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Abstract  
The palm oil industry faces significant challenges in accurately 
classifying fruit ripeness, which is crucial for optimizing yield, 
quality, and profitability. Manual methods are slow and prone to 
errors, leading to inefficiencies and increased costs. Deep Learning, 
particularly the AlexNet architecture, has succeeded in image 
classification tasks and offers a promising solution. This study 
explores the implementation of AlexNet to improve the efficiency 
and accuracy of palm oil fruit maturity classification, thereby 
reducing costs and production time. We employed a dataset of 
1500 images of palm oil fruits, meticulously categorized into three 
classes: raw, ripe, and rotten. The experimental setup involved 
training AlexNet and comparing its performance with a conventional 
Convolutional Neural Network (CNN). The results demonstrated 
that AlexNet significantly outperforms the traditional CNN, achieving 
a validation loss of 0.0261 and an accuracy of 0.9962, compared to 
the CNN's validation loss of 0.0377 and accuracy of 0.9925. 
Furthermore, AlexNet achieved superior precision, recall, and F-1 
scores, each reaching 0.99, while the CNN scores were 0.98. 
These findings suggest that adopting AlexNet can enhance the 
palm oil industry's operational efficiency and product quality. The 
improved classification accuracy ensures that fruits are harvested at 
optimal ripeness, leading to better oil yield and quality. Reducing 
classification errors and manual labor can also lead to substantial 
cost savings and increased profitability. This study underscores the 
potential of advanced deep learning models like AlexNet in 
revolutionizing agricultural practices and improving industrial 
outcomes.  
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INTRODUCTION  

One of the rapidly developing agro-
industries in Indonesia is the palm oil industry [1]. 
The palm oil industry plays a significant role in 
the global economy, especially in 3producing 
palm oil, which is widely used in the food, 
cosmetics, and fuel industries. Since the ripeness 
of the palm fruit impacts the quality and quantity 

of the palm oil produced, classifying the ripeness 
of the palm fruit is an important step in the 
harvesting and processing process [2]. 

Traditionally, palm oil fruit ripeness has 
been classified manually by human workers. 
However, this method is often time-consuming, 
costly, and susceptible to inaccuracies due to 
individual subjectivity. As a result, current manual 
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techniques for ripeness classification could be 
more efficient and prone to human error, 
rendering them unreliable for large-scale 
applications. 

Numerous studies have explored the 
classification of palm oil fruits using machine 
learning and deep learning techniques, such as 
artificial neural networks (ANN) [3], CNN [4][5], 
[6], and linear discriminant analysis (LDA) [7]. 
However, many of these studies still need to fully 
exploit the potential of deep learning models, 
which have shown great promise in solving 
image classification problems. 

Deep learning, particularly Convolutional 
Neural Networks (CNN), has proven to be highly 
effective in image classification tasks [8][9]. By 
leveraging deep CNNs, complex patterns related 
to oil palm fruit maturity can be learned from the 
collected image data, which is essential for 
accurate classification. Several studies have 
successfully applied deep learning to palm oil 
fruit images [10, 11, 12]. 

AlexNet is a highly influential CNN-based 
image-processing architecture that has 
significantly advanced the field of image 
classification [13]. Developed by Alex Krizhevsky, 
Ilya Sutskever, and Geoffrey Hinton, AlexNet won 
the ImageNet competition in 2012, demonstrating 
remarkable performance in image classification 
tasks. This architecture has laid the foundation 
for many sophisticated CNN architectures 
developed later and represents a significant 
milestone in deep learning for imaging [14][15]. 

Applying Deep CNN AlexNet to palm oil 
fruit classification offers several significant 
benefits: 
1. High classification accuracy: AlexNet has 

demonstrated exceptional accuracy in 
classifying images. By applying AlexNet to 
palm oil fruit images, we can expect 
significant improvements in the accuracy of 
fruit ripeness classification, which is critical for 
harvesting and processing. 

