
SINERGI Vol. 23, No. 1, February 2019: 1-10
http://publikasi.mercubuana.ac.id/index.php/sinergi
http://doi.org/10.22441/sinergi.2019.1.001

A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 1

DESIGN OF PEOPLE PROFILING AND MODELING REPUTATION
COMPUTATION BASED ON SENTIMENT ANALYSIS

Ahmad Mafazi Damanhuri, Zhang Huaping

Computer Science, School of Computer Science, Beijing Institute of Technology
Side Rd of N. 3rd Ring Rd W, Haidian Qu, Beijing Shi, ZhongGuo

Email: a.mafazi24@gmail.com kevinzhang@bit.edu.cn

Abstract -- The number of popular people is still growing because of the easiness to access information
technology. Every time people upload things and let people watch it and give it a like or comment. People
who can impress other people will grow their popularity and fame. Some famous people make influences,
help poor people with powers, and others are causing troubles. Community these days drives people
perspective by share their thoughts on social media. They spread information and makes others want
to see things they are talked about. Troublesome popular people defended by their fan base and
attacked by other communities. By these cases, the research tried to gather information on social media
and used it for calculation and profiling. The method that proposed to rely on this information is based
on sentiment analysis to look up someone’s record and listing them into top 10 best got from DBpedia.
This system shows the list of people and contains all important record about that person which can be
used for decision support for a policy or rewarding people. The results have successfully visualized the
output in the list of people with any further details following by clicking their names.

Keywords: DBpedia; Decision Support; Sentiment Analysis; Text mining

Received: May 25, 2018 Revised: November 5, 2018 Accepted: November 8, 2018

INTRODUCTION

A number of popular people are always
growing in every day due the social media is
growing too and make people more comfortable to
know each other and show exciting things that
they've got, and they can do. Through sentiment
analyst, it can discover someone is the person that
favorite enough or so much popular, because of
good things or because of bad things either. By
DBpedia to find articles, tweets, etc. as the source
we going to connect the result with the trained
model, to find out who is the most famous people
and because of what are those people can be so
much distinguished. Some people may know our
favorite can be the one who has many good
records or can be the one who has many bad
records. Thera are categorizing process which
people who have good careers and list them from
the most to the least (Tavakolifard et al., 2013; Yu
et al., 2012; Can, 2011).

In 2016, the microblogging service
averaged at 317 million monthly active users.
Millions of them are these famous people, and the
rest are people who talk about them. For example,
as of July 2016, @realDonaldTrump had
10,267,655 followers and still growing adding an
average of 30,574 new followers per day. It’s so
outperforming because recently his tweets have
been retweeted a total of 12 million times. Donald
Trump includes a hashtag in almost every other
tweet for example #Trump2016 which is used 279

times and #MakeAmericaGreatAgain which is
used 186 times.

The paper proposed people profiling using
a sentiment analysis system. The sentiment
analysis system is an ideal choice for modeling the
reputation of a public figure from people thoughts
in social media (Hussein, 2018; Ranjan et al.,
2018; Ozturk & Avyaz, 2018). The system also can
differentiate the sentences into positive and
negative sentences, calculate those sentences to
create a score of likes and dislikes toward
someone, and makes a list of people who have
liked the most and having the dislikes the most. Its
performance is good enough; hence can process
thousands of data of tweets in a short time without
much of manual work. The results hopefully have
successfully visualized the output in the list of
people with any further details following by clicking
their names.

MATERIAL AND METHOD

Sentiment analysis was being used by
companies to calculate people thoughts about
their products or services. They decided to use
sentiment analysis because it calculates the
percentage of positive, negative and neutral
opinion from people. It helped the company owner
to make a wise decision and able to improve their
products or services to satisfy people needs. They
also paid attention to the aspect-based sentiment
analysis, as it focuses on aspects being targeted
by the reviewer. The reviewer gives their

SINERGI Vol. 23, No. 1, February 2019: 1-10

2 A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ...

sentiments about a specific character of their
products or services. It will narrow the review to a
particular area and improve.

User Profiling

The use of user profiling previously done by
Gulla et al. (2014). In their work, they have
estimated and rank the evaluations of news
articles to a user. The proposed method gives an
advance recommendation technology to fulfill user
preferences of news reading. Further, their
research shows the categories that user enjoyed
to read. It also considered the relevant news to the
user profile.

