝑛(−𝑠3, 𝑐3) for negative one. 

The base motion generates the angle q1, 

and to get real solutions, 𝑝𝑥
2 + 𝑝𝑦

2 > 0; otherwise, 

𝑞1 is undefined and infinite solutions. Therefore,  

𝑐1 =
𝑝𝑥

±√𝑝𝑥
2+𝑝𝑦

2
, and 𝑠1 =

𝑝𝑦

±√𝑝𝑥
2+𝑝𝑦

2
, 

(8) 

where two solutions occurs; for positive solution 

𝑞1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥), and 𝑞1 = 𝑎𝑡𝑎𝑛2(−𝑝𝑦, −𝑝𝑥) for 

negative. 
The angle 𝑞2 is solved by considering the 

elbow's forward, backward, up, and down motion, 
as shown in Figure 4(b). By rearranging (5) and 
(6), yields 

𝑐1𝑝𝑥 + 𝑠1𝑝𝑦 = 𝑎2𝑐2 + 𝑎3𝑐23 =
(𝑎2+𝑎3𝑐3)𝑐2 − 𝑎3𝑐3𝑠2, 

(9) 

and 

𝑝𝑧 − 𝑑 = 𝑎2𝑠2 + 𝑎3𝑠23 = 𝑎3𝑐3𝑐2 +
(𝑎2+𝑎3𝑐3)𝑠2. 

(10) 

The Jacobian matrix from camera frame 

𝑱(𝒒)⬚
𝑐  gives  

𝑱(𝒒) = 𝑅𝑇𝑐
0

⬚
𝑐 𝑱(𝒒)⬚

0 =

𝑅𝑇𝑐
3 ( 𝑅𝑇3

2 (𝑞3) ( 𝑅
𝑇

2
1 (𝑞2)( 𝑅

𝑇
1
0 (𝑞1) 𝑱(𝒒)⬚

0 ))), 

𝑱(𝒒)⬚
𝑐 = [

𝑎2𝑐2 + 𝑎3𝑐23 0 0
0 𝑎3 + 𝑎2𝑐2 𝑎3
0 𝑎2𝑐2 0

], 

(11) 
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where the related joint velocity 𝒗⬚
c  is given by 

𝑱(𝒒)⬚
𝑐 �̇� as the linear velocity of camera frame 

origin expressed in the camera frame. The linear 
velocity of the robot's end-effector is 𝒗 = 𝑱(𝒒)⬚

𝑐 �̇�⬚
c . 

 
Image Segmentation for Target Detection 

Image segmentation for visual servoing 
considered in this study is given in Figure 5. The 
output is the target position in 𝑥𝑦 axis, which is 
conducted online, and the steps are as follows: 
1. The camera captures the raw image of the 

strawberry. 
2. The raw image is converted to a grayscale 

image. 
3. The gray image is processed with HSV (Hue, 

Saturation, Value) given as H = 0, S = 90, and 
V = 160. The value of H is set to 0 for the 
reddish color. 

4. The masking was conducted by replacing the 
white a reddish color.  

 
Fuzzy Logic Controller (FLC) Design  

FLC design starts by identifying the inputs 
for fuzzification. FLC is to move the robot to cut 
and grab the target based on the target detection. 
The data inputs are achieved from the target 
detection by image segmentation and distance 
approximation by the proximity sensor attached to 
the gripper.  

The inputs and output relationship are 
translated into Rules in Table 2 as the reasoning 
process and membership functions of inputs and 
output, where Dect is detection, F is far, N is near, 
M is medium, Ft is fast, Sl is slow. How far the 
robot can extend to reach the target is defined by 
the angles of each joint presented in kinematics 
analysis, including considering the position of the 
target, which is defined as the object position in 
the x and y-axis. The kinematics analysis also 
defines the end-effector velocity. The target 
detection position presented in the rules is only for 
middle detection; other position rules are not 
presented to avoid the excessively lengthy table. 

 
Table 2. The rules considered in this study  

No 
Input Output 

Target d X Y Grip Scr 

1 No Dect F Stop Stop Off Off 
2 Left-N F Left-Sl Stop Off Off 
3 Left-M F Left-M Stop Off Off 
4 Left-F F Left-Ft Stop Off Off 
5 Right-N F Right-Sl Stop Off Off 
6 Right-M F Right-M Stop Off Off 
7 Right-F F Right-Ft Stop Off Off 
8 Up-N F Stop Up-Sl Off Off 
9 Up-M F Stop Up-M Off Off 
10 Up-F F Stop Up-Ft Off Off 
11 Down-N F Stop Down-Sl Off Off 
12 Down-M F Stop Down-M Off Off 
13 Middle F Stop Stop Off Off 
14 Middle N Stop Stop On On 

 
 

 

 
(a) Membership function of input 

 

 

 

 

(b) Membership function of output 

Figure 5. The membership function of input 
and output is considered in this study. 
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The membership function considered in this 
study is given by 

𝐴(𝑥) =

{
 
 

 
 

0, 𝑥 < 0
𝑥−𝑎

𝑚−𝑎
, 𝑥 ≥ 0

𝑏−𝑥

𝑏−𝑚
, 𝑥 ≥ 0

0, 𝑥 ≥ 0

, (12) 

where 𝑎, 𝑚, and 𝑏 are based on 𝑥 and 𝑦 -positions 
achieved online during the task.  
 