2. More accurate ripeness detection: Classifying 
palm oil fruit's ripeness is challenging due to 
complex variations in fruit color, texture, and 
shape. AlexNet's ability to extract deep 
features from images can lead to more 
accurate ripeness detection under varying 
conditions. 

3. Increased efficiency in monitoring: 
Implementing AlexNet's Deep CNN can 
automate the ripeness classification process, 
reducing reliance on manual observations that 
are time-consuming and prone to human 
error. This will increase the efficiency of fruit 
ripeness monitoring on a large scale, 
especially in extensive palm oil fields. 

4. Cost and time reduction: Automating palm oil 
fruit ripeness classification with Deep CNN 
AlexNet can lower the cost and time required 
for the harvesting and processing process and 
minimize losses due to decision errors. 

In conclusion, the application of Deep CNN 
AlexNet in palm oil fruit ripeness classification is 
poised to significantly enhance productivity, 
efficiency, and quality in the palm oil sector.  
 
RELATED WORK 

Despite significant advancements in the 
classification of palm oil fruit ripeness using 
various image processing and machine learning 
techniques, there remain several gaps that the 
implementation of advanced deep learning 
models such as AlexNet can address: 

The research by [16] focused on 
segmenting oil palm fruits using a contour-based 
approach combined with the Canny algorithm. 
While this method achieved a reasonable 
accuracy of 90.13%, it primarily relied on shape 
and color features and faced noise removal and 
segmentation accuracy challenges. The contour-
based method might need to be more robust to 
handle the complex variations in the appearance 
of palm oil fruits under different conditions. 

Other research by [17] utilized feature 
extraction based on color and texture, followed 
by feature selection using PCA and classification 
with an artificial neural network (ANN). Although 
this approach achieved a high accuracy of 
98.3%, it heavily depended on handcrafted 
features, which may not capture the intricate 
details and variations in the images as effectively 
as deep learning models can. 

In the research conducted by [18], image-
processing technology combined with artificial 
neural networks was used to classify oil palm fruit 
bunches based on color features. Despite 
achieving an accuracy rate of approximately 
94%, the method's reliance on color features 
alone might limit its performance under varying 
lighting conditions and image quality. 

Another research study conducted by [19] 
developed a real-time system using various 
image-processing techniques to classify the 
ripeness of Fresh Fruit Bundles (FFB). While the 
BGLAM+ANN algorithm performed well, with an 
accuracy rate of over 93%, the system's 
dependence on multiple feature extraction 
techniques can be computationally intensive and 
less scalable compared to a unified deep learning 
approach. 

Research conducted by [20], proposed 
several object detection algorithms to classify the 
maturity of fresh oil palm fruit bunches, with 
YOLOv5 showing promising results with an 
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average precision of 0.842. Although these 
models demonstrated good performance, they 
primarily focused on object detection rather than 
a comprehensive feature extraction and 
classification approach offered by deep learning 
architectures like AlexNet. Table 1 summarizes 
the literature on the classification of oil palm fruit. 

AlexNet, a deep Convolutional Neural 
Network (CNN) architecture, offers several 
advantages over the methods mentioned above: 
1. Automated Feature Extraction: unlike 

traditional methods that rely on handcrafted 
features, AlexNet automatically learns and 
extracts complex features from the raw 
image data, capturing intricate patterns 
related to palm oil fruit ripeness. 

2. Robustness to Variations: AlexNet's deep 
learning capabilities enable it to handle 
variations in fruit color, texture, and shape 
more effectively, providing more accurate 
ripeness classification even under different 
environmental conditions. 

3. Scalability and Efficiency: AlexNet's unified 
architecture streamlines the classification 
process, making it more scalable and 
computationally efficient than methods that 
require multiple feature extraction 
techniques. 

4. Enhanced accuracy by leveraging a large 
dataset and deep learning, AlexNet can 
achieve higher accuracy rates, reducing the 
potential for human error and improving the 
reliability of the ripeness classification 
system. 

Therefore, the application of AlexNet in 
palm oil fruit ripeness classification addresses the 
limitations of previous methods, providing a more 
robust, scalable, and accurate solution that 
enhances productivity, efficiency, and quality in 
the palm oil industry. 