A running context for a user is built from all
user acts of that user that have happened after the
last time a full user profile was generated. It
describes the overall topics of what the user has
been clicking on or reading lately without reflecting
what she might have been interested in at earlier
occasions. The running context gives us the user’s
current news focus. The mobile news app records
every gesture from the user and maintains an
updated running context at all time. Even the user
decides to reset his context, the running context is
compared with his old user profile on the server
side. They presume to construct the user profile of
a particular user following by these steps (1)
extract interest from user acts, (2) build running
context from all user acts, (3) combine running
context and long-term interests into a new user
profile (Lian et al., 2018).

However, experiments with the news
recommender system show that some issues
need to be careful of, their research implemented
the category interests and content interests
equally important. Many users would prefer a
stronger focus on either the category as Sport or
on its particular topics as its player or just sure
team. The balance between stable long-term user
interests and short-term news context should be
delicate, and even if long-term benefits are
preferred, the user risks less there is no relevant
news available. And should there is a balance
between profile-relevant news stories and also
report that are not directly within a user's profile to
trigger new interests and widen their perspective.
The system is highly configurable, with some
parameters that seriously affect the news stories
recommended to the user no visible best
configuration of the system. They assume wisely
expanding the recommender system with
semantic features for modeling news event and
entities. A new log-in feature also intends to use
social media sites like Twitter to deepen the
understanding of the user's preferences.

Online Reputation Management
Reputation dimensions contribute to a

better understanding of the topic of a tweet or
group of tweets, while author profiling provides
essential information for priority ranking of tweets.
In 2014, RepLab focused on two aspects of
reputation analysis, which is Reputation
Dimensions Classification and Author Profiling
(Amigo et al., 2014). RepLab has always been
focused on Twitter content, as Twitter is the
essential media for early detection of potential
reputation issues. Reputation dimensions
classification purpose is to assign tweets to one of
the seven standard reputation dimensions of the
RepTrak Framework developed (Cossu et al.,
2013; Amigo et al., 2013a; Amigo et al., 2013b).

These dimensions reflect the practical and
cognitive perceptions of the company by any
stakeholder groups (Performance, Products &
services, Leadership, Citizenship, Governance,
Workplace, and Innovation). Author profiling is
composed of two subtask, Author categorization
that classify twitter profiles by type (i.e. Company,
Professional, Celebrity, Employee, Stockholder,
Investor, Journalist, Sportsman, Public Institution,
and Non-Governmental Organization) and Author
Ranking to find out which authors had more
reputational influence and which profiles are less
or have no influence at all. Aspects that determine
the impact can be the number of followers, number
of comments on a domain or type of author.

They let participants involved in this
research, 11 groups of 49 groups have submitted
result in the time. Eight groups participated in the
Reputation Dimension task, and five groups
introduced their effect to Author Profiling. They
included a baseline that employs SVM using
words as features besides the participant systems.
By classifying every tweet as majority class
baseline would get an accuracy of 56% for
Reputation Dimension Classification task the top
systems used a variety of methods such as a basic
Naïve Bayes approach. Tweets that labeled as
"Undefined" harmed their performance. Replacing
the "Undecidable" labels by "Product and
Services" just giving a similar result. Most of the
systems tend to assign the majority class "Product
and Services" to a greater extent than the gold
standard. One of participant applying distance to
class vectors get the most significant accuracy
and the most tweets being processed. Author
categorization, on the other hand, proved to be
challenging in this initial approximation.

SFL (Systemic Functional Linguistics)

Computational linguistics is still linguistics,
and this is something that they think especially
these days people may lose sight of because a lot

p-ISSN: 1410-2331 e-ISSN: 2460-1217

A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 3

the computational linguistics world is very highly
computational. There are a problem that deals
with language theory. To solve the problem, you're
counting words in a text then you are saying that
the only useful feature of the language that you
need is there are words in a text, and some of
them occur more frequently. That is not just a
statistical model that helps you solve a problem
that's a reflection on how you're thinking about
language when you're trying to solve that problem.
Every time you do something computationally you
are making some assumptions about how
language works, and that is something that they
are found is valuable.

