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Abstract  
Corn cultivation was crucial in Southeast Asia, significantly 
contributing to regional food security and economies. However, leaf 

diseases posed a significant threat, causing substantial losses in 
production and quality. This research utilized artificial intelligence (AI) 
technology to address this issue by automating the hyper-parameter 

tuning process in YOLO (You Only Look Once) object detection 
models for early corn leaf disease detection. High-resolution images 
of corn leaves were captured and preprocessed for consistency. The 

preprocessing stage involved creating new dataset folders for 
images and labels, resizing images while preserving their aspect 
ratio, and rotating them if necessary. The images, containing 11,596 

labeled instances, were analyzed using YOLOv8 and YOLO-NAS 
models. Each image's detected disease regions were converted into 
YOLO-format text files with x, y, width, and height coordinates, 

describing the presence and severity of infections. The models' 
performances were evaluated using precision, recall, mAP50, and 
mAP50-95 metrics. YOLOv8m achieved a mAP50 of 98.5% and 

mAP50-95 of 67.8%, while YOLO-NAS-L demonstrated superior 
detection capabilities with a mAP50 of 70.3% and mAP50-95 of 
38.9%. This automated system facilitated early disease identification 

and enabled prompt preventive measures, thereby enhancing crop 
yields and mitigating losses. The findings highlighted the potential of 
advanced AI-driven detection systems in revolutionizing crop 

management and supporting global food security.  
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INTRODUCTION 
Agriculture is vital for feeding the growing 

global population, with corn (Zea mays) being a 

crucial crop. However, plant diseases pose a 
significant threat to modern agricultural 
productivity, jeopardizing the yield and quality of 

essential crops like corn [1]. Traditional detection 
methods are time-consuming and prone to errors, 
which increases economic losses. Machine 

learning, particularly deep neural networks, offers 

promising advancements in improving detection 
accuracy and efficiency [2]. 

Deep Learning, especially Convolutional 

Neural Networks (CNNs), excels in analyzing 
visual data, and detecting complex patterns with 
high precision. CNNs have been successful in 

numerous applications, including object detection 
and image segmentation, by learning hierarchical 
features from images [3][4]. Deep learning has 

also revolutionized fields like healthcare, where 

http://creativecommons.org/licenses/by-sa/4.0/
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CNN-based methods are used for analyzing 

health data, facilitating early diagnosis, and 
personalized treatment plans [5]. Pivkin et al. 
explore using neural networks to detect defects in 

direct metal deposition. They review relevant 
literature on neural networks and AI, affirming the 
importance of this research. The study focuses on 

three neural network models—U-Net, ResUNet, 
and VGG-16—commonly used in computer vision. 
After training and evaluating these models, they 

identify the most effective one for defect detection. 
The paper concludes by suggesting directions for 
future research in this area [6]. 

Hyper-parameter tuning in machine 
learning is essential for optimizing model 
performance. Effective tuning can significantly 

impact model accuracy and efficiency. While 
various optimization techniques exist, their 
effectiveness depends on the specific problem [7]. 

In computer vision, machine learning addresses 
challenges like large-scale images and complex 
object detection, with techniques like Maximally 

Stable Extremal Regions (MSER) used for vehicle 
detection and human pose estimation being 
pivotal for advancements in fields such as 

surveillance and sports analysis [8]. 
YOLO (You Only Look Once) models, 

including the recent YOLOv8 and YOLO-NAS, 

have enhanced real-time object detection with 
improved accuracy and speed [9][10]. YOLO-
NAS, incorporating Neural Architecture Search 

(NAS), achieves superior performance compared 
to earlier YOLO versions, offering higher accuracy 
and faster processing times [11]. Figure 1 

demonstrates the comparison of YOLO object 
detection models. The trend graph above 
illustrates that the YOLO-NAS architecture 

introduces the latest state-of-the-art (SOTA) with 
unparalleled speed and accuracy performance, 
surpassing other models such as YOLOv5, 

YOLOv6, YOLOv7, and YOLOv8. YOLO-NAS 

also provides the best evaluation results with a 

mean average precision (mAP) ~0.5 points more 
accurate and 10-20% faster than equivalent 
YOLOv8 variants, as evidenced in Table 1 [12]. 

