

SINERGI Vol. 29, No. 1, February 2025: 197-206
http://publikasi.mercubuana.ac.id/index.php/sinergi

http://doi.org/10.22441/sinergi.2025.1.018

H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in … 197

Performance evaluation of hyper-parameter tuning
automation in YOLOV8 and YOLO-NAS for corn leaf disease
detection

Huzair Saputra1, Kahlil Muchtar2*, Nidya Chitraningrum3, Agus Andria4, Alifya Febriana5
1Master of Artificial Intelligence, Department of Informatics, Universitas Syiah Kuala, Indonesia
2Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
3Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Indonesia
4The Central Bureau of Statistics (BPS) Aceh Tamiang, Aceh Tamiang Regency, Indonesia
5Department of Electrical Engineering, Yuan Ze University, Taiwan

Abstract
Corn cultivation was crucial in Southeast Asia, significantly
contributing to regional food security and economies. However, leaf

diseases posed a significant threat, causing substantial losses in
production and quality. This research utilized artificial intelligence (AI)
technology to address this issue by automating the hyper-parameter

tuning process in YOLO (You Only Look Once) object detection
models for early corn leaf disease detection. High-resolution images
of corn leaves were captured and preprocessed for consistency. The

preprocessing stage involved creating new dataset folders for
images and labels, resizing images while preserving their aspect
ratio, and rotating them if necessary. The images, containing 11,596

labeled instances, were analyzed using YOLOv8 and YOLO-NAS
models. Each image's detected disease regions were converted into
YOLO-format text files with x, y, width, and height coordinates,

describing the presence and severity of infections. The models'
performances were evaluated using precision, recall, mAP50, and
mAP50-95 metrics. YOLOv8m achieved a mAP50 of 98.5% and

mAP50-95 of 67.8%, while YOLO-NAS-L demonstrated superior
detection capabilities with a mAP50 of 70.3% and mAP50-95 of
38.9%. This automated system facilitated early disease identification

and enabled prompt preventive measures, thereby enhancing crop
yields and mitigating losses. The findings highlighted the potential of
advanced AI-driven detection systems in revolutionizing crop

management and supporting global food security.

This is an open access article under the CC BY-SA license

Keywords:

Corn leaf disease;

Hyper-parameter tuning;

Object detection;
YOLO-NAS;

YOLOv8;

Article History:

Received: March 29, 2024

Revised: July 26, 2024

Accepted: July 29, 2024

Published: January 4, 2025

Corresponding Author:

Kahlil Muchtar

Electrical and Computer
Engineering Department,

Universitas Syiah Kuala,

Indonesia

Email: kahlil@usk.ac.id

INTRODUCTION
Agriculture is vital for feeding the growing

global population, with corn (Zea mays) being a

crucial crop. However, plant diseases pose a
significant threat to modern agricultural
productivity, jeopardizing the yield and quality of

essential crops like corn [1]. Traditional detection
methods are time-consuming and prone to errors,
which increases economic losses. Machine

learning, particularly deep neural networks, offers

promising advancements in improving detection
accuracy and efficiency [2].

Deep Learning, especially Convolutional

Neural Networks (CNNs), excels in analyzing
visual data, and detecting complex patterns with
high precision. CNNs have been successful in

numerous applications, including object detection
and image segmentation, by learning hierarchical
features from images [3][4]. Deep learning has

also revolutionized fields like healthcare, where

http://creativecommons.org/licenses/by-sa/4.0/

SINERGI Vol. 29, No. 1, February 2025: 197-206

198 H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in …

CNN-based methods are used for analyzing

health data, facilitating early diagnosis, and
personalized treatment plans [5]. Pivkin et al.
explore using neural networks to detect defects in

direct metal deposition. They review relevant
literature on neural networks and AI, affirming the
importance of this research. The study focuses on

three neural network models—U-Net, ResUNet,
and VGG-16—commonly used in computer vision.
After training and evaluating these models, they

identify the most effective one for defect detection.
The paper concludes by suggesting directions for
future research in this area [6].

Hyper-parameter tuning in machine
learning is essential for optimizing model
performance. Effective tuning can significantly

impact model accuracy and efficiency. While
various optimization techniques exist, their
effectiveness depends on the specific problem [7].