SFL is probabilistic if there is most of the
way you are producing is not by discrete choices
but by skewing endure in particular directions this
its network. System networks from the basis of the
description of grammars within SFL, they have
semantically organized a network of choices doing
possible distributions. They will end up having
realizations in particular grammatical
constructions or particular words but that decision
is only made at the most delicate level within their
system network, up until then you are making
choices between possible distributions or meaning.
By selecting across all the system in grammar at
once, you will end up determining the final text. So,
if they had two clauses and we'd like to join them
together in some way, then the way we merge
these two clauses expresses a meaning between
those two clauses, so in SFL this is broken down
in terms of conjunction system. It could choose to
use the second clause to elaborate upon the first
clause so they will be performing elaboration. It
can be used to clarify the second clause to specify
the first clause.

MediaWiki API

MediaWiki action API provides developers
code-level access of the entire Wikipedia
reference. MediaWiki API can be used to high-
level access to the data contained in MediaWiki
databases. It is going to use to get all the names
of famous people and their ontology. The API uses
RESTful calls and support a wide variety of format
including XML, JSON, PHP, YAML, etc. (Qureshi
et al., 2014).

Twitter

Twitter is a treasure trove of sentiment;
people around the world output thousands of
reactions and opinions on every topic under the
sun every second and every day. Twitter is
becoming a psychological database that's
continually being updated, and we can use it to
analyze millions of text snippets in seconds with
the power of machine learning (Cossu et al., 2014).

System Planning
Fig. 1 shows a diagram that describes the

task and flow of system planning.

Figure 1. Task and Flow of System Planning

The paper is arranging over the task above,

and the first task is about retrieving names. We
were planning to retrieves all of the names which
come to the internet, and we know DBpedia
provides many data about most important people.
So, we were going to coding with SPARQL to get
DBpedia data. The data that we want to retrieves
are the link to the article and the name. We
download it to our directory in JSON format.

These files are going to be opened by the
python program, and the name is read for being
the query in Stream twitter step. In the stream
twitter step, the tweet that is going to show up is
the tweet that includes the question which is the
name of a specific person in it. And the tweets are
tweets from someone who sent it to or talked
about him (the person) or from the person himself.
All tweets will be saved in a JSON file with format
‘person_name.json’.

By calling the files with format above in
specific directory we able to read all the tweet that
saved in JSON files. Those tweets are going to be
tokenized and classified by Textblob. Textblob is
one of a python module that able to process NLP
and help with tokenization and sentiment analysis
(Cambria & White, 2014). Textblob is going to
divide the tweet one by one, word by word and
classify them positive or negative tweets. The
tweet that has been classified is saved and kept in
a different directory.

Positive and negative tweets are saved with
format “ID+person_name+PosTweets.json” or
“ID+person_name+NegTweets.json" so we were
able to call the tweets of specific person only if
needed.

The tweet that has been classified can be
scored for sentiment purposes. By using Textblob
feature ".sentiment.polarity" where tweet will be

SINERGI Vol. 23, No. 1, February 2019: 1-10

4 A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ...

scored -1 to 1. Less than 0 for negative and more
than 0 for positive. The train data that we are going
to use is provided by textblob and the default
library of textblob is pattern library. The purpose of
this step is to measure the likes and the dislikes
by calculating the number of positive and negative
tweets.

The visualization step is going to read the
data from sentiment step. It is going to arrange the
array of people from the one who is having the
most likes or from the one who is having the most
dislikes. This page will be a list of 5 people and
showing their names, description, some likes and
dislikes and the position of that person in the list.
It will be two pages to show the detail even more.
The second page will be teaching some positive
tweets and the tweets and also negative tweets.

DBpedia

By querying on DBpedia frontend
(https://dbpedia.org/sparql) using SPARQL
language, aims to retrieves all names from all of
the countries. Names stored to JSON file to be
read by the application that we are going to use
which is C# and Python. Fig. 2 shows a flowchart
of retrieving data.

Figure 2. Flowchart of retrieving data from

DBpedia

Since this DBpedia limits the output to 9999
data at once, so we only able to retrieve all names
by a country that we put in the filter, we again filter
the output by alphabet and birth date related to
who possibly are alive these nowadays this meant
to get the output less than 9999 data.