 
METHOD 

This research aims to achieve a high-
accuracy classification of palm oil fruit images 

into three categories: raw, ripe, and rotten. 
Accurate classification is crucial because it 
directly impacts the quality and efficiency of the 
harvesting and processing processes in the palm 
oil industry. Misclassification can lead to 
premature or delayed harvesting, affecting yield 
and product quality. The flowchart in Figure 1 
shows the research plan for this study. 

We employed AlexNet a deep 
Convolutional Neural Network (CNN) to address 
these challenges due to its proven effectiveness 
in image classification tasks. AlexNet's 
architecture is designed to automatically extract 
and learn complex features from input images, 
which is expected to enhance the classification 
accuracy of palm oil fruit ripeness. 

To further improve the classification 
accuracy, the architecture of the CNN model was 
carefully designed and modified as necessary. 
We experimented with different configurations 
and architectures to determine the setup that 
provided the best performance for our specific 
task. This included: 
1. Layer Configuration: Adjusting the number of 

convolutional and fully connected layers. 
2. Filter Sizes: Experimenting with different sizes 

and numbers of filters in convolutional layers. 
3. Activation Functions: Using ReLU and other 

activation functions to optimize the feature 
extraction process. 

We implemented these strategies to 
achieve a highly accurate and efficient system for 
classifying palm oil fruit ripeness using AlexNet 
Deep CNN. The upcoming sub-section will 
provide a further explanation of each stage. 

 
Material 

The data for this study was sourced 
directly from community farmers' plantations in 
Durian Remuk Village, District of Muara Beliti, 
Regency of Musi Rawas, South Sumatra, 
Indonesia. Durian Remuk Village is 
predominantly inhabited by palm oil fruit farmers, 
with an area of approximately 394 hectares. 

 
Table 1. Summary of Literature Review 

Author Preprocessing Method Result (%) 

[16] Use of a contour-based approach combined with the 
Canny algorithm 

Segmentation of oil palm fruit using 
shape and color features 

90.13 

[17] Color- and texture-based feature extraction followed 
by feature selection using PCA 

ANN 98.3 

[18] Image processing technology based on color 
characteristics 

ANN 94 

[19] Use of various image processing techniques for real-
time FFB maturity classification 

BGLAM+ANN algorithm 93 

[20] Proposed several object detection algorithms YOLOv5 0.84 
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Figure 1. Research Plan 

 
This location was chosen to ensure the 

relevance and diversity of the dataset, as it 
represents typical conditions and practices in 
palm oil farming. Data were collected using a 
mobile phone camera with a resolution of 128 MP 
in JPG format to ensure high-quality and detailed 
images. The high-resolution camera was crucial 
for capturing detailed features of the palm oil 
fruits, which are essential for accurate 
classification. One thousand five hundred images 
were collected and categorized into three 
classes: 500 images of ripe palm oil fruits, 500 
images of raw palm oil fruits, and 500 images of 
rotten palm oil fruits. All images were resized with 
640x640 pixels. Figure 2 presents sample 
images from each class. 
 
Methods 
Preprocessing 

The collected raw data were organized into 
two main folders: train and test. Each class (ripe, 
raw, and rotten) contains 450 training and 50 
testing images. For validation, 20% of the training 
data was reserved, resulting in 1080 training 
images, 270 validation images, and 150 testing 
images in total. To facilitate the training process, 
several preprocessing steps were applied: 
1. Resizing: All images were resized to 224x224 

pixels to ensure uniform input dimensions for 
the AlexNet model. This standardization helps 
the model process images more efficiently. 

2. Segmentation: The background of each image 
was segmented using the Hue, Saturation, 
Value (HSV) color space technique, which 
isolates the foreground (palm fruit) from the 
background [21].  

 
Figure 2. Palm oil ripeness dataset, (a) Raw 

Palm Oil Fruit, (b) Rotten Palm Oil Fruit, (c) Ripe 
Palm Oil Fruit 

 
This step is crucial for reducing noise and 
focusing the model on the relevant features of 
the fruit. Figure 3 illustrates the results of the 
segmentation process. 