In computer vision, machine learning addresses
challenges like large-scale images and complex
object detection, with techniques like Maximally

Stable Extremal Regions (MSER) used for vehicle
detection and human pose estimation being
pivotal for advancements in fields such as

surveillance and sports analysis [8].
YOLO (You Only Look Once) models,

including the recent YOLOv8 and YOLO-NAS,

have enhanced real-time object detection with
improved accuracy and speed [9][10]. YOLO-
NAS, incorporating Neural Architecture Search

(NAS), achieves superior performance compared
to earlier YOLO versions, offering higher accuracy
and faster processing times [11]. Figure 1

demonstrates the comparison of YOLO object
detection models. The trend graph above
illustrates that the YOLO-NAS architecture

introduces the latest state-of-the-art (SOTA) with
unparalleled speed and accuracy performance,
surpassing other models such as YOLOv5,

YOLOv6, YOLOv7, and YOLOv8. YOLO-NAS

also provides the best evaluation results with a

mean average precision (mAP) ~0.5 points more
accurate and 10-20% faster than equivalent
YOLOv8 variants, as evidenced in Table 1 [12].

Hyper-parameter tuning frameworks like
Tune and Ray Tune are crucial for optimizing deep
learning models. These frameworks facilitate

efficient experimentation and adjustment of hyper-
parameters, supporting various machine learning
libraries and algorithms. Figure 2 provides an

overview of the components of the Ray Tune
framework [13]. This research focuses on
comparing YOLOv8 and YOLO-NAS object

detection methods for detecting pests and
diseases on corn leaves, leveraging optimal
hyper-parameters for each model.

In the era of the Fourth Industrial Revolution
in machine learning, hyper-parameter tuning has
become a commonly used technique to find the

optimal combination of hyper-parameters in a
model or algorithm [14]. This technique aims to
improve accuracy, precision, recall, or other

relevant evaluation metrics in the model and is
highly useful in saving time and effort in manually
searching for optimal hyperparameter

configurations. Automated hyper-parameter
configuration makes it easier to find hyper-
parameter values that provide the best

performance for automatic object detection
system approaches using CNN [15].

Table 1. Comparison of YOLO-NAS and YOLOv8

in terms of mAP and latency
Model mAP Latency (milliseconds)

YOLO-NAS S 47.5 3.21

YOLO-NAS M 51.55 5.85

YOLO-NAS L 52.22 7.87

YOLO-NAS S INT- 8 47.03 2.36

YOLO-NAS M INT- 8 51 3.78

YOLO-NAS L INT- 8 52.1 4.78

YOLOv8 S 47 4

YOLOv8 M 50 6.5

YOLOv8 L 52.5 9.5

Figure 1. Comparison of YOLO object detection models [11]

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in … 199

Figure 2. Ray Tune framework [13]

Park et al. developed HyperTendril, a visual
analytics framework designed for user-driven
hyperparameter optimization of deep neural

networks, addressing the challenge of manually
tuning hyperparameters. Despite the advances in
automated machine learning (AutoML) methods

for searching optimal hyperparameters, their
effectiveness is hindered by dependency on initial
configurations. HyperTendril allows users to

iteratively refine search spaces and AutoML
configurations through interactive tuning, offering
insights into hyperparameter behaviors and

variable importance analysis. Evaluation through
longitudinal user research highlighted its efficacy
in a professional setting [16]. Similarly, Dou et al.

introduced HyperTuner, a cross-layer multi-
objective hyperparameter auto-tuning framework
aimed at optimizing both model hyperparameters

and system parameters to balance accuracy,
training time, and energy consumption.
HyperTuner utilizes the ADUMBO algorithm to find

Pareto-optimal configurations by selecting the
most promising configuration through an adaptive
uncertainty metric. Experimental results on a local

distributed TensorFlow cluster demonstrated
HyperTuner's superior convergence and diversity
compared to other baseline algorithms, showing

its adaptability across various data analytic
service scenarios [17].

Hyper-parameter optimization plays a

pivotal role in enhancing the performance of
machine learning models, particularly in object
detection frameworks. Gradient descent

algorithms, including variations with momentum
terms, have been extensively reviewed for their
efficiency in optimizing learning processes. Neural

networks have also seen innovations in activation
functions, such as the Swish activation function,
which operates as a self-gated mechanism to

improve learning outcomes. Additionally,
Gaussian processes have emerged as a versatile
framework for a variety of machine learning

applications, offering powerful predictive
capabilities [18]. Within the realm of object
detection, the YOLO (You Only Look Once)

framework stands out for its unified, real-time
detection capabilities, which streamline the
detection process and enhance performance

metrics across various datasets.