Twitter Streaming API
Once the names stored in JSON files and

saved in the specified directory. We can call the
JSON file and load all the names inside, and use
them to the next task. The study uses Twitter API
and applies keyword filtering to crawl most
relevant tweets, which then is stored in a database
for easier retrieval and manipulation. To use the
API first thing, we need to do is register to get
token keys.

After registering and requesting permission
to Twitter for building an application, some keys
and token were received. These keys are
necessary for Twitter to grant consent while
streaming the tweets. This study made the use of
Tweepy, a python module that connects to Twitter
Streaming API with modification to suit the study.
Fig. 3 shows a flowchart of parsing twitter tweets.

Figure 3. Flowchart of parsing twitter tweets

Once we’ve been through the authorization,
we can search tweets that include our query inside
their text body and parse the text only, the poster,
the date or another attribute. The question itself is
one of the names from DBpedia. So, the tweets
are going to tweet from their self or someone to
them. But tweepy limits the output only tweets
from the day of the running system to three days
behind. Again, all the tweets are going to be saved
to JSON file according to the name of the query.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 5

Preprocessing
The next step is preprocessing of text we

used textblob to manage tokenization, part-of-
speech tagging, noun phrase extraction,
sentiment analysis, and language translation and
detection. Other twitter centric features are also
removed like URL and punctuations.
a. Tokenization

>>> from textblob import TextBlob
>>>
>>> wiki = TextBlob("I enjoying myself live in beijing

and studying at BIT")
>>> wiki.words
WordList(['I', 'enjoying', 'myself', 'live', 'in', 'beijing',

'and', 'studying', 'at', 'BIT'])

b. Part-of-speech Tagging

Each sentence object also has an attribute
that works as a unit called phrases. Phrases can
be divided into a smaller phrase and forming a
structure. Textblob makes extracting noun
phrases super easy:

>>> from textblob import TextBlob
>>>
>>> wiki = TextBlob("I enjoying myself live in beijing

and studying at BIT")
>>> wiki.tags
[('I', u'PRP'), ('enjoying', u'VBG'), ('myself', u'PRP'),

('live', u'JJ'), ('in', u'IN'), ('beijing', u'NN'), ('and', u'CC'),
('studying', u'VBG'), ('at', u'IN'), ('BIT', u'NNP')]

Tags are assigning to a single word according
to what is its role in the sentence. Traditional
grammar classifies words based on eight part of
speech: verb, noun, pronoun, adjective, adverb,
preposition, conjunction, and interjection.

Sentiment Analysis

Sentiment analysis will be used this time
right after the current tweet is tokenized by
textblob. Textblob is also going to perform its
sentiment analysis feature “.sentiment.polarity”.
Textblob used NaiveBayes Library. Textblob has
values 0 to 1 for positive words and 0 to -1 for
negative words. Textblob could look up the
sentiment value for each word from a sentiment
lexicon that has it all pre-recorded to classify the
total sentiment value of our tweet. If a sentiment
exists in a dictionary, the sentiment will be scored,
and it is counted toward a person, and the score
is calculated. And this step will be going on and on
until all sentiment is all checked and there are no
tweets scored for each person.

After getting the number of people and the
number of tweets of each person, the number of
likes dislikes, a score of positive or negative
tweets will be set to 0 for the first time. And it will
be added in every time it occurs inside the loop
together with sentiment process. A flowchart of
sentiment analysis is shown in Fig. 4.

Figure 4. Flowchart of a Sentiment analysis

process

Visualization

All calculation result recorded inside an
array, hence every element of the collection
contains the JSON file name and the likes and
dislikes calculation the variety can be arranged
from the most likes or the most dislikes. C# will
arrange the array and provide the list by clicking
the button of "Likes the most" or "Dislikes the
most". C# window can handle the visualization
part, and the design will be done on Photoshop.
Fig. 5 and Fig. 6 show diagrams that describe the
configuration for visualization model.

Figure 5. Design for visualization model

(first page)

At this time, we will have two pages to
visualize this model, and the first page will show
five people from the most likes and most dislikes.
This page contains their full name, description,

SINERGI Vol. 23, No. 1, February 2019: 1-10

6 A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ...

and position on the list and there are two buttons
on the right corner to show like or dislike the most.