Hyper-parameter tuning frameworks like 
Tune and Ray Tune are crucial for optimizing deep 
learning models. These frameworks facilitate 

efficient experimentation and adjustment of hyper-
parameters, supporting various machine learning 
libraries and algorithms. Figure 2 provides an 

overview of the components of the Ray Tune 
framework [13]. This research focuses on 
comparing YOLOv8 and YOLO-NAS object 

detection methods for detecting pests and 
diseases on corn leaves, leveraging optimal 
hyper-parameters for each model. 

In the era of the Fourth Industrial Revolution 
in machine learning, hyper-parameter tuning has 
become a commonly used technique to find the 

optimal combination of hyper-parameters in a 
model or algorithm [14]. This technique aims to 
improve accuracy, precision, recall, or other 

relevant evaluation metrics in the model and is 
highly useful in saving time and effort in manually 
searching for optimal hyperparameter 

configurations. Automated hyper-parameter 
configuration makes it easier to find hyper-
parameter values that provide the best 

performance for automatic object detection 
system approaches using CNN [15]. 

 
Table 1. Comparison of YOLO-NAS and YOLOv8 

in terms of mAP and latency 
Model mAP Latency (milliseconds) 

YOLO-NAS S 47.5 3.21 

YOLO-NAS M 51.55 5.85 

YOLO-NAS L 52.22 7.87 

YOLO-NAS S INT- 8 47.03 2.36 

YOLO-NAS M INT- 8 51 3.78 

YOLO-NAS L INT- 8 52.1 4.78 

YOLOv8 S 47 4 

YOLOv8 M 50 6.5 

YOLOv8 L 52.5 9.5 

 

 

Figure 1. Comparison of YOLO object detection models [11] 
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Figure 2. Ray Tune framework [13]  
 

Park et al. developed HyperTendril, a visual 
analytics framework designed for user-driven 
hyperparameter optimization of deep neural 

networks, addressing the challenge of manually 
tuning hyperparameters. Despite the advances in 
automated machine learning (AutoML) methods 

for searching optimal hyperparameters, their 
effectiveness is hindered by dependency on initial 
configurations. HyperTendril allows users to 

iteratively refine search spaces and AutoML 
configurations through interactive tuning, offering 
insights into hyperparameter behaviors and 

variable importance analysis. Evaluation through 
longitudinal user research highlighted its efficacy 
in a professional setting [16]. Similarly, Dou et al. 

introduced HyperTuner, a cross-layer multi-
objective hyperparameter auto-tuning framework 
aimed at optimizing both model hyperparameters 

and system parameters to balance accuracy, 
training time, and energy consumption. 
HyperTuner utilizes the ADUMBO algorithm to find 

Pareto-optimal configurations by selecting the 
most promising configuration through an adaptive 
uncertainty metric. Experimental results on a local 

distributed TensorFlow cluster demonstrated 
HyperTuner's superior convergence and diversity 
compared to other baseline algorithms, showing 

its adaptability across various data analytic 
service scenarios [17]. 

Hyper-parameter optimization plays a 

pivotal role in enhancing the performance of 
machine learning models, particularly in object 
detection frameworks. Gradient descent 

algorithms, including variations with momentum 
terms, have been extensively reviewed for their 
efficiency in optimizing learning processes. Neural 

networks have also seen innovations in activation 
functions, such as the Swish activation function, 
which operates as a self-gated mechanism to 

improve learning outcomes. Additionally, 
Gaussian processes have emerged as a versatile 
framework for a variety of machine learning 

applications, offering powerful predictive 
capabilities [18]. Within the realm of object 
detection, the YOLO (You Only Look Once) 

framework stands out for its unified, real-time 
detection capabilities, which streamline the 
detection process and enhance performance 

metrics across various datasets. 