3. Normalization (rescale): The pixel values of all 
images were normalized to a range of 0 to 1. 
Normalization helps speed up the training 
process and improves the model's 
convergence by ensuring that the data 
distribution is consistent. 

4. Augmentation: Data augmentation can be 
interpreted as an approach used in deep 
learning to increase the variety and amount of 
training data from existing images. [28]. 
Augmentation aims to reduce overfitting, 
improve model generalization, and make the 
model more resilient to input data variation 
[12]. Zoom, rotating, horizontal shifting, and 
vertical shifting are some of the augmentation 
methods used in this research. 
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Figure 3. Image Segmentation with HSV 
 

Convolutional Neural Network 
Convolutional Neural Networks (CNNs) are 

a type of artificial neural network architecture 
specifically designed to process and understand 
image data through convolutional layers [22], 
[23]. CNNs are inspired by how the human brain 
processes visual information [24]. Figure 4 shows 
the steps of CNN architecture. 
Steps in the CNN model: 
1. CNN receives images as input, typically of a 

fixed size. 
2. Convolutional layers: These layers apply a 

series of filters (kernels) to the input image to 
extract essential features. Each filter detects 
specific patterns such as edges, textures, or 
shapes. A filter might detect horizontal edges 
in the first layer, while more complex patterns 
like corners or object parts might be detected 
in deeper layers. ReLU (Rectified Linear Unit) 
is applied after each convolution to introduce 
nonlinearity and help the network learn 
complex patterns. 

3. Pooling Layers: Pooling layers reduce the 
feature maps' spatial dimensions (width and 
height) while retaining the most essential 
information. Max pooling selects the 
maximum value from a patch of the feature 
map, effectively summarizing the presence of 
features. Pooling helps reduce overfitting and 
computational load by decreasing the 
parameters. 

4. Fully connected layers: After a series of 
convolutional and pooling layers, the neural 
network's high-level reasoning is done via fully 
connected layers. The features extracted are 
converted into a one-dimensional vector and 
passed through these layers for classification. 
Activation Functions (ReLU) are commonly 
used in hidden layers, while softmax is used 
in the output layer for multi-class 
classification. 

5. Output: The final layer provides the 
classification results, which are the 
probabilities of the image belonging to 
different classes. For example, in a palm oil 
fruit classification task, the output might be 
probabilities for the classes raw, ripe, and 
rotten. 

A variety of image processing applications 
have successfully used CNNs, such as object 
recognition [25], face detection [26], medical 
image classification [27], agriculture [28], and 
other image classification. 

 
ADAM Optimization 

ADAM (Adaptive Moment Estimation) is a 
viral optimization algorithm in deep learning [29]. 
It combines concepts from stochastic gradient 
descent (SGD) and momentum algorithms into 
an adaptive optimizer. Some key ADAM 
optimizer concepts include Stochastic Gradient 
Descent (SGD), momentum, first and second 
moment estimates, learning rate Adjustment, and 
overfitting prevention. 

The ADAM optimizer has proven to be very 
effective in training deep learning models in 
diverse applications like natural language 
processing, image recognition, and sequence 
modeling [30]. Its key advantage is its adaptive 
capabilities, which enable fast and stable 
convergence on a wide range of data types and 
model architectures. 

 

 
Figure 4. CNN Architecture 
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ADAM generally achieves higher accuracy 
and stability across various tasks on benchmark 
datasets than SGD and RMSProp. [31]. This 
makes them highly suitable for a wide range of 
deep-learning tasks. 
 
AlexNet 

AlexNet is a CNN architecture best known 
for winning the ImageNet competition 2012 [32]. 
This was a significant turning point in the 
development of deep learning and was one of the 
models that sparked a surge of interest in the 
field [15]. 

The success of AlexNet demonstrates the 
potential of convolutional neural networks (CNNs) 
in effectively addressing image classification 
problems. This architecture has since become 
the foundation for many more advanced CNN 
architectures that have been developed. 