RESULTS AND DISCUSSION 

Experiments are undertaken to validate the 
efficacy of the proposed visual servoing method 
coupled with Fuzzy Logic Control (FLC) by 
deploying the robot for strawberry harvesting with 
the experimental setup depicted in Figure 6.  

The robot is set to cut (using scissors) and 
grab (using a gripper) 3 strawberries marked as 
left, middle, and right, one at a time. The robot can 
work for 3 hours without stopping, supported by a 
2200 mAh battery. The experiment was conducted 
120 times, 60 times without FLC, and 60 times 
with FLC. 60 times are divided into 20 times for 
harvesting the middle, 20 times for the left side, 
and 20 times for the right-side strawberry. 

The robot is activated as the camera 
detects the position of the strawberries. The 
microcontroller moves the joints and end-effector 
accordingly. The end-effector consists of scissors 
to cut the strawberry and a gripper to grab it, and 
the motor servo in the base moves the robot to put 
the strawberry inside the prepared basket, as 
shown in Figure 6. The considered image plane in 
this study has a resolution of 320 × 240 pixels 

within the speed of 30fps; therefore, 𝑡ℎ𝑒 𝑥-axis 
starts from 0 − 320 pixels, and 𝑡ℎ𝑒 𝑦-axis is 0 −
240 pixels.  

 

 
Figure 6. Experimental Setup 

Table 3 outlines the relationship between 
strawberry detection, its position in the image 
plane, and the robot's motion relative to the end-
effector. The x-coordinate represents the target 
position, while the y-coordinate indicates its 
location in the image plane.  

Figure 7 is strawberry detection using 
image segmentation where the target position in x 
and y coordinates becomes the input to the 
microcontroller to control the end-effector's 
direction and speed in reaching the target before 
cutting and gripping it, as shown in Table 3. The 
process of picking the object starts with the 
strawberry located in the middle of the image 
place since it is the closest one to the robot.  

Figure 8 illustrates the multiple image 
segmentation procedures carried out in this 
research. The identified strawberry with greater 
prominence is considered closer to the end-
effector, while smaller targets are positioned on 
either side of the image plane. Figure 9 shows the 
robot harvesting a centrally positioned strawberry, 
identified as the most prominent object. Image 
segmentation proved more robust against varying 
lighting, demonstrating the method's 
effectiveness. 

 
Table 3. The relationship between target position 

and end-effector motion 

𝒙 and 𝒚 axis Position 
Target 

Position 

End-effector 

Motion 

𝑥 ≥ 140 & 𝑥 ≤ 180 & 

𝑦 ≥ 150 & 𝑥 ≤ 170 
Middle Forward 

𝑥 > 110 & 𝑥 < 140 Left-Near Left-Slow 

𝑥 > 50 & 𝑥 ≤ 110 Left-Medium Left-Medium 

𝑥 ≤ 50 Left-Far Left-Fast 

𝑥 > 180 & 𝑥 ≤ 210 Right-Near Right-Slow 

𝑥 > 210 & 𝑥 < 270 
Right-

Medium 
Right-Medium 

𝑥 ≥ 270 Right-Far Right-Fast 

 
 

  
(a) Raw image (b) HSV setting 

  
(c) Thresholding 

processed 
(d) The closest 

detected strawberry 
Figure 7. Image segmentation process for 

strawberry detection in this study  
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Figure 8. Various strawberries are detected 

during harvesting, starting from the closest one.  
 

 
Figure 9. Strawberry picking process when the 
detected strawberry is located in the middle of 

the image plane 

The harvesting experiment was repeated 20 times 
per criterion, with results detailed in Table 4. The 
findings also highlight better performance with 
FLC compared to without it. 

Table 4 compares the robot's hit rate with 

and without FLC, where "" signifies a "hit" and 

"✖" a "miss." In both setups, the robot primarily 

picks the closest strawberry, typically the middle 
one due to its central position. As a result, the 
middle strawberry shows higher hit rates (80% 
without FLC and 95% with FLC). The increase in 
hits with FLC highlights its effectiveness.  