Figure 6. Design for visualization model

(second page)

The second page can be accessed by
clicking the full name label of a person to show us
the detail of that person like his / her number of
positive tweets and negative tweets, text of
positive tweets also negative tweets.

RESULTS AND DISCUSSION
Data Set

The data set that is used in this project is
retrieved from two different sources. The first one
retrieved from DBpedia by coding on
https://dbpedia.org/sparql using SPARQL
language, and retrieved 1603 names from a
country called Indonesia.

The names that we got from DBpedia is the
query for getting the next data set which is tweets
from twitter. In this step, we are coding on python,
and we are using a python library called tweeps.
By read the name from JSON file and parse the
tweets from 3 days before the system is running
(March 27th, 2017) we have got 81,825 tweets.

SPARQL

In purpose to retrieving people names who
internet ever is known, we look into DBpedia to
looking for the database used by Wikipedia. We
looked after all people in DBpedia, but it limits its
output to 9999 names only. Next, we filtered the
output by birthplace, which is we need to name a
country to define the birthplace. We used
Indonesia as a filter for these people's birthplace.
And the result showing 1603 names even the
name of independent fighter included in it. We
filtered the birthdate right after that and showing
the expected result.

The code showed numbers of politicians,
musicians, singers, sports players (footballer,
tennis player, golf player, etc.), actors and
actresses and the other names whoever recorded
on the internet with their achievement. Fig. 7
shows names retrieved from DPpedia.

Figure 7. Names retrieved from DBpedia

Tweepy

We need to register to use twitter API to get
the consumer key and access token. Consumer
key, consumer secret is used to confirm the
authority of the Twitter user. The following code is
my authority keys:

Authentic with twitter which means login via
code, to do that we will create the variable code off
for authentication and use the OAuth handler
method of tweeps. This method takes two
arguments, the consumer key, and the consumer
secret. This method was written inside of the
tweepy library with a bunch of code that is hidden
to us. We can name the method, and all of its
functionality is in our hands. The arguments are
what the method uses to perform its internal
calculation. We are halfway through the
authentication. The other half is to call the set
access token method on the auth variable which
takes two arguments, the access token, and the
access token secret. That is, we created out
authentication variable. Next, we are going to
search for tweets for our use case we want to
collect tweets that a specific keyword in this a
person name. To do that create a public tweets
variable that is going to store a list of tweets to fill
it, we will call the search method of the API
variable. The search method takes a sing
argument, the query which is the name. This

https://dbpedia.org/sparql

p-ISSN: 1410-2331 e-ISSN: 2460-1217

A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 7

method is going to retrieve a bunch of that contain
the word this “person name”.

The writer is having trouble with the
workspace, the pc that the writer use to do this
experiment cannot parse the tweets because of
the proxy. Even VPN is used to perform this step
the system kept showing "time out". Hence, the
writer borrowed another pc from his mate. This
incident makes we can retrieve all tweets from
each person in a JSON file.

Because of that, we took ten random names
from the file. We used these names as a query to
find the tweets that include their names inside the
text body. Tweepy limit the output only will be the
tweets by the date of the system is running until
the tweets from 3 (three) days ago. And it will be
the tweets "To" this person or "From" this person
that will be showing up.

The tweets that retrieved contains another
attribute not only the tweet text itself. It includes
the data of the poster (the one who posted it), the
item that attached such image, video, and link, and
contain data retweeted from another post.

Experiments

We ran some test and minimized the model
on my system. We called a first hundred tweets
from one of person and used textblob to extract it.
We used textblob noun phrase extraction by
access through the noun phrases property, and
the system can understand it. Fig. 8 show some
part of the results.

Figure 8. List of noun phrase from first 100

tweets

Fig. 8 is lists of noun phrase from 100

sentences. The system extracted those words
which are known as noun or word from another
language. These are a total of 513 words from 100
sentences, which is quite good. It extracts the
word that normally denoted by NN, NNS or NNP
all of which indicate Noun. For example, the
sentence “@iko_uwais You are an amazing
martial artist Iko. The Raid is one of the best action
films I have seen. You're very talented #theraid”.
The parse is shown in Fig. 9.