METHOD

Dataset

In this research, we utilized an open-source
dataset from the Kaggle repository, specifically the
'Corn Leaf Infection Dataset' provided by Acharya

[19]. This dataset comprises 4,225 images with a
high resolution of 3,456 x 4,608 pixels. The
images are categorized into two classes: 'healthy'

and 'infected,' as outlined in Table 2. The testing
data will further validate the model's performance
using real-world data from The Central Bureau of

Statistics (BPS) Aceh Tamiang, ensuring its
applicability beyond the training dataset.

The dataset consists of 2,225 images of

infected corn leaf samples stored in a dedicated
folder for training and validation purposes. Each
image is accompanied by a corresponding label

indicating whether the leaf is infected or not.
Additionally, the dataset contains 11,596
bounding box annotations, meticulously outlining

the location of infected areas within the images,
which aids in precise object detection. The dataset
exhibits an imbalance, with 2,000 images labeled

as 'healthy' and 2,225 images labeled as 'infected'.
An explanation file accompanies the dataset,
containing bounding box coordinates for the

infected images. Overall, this dataset is a valuable
resource for training models to detect and
accurately classify infected corn leaves.

Methods

The methodological approach employed in

this research is illustrated in Figure 3, providing an
overview of the research stages. The dataset of
infected corn leaf samples is organized within a

dedicated folder, potentially containing images of
corn leaves along with corresponding labels
indicating infection status. The dataset comprises

a total of 2,225 images and 2,225 labels.
The preprocessing stage involves preparing

the dataset for training by conducting various

operations on the data. Specifically focusing on
the infected category, preprocessing steps are
implemented to address images of infected corn

leaves. During the data preprocessing pipeline, a
series of essential operations are applied to
ensure proper formatting of input images for

subsequent tasks, particularly in computer vision
or deep learning. This mechanism begins by
creating the necessary directories for storing

images and their corresponding labels. It first sets
up the `images` and `labels` subfolders within the
new dataset directory. Each image from the

original dataset is then read and converted to RGB
format. If needed, images are rotated 90 degrees
clockwise to ensure consistent orientation.

SINERGI Vol. 29, No. 1, February 2025: 197-206

200 H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in …

Figure 3. Proposed Method

The images are resized to a maximum

dimension of 854 pixels while maintaining their

aspect ratio. After resizing, the images are saved
in the newly created `images` folder.
Simultaneously, annotations are processed by

scaling bounding box coordinates relative to the
new image dimensions. Each bounding box is
adjusted to fit within the normalized range of 0 to

1, with coordinates (x, y) and dimensions (width,
height) converted accordingly. Invalid bounding
boxes are flagged if they fall outside the valid

range, with any issues highlighted visually. The
processed labels are saved in YOLO format, and
the bounding boxes of the infected class are

updated. This pipeline homogenizes input data,
addressing potential image orientation and size
variations from diverse sources [20].

The next step involves determining static
hyper-parameters to be set in developing each
model that will undergo tuning. The key hyper-

parameters are 'Epoch,’ 'Image Size,’ 'Batch Size,’
and 'Workers,’ as outlined in Table 3.

Hyper-parameter tuning is crucial in

optimizing model performance and preventing
over-fitting or under-fitting. It entails experimenting
with various hyper-parameter values and

evaluating their outcomes to discover
combinations that yield the best validation or test
data results. Ray Tune is a framework that will be

utilized as a supportive tool for conducting hyper-
parameter tuning. The hyper-parameters used in
several deep-learning algorithms are outlined in

Table 4.
The variables and values in Table 4 refer to

the sampling functions provided by the Tune

library, which will be used for hyperparameter

optimization. These functions generate random
numbers within the specified minimum and

maximum values range. The hyper-parameter
values listed above will be randomly sampled and
then utilized within the respective functions of the

YOLOv8 and YOLO-NAS models. By executing
the training scripts using these six parameter
values, it is anticipated that the models can be

trained to achieve the best accuracy.
In the proposed method, YOLOv8,

YOLOv8auto, and YOLO-NAS are employed to

optimize the detection of infected corn leaves
through different approaches. YOLOv8 is used as
a base model for object detection, aimed at

detecting and locating infected corn leaves in
images. This model undergoes extensive hyper-
parameter tuning to optimize its performance.

YOLOv8 uses a range of values for key hyper-
parameters such as learning rate (lr0),
momentum, and weight decay. The tuning

process involves sampling these values within
specified ranges to find the optimal combination
for high detection accuracy.