METHOD 

Dataset 

In this research, we utilized an open-source 
dataset from the Kaggle repository, specifically the 
'Corn Leaf Infection Dataset' provided by Acharya 

[19]. This dataset comprises 4,225 images with a 
high resolution of 3,456 x 4,608 pixels. The 
images are categorized into two classes: 'healthy' 

and 'infected,' as outlined in Table 2. The testing 
data will further validate the model's performance 
using real-world data from The Central Bureau of 

Statistics (BPS) Aceh Tamiang, ensuring its 
applicability beyond the training dataset. 

The dataset consists of 2,225 images of 

infected corn leaf samples stored in a dedicated 
folder for training and validation purposes. Each 
image is accompanied by a corresponding label 

indicating whether the leaf is infected or not. 
Additionally, the dataset contains 11,596 
bounding box annotations, meticulously outlining 

the location of infected areas within the images, 
which aids in precise object detection. The dataset 
exhibits an imbalance, with 2,000 images labeled 

as 'healthy' and 2,225 images labeled as 'infected'. 
An explanation file accompanies the dataset, 
containing bounding box coordinates for the 

infected images. Overall, this dataset is a valuable 
resource for training models to detect and 
accurately classify infected corn leaves. 

 
Methods 

The methodological approach employed in 

this research is illustrated in Figure 3, providing an 
overview of the research stages. The dataset of 
infected corn leaf samples is organized within a 

dedicated folder, potentially containing images of 
corn leaves along with corresponding labels 
indicating infection status. The dataset comprises 

a total of 2,225 images and 2,225 labels. 
The preprocessing stage involves preparing 

the dataset for training by conducting various 

operations on the data. Specifically focusing on 
the infected category, preprocessing steps are 
implemented to address images of infected corn 

leaves. During the data preprocessing pipeline, a 
series of essential operations are applied to 
ensure proper formatting of input images for 

subsequent tasks, particularly in computer vision 
or deep learning. This mechanism begins by 
creating the necessary directories for storing 

images and their corresponding labels. It first sets 
up the `images` and `labels` subfolders within the 
new dataset directory. Each image from the 

original dataset is then read and converted to RGB 
format. If needed, images are rotated 90 degrees 
clockwise to ensure consistent orientation.  
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Figure 3. Proposed Method 

 
The images are resized to a maximum 

dimension of 854 pixels while maintaining their 

aspect ratio. After resizing, the images are saved 
in the newly created `images` folder. 
Simultaneously, annotations are processed by 

scaling bounding box coordinates relative to the 
new image dimensions. Each bounding box is 
adjusted to fit within the normalized range of 0 to 

1, with coordinates (x, y) and dimensions (width, 
height) converted accordingly. Invalid bounding 
boxes are flagged if they fall outside the valid 

range, with any issues highlighted visually. The 
processed labels are saved in YOLO format, and 
the bounding boxes of the infected class are 

updated. This pipeline homogenizes input data, 
addressing potential image orientation and size 
variations from diverse sources [20]. 

The next step involves determining static 
hyper-parameters to be set in developing each 
model that will undergo tuning. The key hyper-

parameters are 'Epoch,’ 'Image Size,’ 'Batch Size,’ 
and 'Workers,’ as outlined in Table 3. 

Hyper-parameter tuning is crucial in 

optimizing model performance and preventing 
over-fitting or under-fitting. It entails experimenting 
with various hyper-parameter values and 

evaluating their outcomes to discover 
combinations that yield the best validation or test 
data results. Ray Tune is a framework that will be 

utilized as a supportive tool for conducting hyper-
parameter tuning. The hyper-parameters used in 
several deep-learning algorithms are outlined in 

Table 4.  
The variables and values in Table 4 refer to 

the sampling functions provided by the Tune 

library, which will be used for hyperparameter 

optimization. These functions generate random 
numbers within the specified minimum and 

maximum values range. The hyper-parameter 
values listed above will be randomly sampled and 
then utilized within the respective functions of the 

YOLOv8 and YOLO-NAS models. By executing 
the training scripts using these six parameter 
values, it is anticipated that the models can be 

trained to achieve the best accuracy. 
In the proposed method, YOLOv8, 

YOLOv8auto, and YOLO-NAS are employed to 

optimize the detection of infected corn leaves 
through different approaches. YOLOv8 is used as 
a base model for object detection, aimed at 

detecting and locating infected corn leaves in 
images. This model undergoes extensive hyper-
parameter tuning to optimize its performance. 