 

Table 4. The hit rate comparison  

nth-
Experiment 

Target Position 

Without FLC With FLC 

L M R L M R 

1 ✖      

2 ✖  ✖    

3 ✖      

4 ✖ ✖ ✖  ✖  

5 ✖  ✖    

6  ✖  ✖   

7 ✖  ✖ ✖   

8   ✖ ✖   

9       

10 ✖      

11 ✖      

12      ✖ 

13   ✖    

14      ✖ 

15   ✖    

16  ✖    ✖ 

17   ✖    

18       

19 ✖  ✖ ✖   

20  ✖    ✖ 

Total  11 16 11 16 19 16 
% Hit rate 55% 80% 55% 80% 95% 80% 

Overall  38 or 63% 51 or 85% 

 
Table 5. Time comparison in completing the task. 

Pose 
nth-

Exp. 

Without FLC (s) With FLC (s) 

T1 T2 T3 T1 T2 T3 

Left 

1 6.5 8.8 10.4 8.5 10.9 12.4 

2 7.5 9.7 11.3 9.4 11.7 13.3 

3 7.7 10.1 11.8 8.4 10.7 12.2 

4 6.8 9.3 10.9 9.0 11.3 13.0 

5 6.7 8.9 10.5 9.3 11.8 13.4 

Av. 7.0 9.4 11.0 8.9 11.3 12.9 

Middle 

1 9.3 11.4 13.1 7.1 9.5 11.1 

2 9.3 12.0 13.6 9.0 11.5 13.6 

3 10.1 12.7 14.3 7.4 9.9 11.4 

4 9.5 11.8 13.3 7.4 9.7 11.2 

5 9.0 11.5 12.9 7.1 9.79 11.1 

Av. 9.4 11.9 13.5 7.6 10.1 11.7 

Right 

1 9.5 11.8 13.3 6.7 8.9 10.5 

2 16.0 18.3 19.8 7.3 9.6 11.0 

3 19.6 21.8 23.3 7.1 9.5 10.8 

4 10.6 12.8 14.3 7.1 9.4 10.9 

5 11.7 13.9 15.4 7.4 9.8 11.2 

Av. 13.5 15.7 17.2 7.1 9.4 10.9 

 
Without FLC, the robot achieved 11 hits (L), 

16 hits (M), and 11 hits (R), with hit rates of 55%, 
80%, and 55%, respectively, leading to a 63% 
overall rate. With FLC, hits improved to 16 (L), 19 
(M), and 16 (R), with hit rates of 80%, 95%, and 
80%, raising the overall rate to 85%. Table 4 
underscores the significant improvement with 
FLC, particularly for the middle target, increasing 
the overall success rate from 63% to 85%. 

The time required for the robot to 
accomplish its task of harvesting strawberries is 
presented in Table 5.   T1 is the time needed from 
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detection to the target-cutting process, T2 is the 
time from detection, target-cutting, and placing the 
target in the basket, and T3 is the time from 
completing the task and returning to the initial 
position. The most significant improvement of FLC 
implementation is observed in the Right pose, with 
times nearly halved, as the robot refers to rules-
based, as stated in Table 2.  

The experimental results show that the 
combination of image segmentation for image 
processing and FLC for processing object 
detection inputs significantly improves the robot’s 
performance without requiring sophisticated 
resources; hence, the proposed method can be 
applied in agriculture because it is user-friendly for 
any farmer.  

 
CONCLUSION 

This paper introduces an FLC design and 
image segmentation approach for a strawberry 
harvesting robot. The robot is tasked with cutting, 
grabbing, and placing strawberries into a basket. 
The image segmentation process is designed to 
require minimal computational power, making it 
suitable for use on a Raspberry Pi, which has 
limited memory but can effectively handle the task. 
The mechanical and electrical designs of the robot 
are also simplified, allowing farmers to build and 
use it for harvesting seasonal fruit. FLC is 
employed to enhance the robot’s performance, 
resulting in a higher hit rate and faster harvesting 
times. In 60 experiments without FLC, the robot 
achieved an 80% hit rate for strawberries 
positioned in the middle of the image plane and 
55% for those on the left and right. In contrast, with 
FLC, the hit rate improved to 95% for the middle 
and 80% for the left and right positions. The 
average task completion time without FLC was 
13.51 seconds for strawberries in the middle, 
11.04 seconds for the left, and 17.28 seconds for 
the right. With FLC, the times improved to 12.90 
seconds for the middle, 11.71 seconds for the left, 
and 10.93 seconds for the right. The reduced 
harvesting time allows for more strawberries to be 
picked daily, increasing overall production. The 
proposed method has demonstrated its 
effectiveness in controlling the strawberry 
harvesting robot, which has practical applications 
in agriculture. Future work will focus on designing 
a more practical and reproducible robot. 
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