Table 2. Corn leaf image data set

Label Total

Healthy 2,000 images 0 annotations

Infected 2,225 images 11,596 annotations

Table 3. Static hyper-parameters are used to
train all models

Tuning Model Best Model
Hyper-parameter Value Hyper-parameter Value

Epoch 10 Epoch 100

Image Size 640 Image Size 640

Batch Size 8 Batch Size 8

Workers 8 Workers 8

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in … 201

Table 4. Search space for automatic hyper-
parameter tuning of each model.

Model Hyper-parameter Tuning

YOLOv8

"optimizer": "AdamW",

"lrf": (0.01, 1.0),

"lr0": (1e-5, 1e-1),

"momentum": (0.6, 0.98),

"cls": (0.2, 4.0),

"weight_decay": (0.0, 0.001)

YOLOv8auto

"optimizer": "AdamW",

"lrf": (0.01, 1.0),

"lr0": 0.01,

"momentum": 0.937,

"cls": (0.2, 4.0),

"weight_decay": (0.0, 0.001)

YOLO-NAS

"optimizer": ["AdamW", "SGD"],

"cosine_final_lr_ratio": (0.01, 1.0),

"initial_lr": (1e-5, 1e-1),

"momentum": (0.6, 0.98),

"classification_loss_weight": (0.2, 4.0),

"weight_decay": (0.0, 0.001)

YOLOv8auto, on the other hand, is
designed to streamline the hyper-parameter
tuning process by incorporating fixed values for

certain hyper-parameters while still allowing for
tuning within specified ranges for others. This
variant aims to simplify and speed up the

optimization process. Unlike YOLOv8,
YOLOv8auto has fixed values for lr0 (set to 0.01)
and momentum (set to 0.937). This means that

these hyper-parameters do not undergo a range-
based tuning process. Instead, the focus is on
tuning other parameters within specified ranges.

This approach reduces the complexity of tuning
and leverages predefined values that are
expected to perform well.

YOLO-NAS (Neural Architecture Search) is
utilized to automatically explore different neural
network architectures along with hyper-parameter

tuning. This variant aims to find the best model
architecture that yields optimal performance in
detecting infected corn leaves. YOLO-NAS

expands the search space to include various
model architectures in addition to hyper-
parameters. It uses different optimizers (e.g.,

AdamW, SGD) and has a broader range for
parameters like learning rate and momentum. This
comprehensive approach allows YOLO-NAS to

potentially discover more effective model
configurations compared to traditional tuning

methods.
The final stage involves evaluating the

performance of the trained models using various

evaluation metrics to measure their effectiveness.
These metrics include precision, recall, F1-score,
IoU, and mAP. mAP (mean Average Precision) is

a commonly used evaluation metric in object
detection tasks. "mAP 50" refers to the average
precision at an IoU (Intersection over Union)

threshold of 0.5, while "mAP 50-95" represents the
average precision across IoU thresholds ranging

from 0.5 to 0.95. These scores provide a measure
of how well the model performs in detecting
infected corn leaves at various levels of precision.

The formulas for calculating precision,
recall, F1-score, IoU, and mAP are presented in
(1)-(5) [21, 22, 23].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (3)

𝐼𝑜𝑈 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

(4)

𝑚𝐴𝑃 =
1

|𝑐𝑙𝑎𝑠𝑠𝑒𝑠|
 ∑
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

|𝑇𝑃𝑐|

|𝐹𝑃𝑐
| + |𝑇𝑃𝑐|

(5)

RESULTS AND DISCUSSION
Experiment Result

All variants of the YOLOv8 model were

executed using the integrated Ray Tune
framework within the Tune library. Ultralytics
YOLOv8 leveraged Ray Tune for hyper-parameter

tuning, simplifying the optimization process for the
YOLOv8 model. Ray Tune facilitated advanced
search strategies, parallelism, and early stopping

to accelerate the tuning process. Both the
YOLOv8 and YOLOv8auto models were
separately run based on the predefined hyper-

parameters outlined in Table 3 and Table 4.
During the automated hyper-parameter

tuning phase, the YOLOv8auto variants were

labeled '1', while the YOLOv8 variants were
labeled '2'. Consequently, these models were
identified as YOLOv8n1, YOLOv8l1, YOLOv8m1,

YOLOv8s1, and YOLOv8x1 for the YOLOv8auto
variants, and YOLOv8n2, YOLOv8l2, YOLOv8m2,
YOLOv8s2, and YOLOv8x2 for the YOLOv8

variants. The results of the automated hyper-
parameter tuning process are reflected in Figure
4, illustrating the relative performance among the

model variants.
The determination of these hyper-

parameter values was automated by Ray Tune

using a method with 10 iterations and 10 epochs
per iteration for each variant. The primary
objective was to achieve the best mAP50-95

values for each model variant. The experimental
results show that the YOLOv8auto model variants,
on average, outperformed the YOLOv8 models.