[(u'@', u'JJ'), (u'iko_uwais', u'NN'), (u'You',
u'PRP'), (u'are', u'VBP'), (u'an', u'DT'), (u'amazing',
u'JJ'), (u'martial', u'JJ'), (u'artist', u'NN'), (u'Iko',
u'NNP'), (u'The', u'DT'), (u'Raid', u'NNP'), (u'is',
u'VBZ'), (u'one', u'CD'), (u'of', u'IN'), (u'the', u'DT'),
(u'best', u'JJS'), (u'action', u'NN'), (u'films', u'NNS'),
(u'I', u'PRP'), (u'have', u'VBP'), (u'seen', u'VBN'),
(u'You', u'PRP'), (u"'re", u'VBP'), (u'very', u'RB'),
(u'talented', u'JJ'), (u'theraid', u'NN')]

From the sentence, it can be seen that the
noun is Action films.

Figure 9. List of adjective words from first 100

tweets

This is the list of sentiments extracted for
those 100 sentences. These are extracted by
showing only the word tagged by POS JJ, JJR, or
JJS. For each tweet, one or more sentiments are
extracted if found. These sentiments usually are
adjective denoted. We found 233 adjectives from
100 sentences in this case tweets.

Precision and Recall

At precision and recall step we used 2339
tweets to be checked manually, annotated the
sentiments in sentences. There are 2189
sentiments are selected. The system is run on the
data and showed the result. According to which
the precision and recall are calculated. From 2339
sentences, we decided 2031 tweets denoted as
Tp (True positive), and it is followed by 158 tweets
denoted as Fp (False negative). And 37 tweets
were missing. They were expected as positive but
missed, indicated as Fn (False image). If we put
together these values in formals of precision and
recall, we get the following result.
a. Precision:

 𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (1)

 𝑃 =
2031

2031+158

𝑃 = =
2031

2189

𝑃 = 0.9278209

b. Recall:

 𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 (2)

𝑅 =
2031

2031+37

𝑅 =
2031

2069

𝑅 =0.9816336

SINERGI Vol. 23, No. 1, February 2019: 1-10

8 A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ...

c. F1 Score:

F1= 2
𝑃∗𝑅

𝑃+𝑅
 (3)

F1= 2
92∗98

92+98

F1= 94.90526

Testing
The system proposed is tested by running

different test cases. Test cases will explain the
performance of the system when it performs a task.
It shows the actual result and the expected result.
And also, pre-conditions and post-conditions of
the test case will be given. The test case will show
the priority low, medium or high. These test cases
are showing the step of how the system is running
to get a happy result.

Retrieve Tweets.

Test case ID: Input_2
Test Title: Retrieved tweets and details from
Twitter.
Priority: High
Pre-condition: User has opened the system.
Post-condition: The tweets are retrieved, selected
only the related tweets.

Table 1. Test Case Retrieves tweets

Steps Expected Result Actual Result

1 read auth
key

Authorization Authorized

2 Read given
name

Read query Show message
reading

3 Search
tweets

Search related
tweets

Got tweets
“from” and
“toward” current
name

4 Retrieve
tweets

Tweets and the
other attribute
arranged in an
array

Divide tweets
per array

5 Save into
json file

Create new json
file

New json file
named as
person name

Table 1 list the test case that explains how

the tweets retrieved per person and the actual
result meets the expectation. It also explained the
pre-condition which from a user has opened the
system and postcondition for the test case able to
retrieves only for the related tweets that saved.
This test case is passed.

Arrange Tweet’s attributes.

Test case ID: Input_3
Test Title: Create a simple list of arrays.
Priority: Medium
Pre-condition: Tweets files are loaded.
Post-condition: The tweets array is simplified, a list of
tweets is created for each person.