Table 2 describes the summary of AlexNet 
architecture with the implementation of 
TensorFlow. Here is an explanation of the 
architecture: (1) Input layer: Accepts RGB 
images with a resolution of 227x227. 
Convolutional layer: Extracts features from input 
images using filters of various sizes and 
numbers; (2) Max Pooling Layers: Reduces the 
spatial dimensions of images, preserves 
essential features, and reduces overfitting; (3) 
Flatten Layer: Converts the 3D output of the last 
convolution layer to a 1D vector; (4) Fully 
connected slices: Apply classification based on 
extracted features, with dropout to prevent 
overfitting; (5) Output Layer: Generates class 

probabilities using the Softmax activation 
function. 

 
Evaluation Metric 

A confusion matrix was extracted to 
evaluate the classification performance (Figure 
5). The data in the confusion matrix is an 
expression of actual and predicted labels by the 
classifier. Metrics provide an overview of how 
well the model predicts or classifies data. [33]. 

Evaluation metrics are beneficial in 
understanding how well our model predicts new 
data. Some commonly used evaluation metrics in 
machine learning are accuracy, F1 score, 
precision, and recall. 

The parameters utilized for comparison 
consist of accuracy, precision, recall, F1 score, 
true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN) [34][35]. 
The evaluation metrics are computed using the 
provided equations outlined in Table 3. 
 

 
Figure 5. Confusion Matrix 

 
Table 2. Summary of AlexNet Architecture 

Layer Output Description 

Input (224, 224, 3) Input layer, RGB image 
Conv2D (54, 54, 96) 96 filters, 11x11 kernel, stride 4 
MaxPooling2D (27, 27, 96) 3x3 pool size, stride 2 
Conv2D_1 (17, 17, 256) 256 filters, 5x5 kernel, stride 1 
MaxPooling2D_1 (8, 8, 256) 3x3 pool size, stride 2 
Conv2D_2 (6, 6, 384) 384 filters, 3x3 kernel, stride 1 
Conv2D_3 (4, 4, 384) 384 filters, 3x3 kernel, stride 1 
Conv2D_4 (2, 2, 256) 256 filters, 3x3 kernel, stride 1 
MaxPooling2D_2 (1, 1, 256) 3x3 pool size, stride 2 
Flatten (256) Flattening the 3D tensor to 1D 
Dense (4096) Fully connected layer with 4096 units 
Dropout (4096) Dropout layer for regularization 
Dense_1 (4096) Fully connected layer with 4096 units 
Dropout_1 (4096) Dropout layer for regularization 
Dense_2 (1000) Fully connected layer with 1000 units 
Dropout_2 (1000) Dropout layer for regularization 
Dense_3 (3) Fully connected layer with 3 output classes (softmax layer) 
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Table 3. Evaluation Metrics 
Evaluation Metrics Equation 

Accuracy 

 
Precision 

 
Recall 

 
F-1 Score 

 

 
RESULTS AND DISCUSSION 
Experiment Set Up 

The experiments in this research used the 
Python programming language and libraries such 
as OpenCV, Sci-kit Learn, TensorFlow, and 
Keras. A PC with the following specifications was 
used for this experiment: CPU processor core i7 
gen 9th, DDR4 16 GB, and GPU NVIDIA 
GeForce GTX 1660 Ti. Testing in this experiment 
went through 2 scenarios, namely, testing with 
CNN architecture and AlexNet architecture. The 
purpose of this test is to see the performance of 
AlexNet architecture.  

All input images were RGB with size 
224x224 for both experiments. The network 
training duration was set as 50 epochs. Image 
Data Generator is provided to produce enhanced 
data to train and validate, including rescaling 
(normalization), zooming, rotating, horizontal 
shifting, and vertical shifting. Adaptive ADAM 
optimization was used, with a learning rate of 
0.00003. The batch size is 32, and Callbacks, 
such as EarlyStopping, are used to stop training 
when there is no further performance 
improvement. ReduceLROnPlateau is used to 
reduce the learning rate when model 
performance has stagnated. 
 