This phenomenon occurred because the tuning
process focused on two hyper-parameter values,

namely "lr0" and "momentum," as listed in Table

SINERGI Vol. 29, No. 1, February 2025: 197-206

202 H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in …

4. The experiments prove that hyper-parameter

configurations significantly impact the model,
influencing the learning process and enhancing
training effectiveness [3].

Using the Ray Tune method, the algorithm
for determining the best results from various
YOLOv8 models involves selecting outcomes

based on the mAP50-95 metric with the maximum
mode. Subsequently, the best YOLOv8 model is
run, adjusting the 'epoch' value according to Table

3 before training. Post-training, the model
undergoes evaluation using validation data,
extracting metrics like precision, recall, mAP50,

and mAP50-95 from the evaluation results. The
evaluation metrics obtained after training the
infected leaf dataset are presented in Table 5. A

higher mAP score signifies better accuracy in
detecting infected leaves [24]. The performance
evaluation results of the five best YOLOv8 model

variants were assessed based on several metrics,
including precision, recall, mAP50, and mAP50-
95, thus providing a comprehensive

understanding of the relative performance of each
model.

YOLOv8x stands out with a precision of

96.3%, recall of 94.8%, mAP50 of 98.3%, and
mAP50-95 of 66.4%. However, YOLOv8m is the
superior variant, achieving the highest

performance with the precision of 96.3%, recall of
95.2%, mAP50 of 98.5%, and mAP50-95 of
67.8%. This variant can be considered the optimal

choice based on the results of hyper-parameter
tuning, demonstrating significant improvement
across various aspects of model performance.

In a comprehensive review, YOLOv8m
emerges as the most superior model, attaining the
highest accuracy across all evaluative metrics.

With balanced precision, recall, and mAP50, along
with a high mAP50-95 score, YOLOv8m becomes
a robust choice for object detection tasks in this

context. These results indicate that the hyper-
parameter settings applied to YOLOv8m r
significantly enhance the model's capabilities,

making it the optimal choice for this object
detection task.

Unlike before, the YOLO-NAS model is

executed without utilizing a framework, but rather,
the hyper-parameter values are randomly
selected using a script, following the values listed

in Table 3 and Table 4. The hyper-parameter
tuning process commences by iterating through
each predetermined variant of the YOLO-NAS

model. Upon completing training, the hyper-
parameter tuning process for the next variant is

repeated until all variants have been processed.

This stage aims to find the hyper-parameter
combinations that yield the best results for the
YOLO-NAS model. The outcomes of this hyper-

parameter tuning process are observed in Figure
5.

The determination of hyper-parameter

values is carried out using a method involving 10
iterations and 10 epoch repetitions per iteration for
each variant. The best 'yolo_nas_l' variant is found

in the 1st iteration, the best 'yolo_nas_m' variant is
found in the 6th iteration, and the best 'yolo_nas_s'
variant is found in the 10th iteration.

After evaluating the model performance
using evaluation metrics, the next step involves
comparing the pest detection results obtained by

predicting on the raw infected corn leaf images,
totaling 500 images. These results serve as a
supporting factor in determining the best model.

Next, the average detection values obtained from
predictions on raw images are visualized in the
comparison of mAP and average detection values

between YOLOv8 and YOLO-NAS in Figure 6.
The average detection results for each variant are
calculated based on the predictions made on the

500 images.
After obtaining the best variants for each

iteration, the value of 'EPOCHS' is increased to

100 for each best variant. This process aims to
enhance the accuracy and performance of the
model by providing more time for the learning

process and parameter adjustment. By increasing
the number of epochs, the model is expected to
have more opportunities to adjust weights and

improve prediction quality. After rerunning the
script with the updated epoch values, evaluation
metrics are generated for each best variant of the

YOLO-NAS model, as presented in Table 6. The
presented results show a significant comparison
between the YOLOv8 and YOLO-NAS models

after the hyperparameter tuning process.
Particularly, YOLOv8m from the YOLOv8 model
group stands out with excellent performance,

exhibiting higher precision, recall, mAP50, and
mAP50-95 values than other variants.