YOLOv8 uses a range of values for key hyper-
parameters such as learning rate (lr0), 
momentum, and weight decay. The tuning 

process involves sampling these values within 
specified ranges to find the optimal combination 
for high detection accuracy. 

 
Table 2. Corn leaf image data set 

Label Total 

Healthy 2,000 images 0 annotations 

Infected 2,225 images 11,596 annotations 

Table 3. Static hyper-parameters are used to 
train all models 

Tuning Model Best Model 
Hyper-parameter Value Hyper-parameter Value 

Epoch 10 Epoch 100 

Image Size 640 Image Size 640 

Batch Size 8 Batch Size 8 

Workers 8 Workers 8 
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Table 4. Search space for automatic hyper-
parameter tuning of each model. 

Model Hyper-parameter Tuning 

YOLOv8 

"optimizer": "AdamW", 

"lrf": (0.01, 1.0),  

"lr0": (1e-5, 1e-1),  

"momentum": (0.6, 0.98),  

"cls": (0.2, 4.0),  

"weight_decay": (0.0, 0.001) 

YOLOv8auto 

"optimizer": "AdamW", 

"lrf": (0.01, 1.0),  

"lr0": 0.01,  

"momentum": 0.937,  

"cls": (0.2, 4.0),  

"weight_decay": (0.0, 0.001) 

YOLO-NAS 

"optimizer": ["AdamW", "SGD"], 

"cosine_final_lr_ratio": (0.01, 1.0),  

"initial_lr": (1e-5, 1e-1),  

"momentum": (0.6, 0.98),  

"classification_loss_weight": (0.2, 4.0),  

"weight_decay": (0.0, 0.001) 

 

YOLOv8auto, on the other hand, is 
designed to streamline the hyper-parameter 
tuning process by incorporating fixed values for 

certain hyper-parameters while still allowing for 
tuning within specified ranges for others. This 
variant aims to simplify and speed up the 

optimization process. Unlike YOLOv8, 
YOLOv8auto has fixed values for lr0 (set to 0.01) 
and momentum (set to 0.937). This means that 

these hyper-parameters do not undergo a range-
based tuning process. Instead, the focus is on 
tuning other parameters within specified ranges. 

This approach reduces the complexity of tuning 
and leverages predefined values that are 
expected to perform well. 

YOLO-NAS (Neural Architecture Search) is 
utilized to automatically explore different neural 
network architectures along with hyper-parameter 

tuning. This variant aims to find the best model 
architecture that yields optimal performance in 
detecting infected corn leaves. YOLO-NAS 

expands the search space to include various 
model architectures in addition to hyper-
parameters. It uses different optimizers (e.g., 

AdamW, SGD) and has a broader range for 
parameters like learning rate and momentum. This 
comprehensive approach allows YOLO-NAS to 

potentially discover more effective model 
configurations compared to traditional tuning 

methods. 
The final stage involves evaluating the 

performance of the trained models using various 

evaluation metrics to measure their effectiveness. 
These metrics include precision, recall, F1-score, 
IoU, and mAP. mAP (mean Average Precision) is 

a commonly used evaluation metric in object 
detection tasks. "mAP 50" refers to the average 
precision at an IoU (Intersection over Union) 

threshold of 0.5, while "mAP 50-95" represents the 
average precision across IoU thresholds ranging 

from 0.5 to 0.95. These scores provide a measure 
of how well the model performs in detecting 
infected corn leaves at various levels of precision.  