Experiment Set Up with CNN Architecture 

Figure 6 shows the architecture of CNN. 
This architecture consists of several 
convolutional and other layers. The input layer 
accepts an image with the dimensions (224, 224, 
3) representing image height, width, and color 
channels (RGB). There are three blocks of 
convolution, and each block is made up of two 
layers of convolution. Each convolution layer has 
a different filter kernel, followed by ReLU 
activation. These convolution layers are 
responsible for extracting features from the 
image. After each convolution block, for each 
block consisting of two convolution layers, there 
is a max-pooling layer, which is responsible for 
reducing the picture dimensions so that the 
number of parameters processed in the next 
layer is smaller. After convolution, the output of 
the final layer will be flattened into a one-
dimensional vector with a total of 36864 

elements. After the flattening layer, there are two 
dense layers. The dense layer is responsible for 
fully connecting each node of the previous layer. 
The final layer uses a softmax activation function 
to generate output class probabilities. 

A dropout layer is applied after the first 
dense layer to prevent overfitting by randomly 
dropping some nodes during training. This model 
has 2,438,563 parameters, including trainable 
weight parameters. Because they are all set as 
trainable, all of these parameters can be trained 
during training. 

An explanation of each layer selection in 
the CNN architecture is described below: 
Block convolution with two convolution 
layers 
1. Each convolution block has two layers, 

allowing for more profound and complex 
feature extraction from the input image. 

2. Filter size: A small filter size (3x3) is selected 
to focus on small details in the image. 

3. Number of Filters: Filters increase with each 
block to capture more complex features. 

Max Pooling 
Max Pooling is used after each convolution 

block to reduce spatial dimensions and the 
number of parameters and avoid overfitting. This 
also helps introduce more stable features. 
Activation (ReLU) 

ReLU is used after each convolution layer 
to overcome the vanishing gradient problem and 
speed up convergence during training. 

 
Flatten 

Converts the output of the convolution 
layer to a 1D vector for input to the fully 
connected layer. 
Dense Layers with Dropout 

Dense layers with dropouts prevent 
overfitting and ensure the model learns more 
general features. Dropout randomly ignores 
some units during training to improve 
generalization. 
Output Layer with Softmax 

The output layer uses softmax to generate 
a probability distribution over possible classes, 
allowing unambiguous classification. 
 
Experiment Set Up with AlexNet 

Figure 7 shows the architecture of AlexNet. 
A ReLU dogs five convolution layers. Each 
convolution layer has a different kernel filter, 
illustrating extracting features from the given 
image. After each convolution layer, there are 
three max-pooling layers whose function is to 
reduce the image dimensions by taking the 
maximum value within the window. 
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Figure 6. Proposed CNN Architecture 

 
After the last convolution layer, the output 

of that layer is flattened with size (256), and three 
dense layers are dogged by a dropout layer. 
Dropout layers reduce overfitting by randomly 
turning off some nodes during training. The 
dense layer is responsible for fully connecting 
each node of the previous layer. The final layer 
uses a softmax activation function to generate 
output class probabilities. This AlexNet model is 
designed to perform multi-class classification with 
three output classes. 

The total number of parameters in this 
AlexNet model is 28,040,483, including trainable 
weight parameters. Because they are all set as 
trainable parameters, all of these parameters can 
be trained during the training process. 

Reasoning and explanation for each layer 
in AlexNet architecture: 
1. Filter size and stride: Different filter sizes and 

strides are used to capture different levels of 
detail in the image. For example, an 11x11 
filter with a 4x4 stride captures coarse 
features in the initial image, while a 3x3 filter 
with a 1x1 stride captures finer details in 
deeper layers. 

 
Figure 7. Proposed AlexNet Architecture 

 
2. Activation Functions: ReLU is used after each 

convolution layer to speed up convergence 
and overcome the vanishing gradient 
problem. 

3. MaxPooling2D Layers: Pool size and stride: 
Pooling reduces an image's spatial 
dimensions, reducing the number of 
parameters and computations required in 
subsequent layers and helping prevent 
overfitting. 