Table 5. Performance comparison of YOLOv8
model variants after hyper-parameter tuning
Model

P

(%)

R

(%)

F1

(%)

mAP50

(%)

mAP50-95

(%)

YOLOv8x 96,3 94,8 95.6 98,3 66,4

YOLOv8l 95,7 93,9 94.8 97,9 65,2

YOLOv8m 96,3 95,2 95.7 98,5 67,8

YOLOv8s 93,3 91,5 92.5 96,6 58,9

YOLOv8n 87,3 82,8 84.9 91,0 52,1

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in … 203

Figure 4. Graph of hyper-parameter tuning

automation results on the YOLOv8 model variant

Figure 5. Graph of hyper-parameter tuning
results on the YOLO-NAS model variant

Table 6. Performance comparison of YOLO-NAS

model variants after hyper-parameter tuning

Model
P

(%)

R

(%)

F1

(%)

mAP50

(%)

mAP50-

95 (%)

yolo-nas-l 62,8 71,6 66,9 70,3 38,9

yolo-nas-m 57,4 67,7 62,1 63,5 34,1

yolo-nas-s 58,9 59,3 59,0 59,9 31,3

Figure 6. Comparison of mAP and average
detection values between YOLOv8 and YOLO-

NAS

On the other hand, in terms of YOLO-NAS,
the YOLO-NAS-L variant demonstrates the best

results, with higher precision, recall, mAP50, and
mAP50-95 values than other variants after
undergoing the hyper-parameter tuning process.

YOLOv8m showed superior performance in
mAP50-95 with a score of 0.68, while YOLO-NAS-
L has a higher average detection value, with a

score of 9.54. YOLO-NAS variant L outperforms
all other models in terms of average detection
value. This suggested that YOLO-NAS L might be

the most effective model for tasks that require high
detection rates. Through this evaluation, it could
be concluded that YOLOv8m and YOLO-NAS-L

were the best choices for detecting corn leaf
disease. Both models have their respective
advantages and can be selected based on certain

priorities in object detection tasks.

Discussion
The researchers evaluated the performance

of the YOLOv8 model without conducting the
hyper-parameter tuning process, which was then

compared with the YOLOv8 model undergoing
hyper-parameter tuning. This evaluation result
provided insights into how well these models can

perform with default hyper-parameter values [25],
as presented in Table 7.

Furthermore, we conducted experiments on

a new dataset using four images of infected corn
leaves collected from BPS Aceh Tamiang
regency. The predicted results of the YOLOv8 and

YOLO-NAS models as mentioned in Figure 7. The
results showed a comparison between the real
differences in their detection capabilities.

While YOLOv8 showed superior accuracy
in annotating images with minimal false positives,
YOLO-NAS showed a unique ability to detect

images in the top right corner (image number 2).
However, it failed to detect the image in the bottom
left corner (image number 3), a task that YOLOv8

completed.
Additionally, YOLO-NAS produces one

false positive annotation (background) in the

bottom right corner (image number 4). Minimizing
false positives is critical to improving the precision
and effectiveness of detection models, as these

detection errors could lead to inaccuracies in
model predictions and reduced overall model
reliability. But if the task requires detecting specific

or unique objects, YOLO-NAS might be more
suitable despite the risk of false positives.

SINERGI Vol. 29, No. 1, February 2025: 197-206

204 H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in …

(a) (b)
Figure 7. YOLOv8 predictions (a) and YOLO-NAS predictions (b) on the new dataset from

BPS Aceh Tamiang

Table 7. Comparison of YOLOv8 and YOLOv8-tuned models

Model

Non-Tuned Tuned

Image Size
mAP50

(%)

mAP50-95

(%)
Image Size

mAP50

(%)

mAP50-95

(%)

YOLOv8x 416 96.5 72.7 640 983 664

YOLOv8l 416 95.3 69.4 640 97.9 65.2

YOLOv8m 416 94.7 66.6 640 98.5 67.8

YOLOv8s 416 90.9 60.2 640 96.6 58.9

YOLOv8n 416 79.2 47.0 640 91.0 52.1

CONCLUSION

Based on the results of the performance
evaluation and comparison between the YOLOv8
and YOLO-NAS models that have undergone the

hyper-parameter tuning process, it can be
concluded that YOLOv8m from the YOLOv8
model group and YOLO-NAS-L from the YOLO-