The formulas for calculating precision, 
recall, F1-score, IoU, and mAP are presented in 
(1)-(5) [21, 22, 23]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 
(2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (3) 

𝐼𝑜𝑈 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

 
(4) 

𝑚𝐴𝑃 =  
1

|𝑐𝑙𝑎𝑠𝑠𝑒𝑠|
 ∑  
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

|𝑇𝑃𝑐|

|𝐹𝑃𝑐
| + |𝑇𝑃𝑐|

 
(5) 

 

RESULTS AND DISCUSSION 
Experiment Result 

All variants of the YOLOv8 model were 

executed using the integrated Ray Tune 
framework within the Tune library. Ultralytics 
YOLOv8 leveraged Ray Tune for hyper-parameter 

tuning, simplifying the optimization process for the 
YOLOv8 model. Ray Tune facilitated advanced 
search strategies, parallelism, and early stopping 

to accelerate the tuning process. Both the 
YOLOv8 and YOLOv8auto models were 
separately run based on the predefined hyper-

parameters outlined in Table 3 and Table 4. 
During the automated hyper-parameter 

tuning phase, the YOLOv8auto variants were 

labeled '1', while the YOLOv8 variants were 
labeled '2'. Consequently, these models were 
identified as YOLOv8n1, YOLOv8l1, YOLOv8m1, 

YOLOv8s1, and YOLOv8x1 for the YOLOv8auto 
variants, and YOLOv8n2, YOLOv8l2, YOLOv8m2, 
YOLOv8s2, and YOLOv8x2 for the YOLOv8 

variants. The results of the automated hyper-
parameter tuning process are reflected in Figure 
4, illustrating the relative performance among the 

model variants. 
The determination of these hyper-

parameter values was automated by Ray Tune 

using a method with 10 iterations and 10 epochs 
per iteration for each variant. The primary 
objective was to achieve the best mAP50-95 

values for each model variant. The experimental 
results show that the YOLOv8auto model variants, 
on average, outperformed the YOLOv8 models. 

This phenomenon occurred because the tuning 
process focused on two hyper-parameter values, 

namely "lr0" and "momentum," as listed in Table 
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4. The experiments prove that hyper-parameter 

configurations significantly impact the model, 
influencing the learning process and enhancing 
training effectiveness [3]. 

Using the Ray Tune method, the algorithm 
for determining the best results from various 
YOLOv8 models involves selecting outcomes 

based on the mAP50-95 metric with the maximum 
mode. Subsequently, the best YOLOv8 model is 
run, adjusting the 'epoch' value according to Table 

3 before training. Post-training, the model 
undergoes evaluation using validation data, 
extracting metrics like precision, recall, mAP50, 

and mAP50-95 from the evaluation results. The 
evaluation metrics obtained after training the 
infected leaf dataset are presented in Table 5. A 

higher mAP score signifies better accuracy in 
detecting infected leaves [24]. The performance 
evaluation results of the five best YOLOv8 model 

variants were assessed based on several metrics, 
including precision, recall, mAP50, and mAP50-
95, thus providing a comprehensive 

understanding of the relative performance of each 
model. 

YOLOv8x stands out with a precision of 

96.3%, recall of 94.8%, mAP50 of 98.3%, and 
mAP50-95 of 66.4%. However, YOLOv8m is the 
superior variant, achieving the highest 

performance with the precision of 96.3%, recall of 
95.2%, mAP50 of 98.5%, and mAP50-95 of 
67.8%. This variant can be considered the optimal 

choice based on the results of hyper-parameter 
tuning, demonstrating significant improvement 
across various aspects of model performance. 

In a comprehensive review, YOLOv8m 
emerges as the most superior model, attaining the 
highest accuracy across all evaluative metrics. 

With balanced precision, recall, and mAP50, along 
with a high mAP50-95 score, YOLOv8m becomes 
a robust choice for object detection tasks in this 

context. These results indicate that the hyper-
parameter settings applied to YOLOv8m r 
significantly enhance the model's capabilities, 

making it the optimal choice for this object 
detection task. 