4. Flatten Layer: This function converts the 3D 
output of the last convolution layer to a 1D 
vector for input to the fully connected layer. 

5. Dense Layers with Dropout: The dropout 
technique prevents overfitting by randomly 
ignoring some units during training. 

6. Activation: ReLU is used in the first two dense 
layers to exploit their nonlinearity, and 
softmax is used in the last layer to generate a 
probability distribution over possible classes. 

7. Output Layer (Softmax): Used to generate the 
probability of each output class, which 
facilitates multi-class classification. 

 
Result 

Table 4 compares two model architectures: 
the proposed CNN Architecture and the AlexNet 
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Architecture, which is based on evaluation 
metrics carried out at the validation and testing 
stages. 

AlexNet Architecture performs better than 
CNN Architecture in terms of loss and accuracy 
in both the validation and testing stages. 
Compared to CNN Architecture, AlexNet has a 
lower validation loss (0.0261 vs. 0.0377 (Figure 
8)) and higher validation accuracy (0.9962 vs. 
0.9925 (Figure 9)), likewise, for testing loss 
(0.0646 vs. 0.0572 (Figure 10)) and testing 
accuracy (0.9900 vs. 0.9800 (Figure 11)). 

Both model architectures show excellent 
results in terms of recall, precision, and F-1 
score. However, the AlexNet Architecture is 
slightly superior, with Recall, Precision, and F-1 
values reaching 0.99, while the Proposed CNN 
Architecture has a value of 0.98. This shows that 
the AlexNet Architecture has a slightly better 
ability to classify data correctly. 

Although both show excellent results, the 
AlexNet Architecture tends to perform better than 
the Proposed CNN Architecture. 
 

 
Figure 8. The Loss of CNN Architecture 

 

 
Figure 9. The Accuracy of CNN Architecture 

 

 
Figure 10. The Loss of AlexNet Architecture 

 

 
Figure 11. The Accuracy of AlexNet Architecture 

 
The use of early stopping in the training of 

the CNN and AlexNet models shows that 
although the maximum number of epochs is set 
to be the same (50 epochs), training is stopped 
early (at the 28th epoch for CNN and the 21st 
epoch for AlexNet) to prevent overfitting. This 
shows that each model has a different optimal 
convergence point based on the interaction 
between the model architecture and the training 
data. 

Figure 12 shows the confusion matrix for 
CNN architecture. Class 0 (rotten palm fruit): Of 
the 50 samples, 49 were correctly classified as 
Class 0 and only 1 was incorrectly classified as 
Class 2. Class 1 (ripe palm oil fruit): Of the 50 
samples, 48 were correctly classified as Class 1 
and 2 were incorrectly classified as Class 2. 
Class 2 (Raw palm oil fruit): All samples (50) 
were correctly classified as Class 2. 

Figure 13 shows the confusion matrix for 
AlexNet. Class 0 (rotten palm oil fruit): Of the 50 
samples, 49 were correctly classified as Class 0, 
and only one was misclassified as Class 2.  
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Table 4. Comparison of Both Architecture 

Architecture 
Validation Testing 

Precision Recall F-1 Score 
Loss Acc Loss Acc 

Proposed CNN Architecture 0.0377 0.9925 0.0572 0.9800 0.98 0.98 0.98 

AlexNet Architecture 0.0261 0.9962 0.0646 0.9900 0.99 0.99 0.99 

 
 

 
Figure 12. Confusion Matrix of CNN Architecture 

 

 
Figure 13. Confusion Matrix of AlexNet 

Architecture 
Class 1 (ripe palm oil fruit): Of the 50 samples, 49 
were correctly classified as Class 1, and 1 was 
incorrectly classified as Class 0. Class 2 (raw 
palm oil fruits): All samples (50) were correctly 
classified as Class 2.  