NAS model group stand out as the best choices
for detecting corn leaf diseases. YOLOv8m
performed better superior performance in mAP50

and mAP50-95, while YOLO-NAS-L has higher
detection results. Both models have their
respective advantages and can be selected based

on specific priorities in the object detection task.
This research significantly contributes to increase

the efficiency and accuracy of early pest detection

in corn plantations by integrating artificial
intelligence (AI) in agriculture. By using advanced
and optimized object detection models, farmers

can identify corn foliar diseases more quickly and
accurately, enabling them to take appropriate
preventive or control measures promptly. It helped

to increase crop yields, reduced losses due to crop
diseases, and increased agricultural productivity
overall.

Future researchers’ endeavors could
concentrate on refining methods and techniques
to enhance further model performance in

detecting corn leaf diseases. Exploring multi-
source data integration or incorporating IoT

2 1

43

1 2

43

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in … 205

sensors to bolster real-time plant disease
detection systems presents another avenue for

investigation. Developing object detection models
adept at handling variations in light conditions,
plant textures, and environmental backgrounds

could also be an intriguing research focus. By
persistently advancing and refining plant disease
detection technology, it is envisaged to make a

more substantial contribution to enhancing food
security and farmer welfare on a global scale.

ACKNOWLEDGMENT
This research was supported by National

Research and Innovation Agency (BRIN)

Indonesia. In addition, we thank our colleagues
from The Central Bureau of Statistics (BPS) Aceh
Tamiang who provided insight and expertise that

greatly assisted this research. This research is
supported under master thesis research grant
USK, with Grant No.

408/UN11.2.1/PG.01.03/SPK/PTNBH/2024.

REFERENCES
[1] A. Tripathi, V. Gohokar, and R. Kute,

“Comparative Analysis of YOLOv8 and
YOLOv9 Models for Real-Time Plant Disease

Detection in Hydroponics,” Engineering,
Technology & Applied Science Research,
vol. 14, no. 5, pp. 17269–17275, Oct. 2024,

doi: 10.48084/etasr.8301.
[2] M. Haque and J. Adolphs, “Corn Leaf

Disease Classification and Detection using

Deep Convolutional Neural Network,”
Research Project Final Report, Aug. 2021.
doi: 10.13140/RG.2.2.20819.50722.

[3] L. Chau and H. Nguyen-Xuan, “Deep learning
for computational structural optimization,”
ISA Transactions, vol. 103, pp. 177–191,

Mar. 2020, doi: 10.1016/j.isatra.2020.03.033.
[4] H. Amin, A. Darwish, A. E. Hassanien, and M.

Soliman, “End-to-End Deep Learning Model

for Corn Leaf Disease Classification,” IEEE
Access, vol. 10, pp. 31103–31115, 2022, doi:
10.1109/ACCESS.2022.3159678.

[5] I. H. Sarker, “Deep Learning: A
Comprehensive Overview on Techniques,
Taxonomy, Applications and Research

Directions,” SN Computer Science, vol. 2, no.
6, p. 420, Nov. 2021, doi: 10.1007/s42979-
021-00815-1.

[6] P. M. Pivkin, N. Khodanovich, S. N. Grigoriev,
and P. Peretyagin, “Method for detecting
defects in direct metal deposition using a

neural network,” in Laser + Photonics for
Advanced Manufacturing, S. Lecler, W.

Pfleging, and F. Courvoisier, Eds., SPIE, Jun.
2024, p. 80. doi: 10.1117/12.3022863.

[7] L. Yang and A. Shami, “On hyperparameter
optimization of machine learning algorithms:
Theory and practice,” Neurocomputing, vol.

415, pp. 295–316, Nov. 2020, doi:
10.1016/j.neucom.2020.07.061.

[8] A. Khan, A. Laghari, and S. Awan, “Machine

Learning in Computer Vision: A Review,”
ICST Transactions on Scalable Information
Systems, p. 169418, Apr. 2021, doi:

10.4108/eai.21-4-2021.169418.
[9] G. Jocher, A. Chaurasia, and J. Qiu,

“Ultralytics YOLO,” Jan. 2023. Accessed:

Jun. 01, 2023. [Online]. Available:
https://github.com/ultralytics/ultralytics

[10] Ultralytics, “Ultralytics Documentation,” 2023.