Unlike before, the YOLO-NAS model is 

executed without utilizing a framework, but rather, 
the hyper-parameter values are randomly 
selected using a script, following the values listed 

in Table 3 and Table 4. The hyper-parameter 
tuning process commences by iterating through 
each predetermined variant of the YOLO-NAS 

model. Upon completing training, the hyper-
parameter tuning process for the next variant is 

repeated until all variants have been processed. 

This stage aims to find the hyper-parameter 
combinations that yield the best results for the 
YOLO-NAS model. The outcomes of this hyper-

parameter tuning process are observed in Figure 
5. 

The determination of hyper-parameter 

values is carried out using a method involving 10 
iterations and 10 epoch repetitions per iteration for 
each variant. The best 'yolo_nas_l' variant is found 

in the 1st iteration, the best 'yolo_nas_m' variant is 
found in the 6th iteration, and the best 'yolo_nas_s' 
variant is found in the 10th iteration. 

After evaluating the model performance 
using evaluation metrics, the next step involves 
comparing the pest detection results obtained by 

predicting on the raw infected corn leaf images, 
totaling 500 images. These results serve as a 
supporting factor in determining the best model. 

Next, the average detection values obtained from 
predictions on raw images are visualized in the 
comparison of mAP and average detection values 

between YOLOv8 and YOLO-NAS in Figure 6. 
The average detection results for each variant are 
calculated based on the predictions made on the 

500 images. 
After obtaining the best variants for each 

iteration, the value of 'EPOCHS' is increased to 

100 for each best variant. This process aims to 
enhance the accuracy and performance of the 
model by providing more time for the learning 

process and parameter adjustment. By increasing 
the number of epochs, the model is expected to 
have more opportunities to adjust weights and 

improve prediction quality. After rerunning the 
script with the updated epoch values, evaluation 
metrics are generated for each best variant of the 

YOLO-NAS model, as presented in Table 6. The 
presented results show a significant comparison 
between the YOLOv8 and YOLO-NAS models 

after the hyperparameter tuning process. 
Particularly, YOLOv8m from the YOLOv8 model 
group stands out with excellent performance, 

exhibiting higher precision, recall, mAP50, and 
mAP50-95 values than other variants.  

Table 5. Performance comparison of YOLOv8 
model variants after hyper-parameter tuning 
Model 

P 

(%) 

R 

(%) 

F1 

(%) 

mAP50 

(%) 

mAP50-95 

(%) 

YOLOv8x 96,3  94,8 95.6 98,3 66,4 

YOLOv8l 95,7  93,9  94.8 97,9  65,2 

YOLOv8m 96,3  95,2  95.7 98,5  67,8 

YOLOv8s 93,3  91,5  92.5 96,6  58,9 

YOLOv8n 87,3  82,8  84.9 91,0  52,1 
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Figure 4. Graph of hyper-parameter tuning 

automation results on the YOLOv8 model variant 
 

 

Figure 5. Graph of hyper-parameter tuning 
results on the YOLO-NAS model variant 

 
Table 6. Performance comparison of YOLO-NAS 

model variants after hyper-parameter tuning 

Model 
P 

(%) 

R 

(%) 

F1 

(%) 

mAP50 

(%) 

mAP50-

95 (%) 

yolo-nas-l 62,8 71,6 66,9 70,3 38,9 

yolo-nas-m 57,4 67,7 62,1 63,5 34,1 

yolo-nas-s 58,9 59,3 59,0 59,9 31,3 

 

 
 

Figure 6. Comparison of mAP and average 
detection values between YOLOv8 and YOLO-

NAS 

 

On the other hand, in terms of YOLO-NAS, 
the YOLO-NAS-L variant demonstrates the best 

results, with higher precision, recall, mAP50, and 
mAP50-95 values than other variants after 
undergoing the hyper-parameter tuning process. 