Figure 14 shows the classification results 
of 100 test data on the CNN architecture. Out of 
the 100 tested data, there were 3 image data 
misclassifications. Figure 15 shows the 
classification results of 100 test data on the 
AlexNet architecture. It can be seen that out of 
the 100 tested data, there were 2 image data 
misclassifications. Comparison performance for 
both models: 

1. Classification performance: Both models 
performed very well in classifying class 2 (raw 
palm oil fruit), with all samples classified 
correctly. 

2. Classes with classification errors: Both 
models have slight errors in classifying class 0 
(rotten palm oil fruit) and class 1 (ripe palm oil 
fruit). However, the CNN model has more 
errors in classifying class 1, while the AlexNet 
model has more errors in class 0. 

3. Consistency: The AlexNet model performs 
more consistently in classifying class 0 and 
class 1, with fewer errors compared to the 
CNN model. 
 

Discussion 
The data analysis compares the 

performance of two deep learning architectures in 
classifying the ripeness of palm oil. The results 
highlight exciting discussions that can be drawn 
from these experiments, including: 
1. Model Architecture Comparison: The data 

shows that AlexNet consistently performs 
better than the CNN architecture in terms of 
loss, accuracy, recall, precision, and F-1 
Score. AlexNet is very suitable for palm oil 
fruit ripeness classification. 

2. Model complexity vs. performance: The 
AlexNet architecture has more layers and 
parameters than the proposed CNN 
architecture. This case may raise the question 
of how important model complexity is in 
achieving better performance and the extent 
to which simpler models can compete with 
more complex models in the classification 
context. 

3. AlexNet vs. custom CNN: This comparison 
also raises questions about the benefits and 
limitations of using transfer learning (as in 
AlexNet) versus building custom models (as in 
the proposed CNN architecture) in the context 
of classification applications. This answers 
whether AlexNet provides better results than 
the CNN model regarding palm fruit 
classification. 
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Figure 14. Testing with 100 data tests with CNN Architecture 

 

 
Figure 15. Testing with 100 data tests with AlexNet 

 
Based on previous research that employed 

various approaches to classify the maturity level 
of oil palm fruit, the results varied depending on 
the methods and algorithms used. For instance, a 
study [16] used a contour-based approach 
combined with the Canny algorithm for 
segmenting oil palm fruit based on shape and 
color features, achieving 90.13% accuracy. 
Meanwhile, a study [17] combined color- and 
texture-based feature extraction with feature 
selection using PCA, reaching an accuracy of 
98.3% with an Artificial Neural Network (ANN). 

Other studies, such as [18] and [19], employed 
image processing techniques based on color 
characteristics and the BGLAM+ANN algorithm 
for maturity classification, with 94% and 93% 
accuracy, respectively. 

However, newer approaches, such as the 
one proposed by [20] using YOLOv5 object 
detection algorithms, achieved only 84% 
accuracy. In this context, the classification of oil 
palm fruit maturity using the AlexNet architecture 
demonstrated a significant improvement, 
achieving an accuracy of 99%. This remarkable 
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result was achieved through optimized 
preprocessing methods and careful 
hyperparameter tuning, surpassing previous 
studies with various other methods. Therefore, 
AlexNet proves to be more effective for handling 
oil palm fruit maturity classification, especially 
when combined with precise image processing 
strategies and model adjustments. 
 
CONCLUSION 

AlexNet is a significant landmark in 
developing CNN and computer image 
processing, especially in palm oil fruit ripeness 
classification. By introducing a deep architecture, 
ReLU activation functions, dropout techniques, 
and GPUs for fast training, AlexNet managed to 
overcome existing problems and achieve 
superior performance in image recognition. With 
its success, AlexNet paved the way for further 
advances in computer vision, including object 
recognition, image segmentation, and natural 
language processing. AlexNet's architecture, 
techniques, and contributions remain the 
foundation for many modern CNN models used in 
various applications, including facial recognition, 
autonomous cars, and medical recognition. 
AlexNet is a successful CNN model for image 
classification tasks and the starting point for a 
revolution in computer vision and deep learning 
in general. Further research can be done to 
explore more sophisticated and adaptive transfer 
learning strategies such as VGGNet, DenseNet, 
EfficientNet, ResNet, and Inception. 
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