Accessed: Jun. 01, 2023. [Online]. Available:
https://docs.ultralytics.com

[11] S. Aharon et al., “Super-Gradients,” 2021,

GitHub. doi: 10.5281/zenodo.7789328.
[12] Augmented Startups, “YOLO NAS vs

YOLOv8: A Comprehensive Comparison,”

2023. Accessed: Jul. 15, 2023. [Online].
Available:
https://www.augmentedstartups.com/blog/yo

lo-nas-vs-yolov8-a-comprehensive-
comparison

[13] The Ray Team, “Key Concepts of Ray Tune,”

2023. Accessed: Jan. 14, 2024. [Online].
Available:
https://docs.ray.io/en/latest/tune/key-

concepts.html
[14] S. Shekhar, A. Bansode, and A. Salim, “A

Comparative study of Hyper-Parameter

Optimization Tools,” in 2021 IEEE Asia-
Pacific Conference on Computer Science
and Data Engineering (CSDE), IEEE, Dec.

2021, pp. 1–6. doi:
10.1109/CSDE53843.2021.9718485.

[15] F. Johnson, A. Valderrama, C. Valle, B.

Crawford, R. Soto, and R. Nanculef,
“Automating Configuration of Convolutional
Neural Network Hyperparameters Using

Genetic Algorithm,” IEEE Access, vol. 8, pp.
156139–156152, 2020, doi:
10.1109/ACCESS.2020.3019245.

[16] H. Park, Y. Nam, J.-H. Kim, and J. Choo,
“HyperTendril: Visual Analytics for User-
Driven Hyperparameter Optimization of Deep

Neural Networks,” IEEE Transactions on
Visualization and Computer Graphics, vol.
27, no. 2, pp. 1407–1416, Feb. 2021, doi:

10.1109/TVCG.2020.3030380.
[17] H. Dou, S. Zhu, Y. Zhang, P. Chen, and Z.

Zheng, “HyperTuner: a cross-layer multi-

SINERGI Vol. 29, No. 1, February 2025: 197-206

206 H. Saputra et al., Performance evaluation of hyper-parameter tuning automation in …

objective hyperparameter auto-tuning

framework for data analytic services,” The
Journal of Supercomputing, vol. 80, no. 12,
pp. 17460–17491, Aug. 2024, doi:

10.1007/s11227-024-06123-8.
[18] T. Yu and H. Zhu, “Hyper-Parameter

Optimization: A Review of Algorithms and

Applications,” Mar. 2020, doi:
10.48550/arXiv.2003.05689.

[19] R. Acharya, “Corn Leaf Infection Dataset,

Version 1,” Oct. 2020. Accessed: Jun. 01,
2023. [Online]. Available:
https://www.kaggle.com/qramkrishna/corn-

leaf-infection-dataset
[20] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and

L. Shao, “Normalization Techniques in

Training DNNs: Methodology, Analysis and
Application,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45,

no. 8, pp. 10173–10196, Aug. 2023, doi:
10.1109/TPAMI.2023.3250241.

[21] Moh. Khairudin et al., “Early detection of

diabetes potential using cataract image
processing approach,” SINERGI, vol. 28, no.
1, p. 55, Dec. 2023, doi:

10.22441/sinergi.2024.1.006.

[22] A. Maulana et al., “Performance Analysis and

Feature Extraction for Classifying the
Severity of Atopic Dermatitis Diseases,” in
2023 2nd International Conference on

Computer System, Information Technology,
and Electrical Engineering (COSITE), IEEE,
Aug. 2023, pp. 226–231. doi:

10.1109/COSITE60233.2023.10249760.
[23] S. Susanto, D. Stiawan, M. A. S. Arifin, Mohd.

Y. Idris, and R. Budiarto, “Effective and

efficient approach in IoT Botnet detection,”
SINERGI, vol. 28, no. 1, p. 31, Dec. 2023,
doi: 10.22441/sinergi.2024.1.004.

[24] S.-J. Hong et al., “Moth Detection from
Pheromone Trap Images Using Deep
Learning Object Detectors,” Agriculture, vol.

10, no. 5, 2020, doi:
10.3390/agriculture10050170.

[25] N. Chitraningrum et al., “Comparison Study of

Corn Leaf Disease Detection based on Deep
Learning YOLO-v5 and YOLO-v8,” Journal of
Engineering and Technological Sciences,

vol. 56, no. 1, pp. 61–70, Feb. 2024, doi:
10.5614/j.eng.technol.sci.2024.56.1.5.