YOLOv8m showed superior performance in 
mAP50-95 with a score of 0.68, while YOLO-NAS-
L has a higher average detection value, with a 

score of 9.54. YOLO-NAS variant L outperforms 
all other models in terms of average detection 
value. This suggested that YOLO-NAS L might be 

the most effective model for tasks that require high 
detection rates. Through this evaluation, it could 
be concluded that YOLOv8m and YOLO-NAS-L 

were the best choices for detecting corn leaf 
disease. Both models have their respective 
advantages and can be selected based on certain 

priorities in object detection tasks. 
 

Discussion 
The researchers evaluated the performance 

of the YOLOv8 model without conducting the 
hyper-parameter tuning process, which was then 

compared with the YOLOv8 model undergoing 
hyper-parameter tuning. This evaluation result 
provided insights into how well these models can 

perform with default hyper-parameter values [25], 
as presented in Table 7. 

Furthermore, we conducted experiments on 

a new dataset using four images of infected corn 
leaves collected from BPS Aceh Tamiang 
regency. The predicted results of the YOLOv8 and 

YOLO-NAS models as mentioned in Figure 7.  The 
results showed a comparison between the real 
differences in their detection capabilities.  

While YOLOv8 showed superior accuracy 
in annotating images with minimal false positives, 
YOLO-NAS showed a unique ability to detect 

images in the top right corner (image number 2). 
However, it failed to detect the image in the bottom 
left corner (image number 3), a task that YOLOv8 

completed.  
Additionally, YOLO-NAS produces one 

false positive annotation (background) in the 

bottom right corner (image number 4). Minimizing 
false positives is critical to improving the precision 
and effectiveness of detection models, as these 

detection errors could lead to inaccuracies in 
model predictions and reduced overall model 
reliability. But if the task requires detecting specific 

or unique objects, YOLO-NAS might be more 
suitable despite the risk of false positives. 
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(a)            (b) 
Figure 7. YOLOv8 predictions (a) and YOLO-NAS predictions (b) on the new dataset from  

BPS Aceh Tamiang 

 
Table 7. Comparison of YOLOv8 and YOLOv8-tuned models 

Model 

Non-Tuned Tuned 

Image Size 
mAP50 

(%) 

mAP50-95 

(%) 
Image Size 

mAP50 

(%) 

mAP50-95 

(%) 

YOLOv8x 416 96.5 72.7 640 983 664 

YOLOv8l 416 95.3 69.4 640 97.9 65.2 

YOLOv8m 416 94.7 66.6 640 98.5 67.8 

YOLOv8s 416 90.9 60.2 640 96.6 58.9 

YOLOv8n 416 79.2 47.0 640 91.0 52.1 

 

CONCLUSION 

Based on the results of the performance 
evaluation and comparison between the YOLOv8 
and YOLO-NAS models that have undergone the 

hyper-parameter tuning process, it can be 
concluded that YOLOv8m from the YOLOv8 
model group and YOLO-NAS-L from the YOLO-

NAS model group stand out as the best choices 
for detecting corn leaf diseases. YOLOv8m 
performed better superior performance in mAP50 

and mAP50-95, while YOLO-NAS-L has higher 
detection results. Both models have their 
respective advantages and can be selected based 

on specific priorities in the object detection task. 
This research significantly contributes to increase 

the efficiency and accuracy of early pest detection 

in corn plantations by integrating artificial 
intelligence (AI) in agriculture. By using advanced 
and optimized object detection models, farmers 

can identify corn foliar diseases more quickly and 
accurately, enabling them to take appropriate 
preventive or control measures promptly. It helped 

to increase crop yields, reduced losses due to crop 
diseases, and increased agricultural productivity 
overall. 

Future researchers’ endeavors could 
concentrate on refining methods and techniques 
to enhance further model performance in 

detecting corn leaf diseases. Exploring multi-
source data integration or incorporating IoT 
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sensors to bolster real-time plant disease 
detection systems presents another avenue for 

investigation. Developing object detection models 
adept at handling variations in light conditions, 
plant textures, and environmental backgrounds 

could also be an intriguing research focus. By 
persistently advancing and refining plant disease 
detection technology, it is envisaged to make a 

more substantial contribution to enhancing food 
security and farmer welfare on a global scale. 
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