Table 2. Test Case Arrange tweet’s attributes

Steps
Expected

Result
Actual Result

1 read json
content

Read json string json array
detected

2 Format string Replace null
space by “,”

Replace null
space by “,”

3 Deserialize
object

String read as
json list of arrays

String read as
json list of
arrays

4 get attributes
that needed

Needed
attributes called

Need attributes
called

5 Clear symbol
and ascii
character

Removed
symbol and ascii
characters

Removed
symbol and
ascii characters

6 Repeat step 1
to 5

Repeat till all
tweets selected

Repeat all
tweets

7 Create

simplified list
Create new list Create new

simplified list
8 Save new

json file
Create new json
file

Created new
json file

The test case that listed in Table 2 explains the

steps to simplify the tweet's attributes that we have
got from the previous task. The pre-condition for
this test case starts from loading the tweets files
and end when the tweets list is simplified and
saved to another JSON file. The test case showing
we removed the symbol and ascii characters
inside the tweets body text, and it shows the
expected and the actual result for all the step too.
It matched the postcondition and created the new
JSON files also. Thus, the test case is passed.

Tokenize and sentiment analyze.

Test case ID: Input_4
Test Title: Tokenize and sentiment analyze the
tweets.
Priority: High
Pre-condition: New tweets files are loaded.
Post-condition: All tweets got classified, and scored.
Likes and dislike calculated

Table 3 lists the test case that explains how

the tweets got sentiment analyzed and scored.
The pre-condition is that new tweets files are
loaded. The system loads them by calling the file
per file, and tweet per tweet. The system checks
the sentiment of tweets in a dictionary if sentiment
exists it will be scored. And it will decide the tweet
is positive or negative and likes and dislike
calculated as postcondition of the test case. Thus,
the test case is passed.

Position the list.

Test case ID: Input_5
Test Title: Position on the list.
Priority: High
Pre-condition: People likes dislikes json file loaded.
Post-condition: Five people most liked or dislike
arranged.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 9

Table 3. – Test Case tokenize and sentiment
analyze

Steps
Expected

Result
Actual Result

1 read people
files

Read all person
json files

Read all person
json files

2 Call person
file

Calls 1 by 1
Person file

Calls file per
person

3 Retrieves
person
details from
Wiki

Retrieves first
paragraph from
wiki

Show retrieving
message

4 Call tweets Load tweets 1 by
1

Load tweets 1
by 1

5 Tokenize
tweet

Tokenize per
sentence

Tokenize per
sentence

6 Giving score Giving score for
each tweet

Giving score for
each tweet

7 Clustering
positive &
negative
tweets

Divides the
positive and the
negative tweets
to different
places

Showing
saving positive
and negatives
tweets

8 Repeat step
1 to 7

Repeat steps
until all tweets
got scored

Repeat until all
tweets got
scored

9 Repeat step
1 to 8

Repeat until all
files classified

Repeat until all
files classified

10 Save each
person likes,
dislikes
calculation

Save each
person likes and
dislikes
calculation in
json file

Create new
json files

Table 4. Test Case position the list

Steps Expected Result Actual Result

1 read file Read people
record

Read people
record

2 Call the list Call the list of
people

Call the list of
people

3 Move the
person who
has more
likes

Move the person
who has more
likes to the first of
list

Moves the
person who has
more likes to the
first of list

4 Repeat step
3

Repeat step 3
until the most likes
are the first one in
the list

Repeat step 3,
the most liked
person in first of
list

5 Move the
person who
has more
dislikes

Move the person
who has more
dislikes to the first
of list

The list arranged
well from the
most dislikes to
the less dislikes

6 Repeat step
5

Repeat step 5
until the most
dislikes are the
first one

Repeat step 5,
the most dislikes
person in the
first

The above test case that listed in Table 4

explains step by step how to the list arranged. The
pre-condition for this test case is people likes
dislikes files are loaded. The system is looking for
the person with more likes or dislikes and moves
the position to the first of the list. That step will be
repeated until all the person in the list moved and
arranged. The test case meets the post-condition
which is most likes and dislikes people arranged,
thus test case is passed.

Visualizing detail and tweets.
Test case ID: Input_6
Test Title: Visualizing detail and tweets.
Priority: High
Pre-condition: List has visualized, a person has
clicked.
Post-condition: Showing description, likes, dislikes,
positive and negative tweets.

Table 5. – Test Case visualizing detail and

tweets
Steps Expected Result Actual Result

1 Got the
name

Clicked name
received

Got the name

2 Read the list Open the list Read the list
3 Call a

certain
person

Call person from
the list who has
same name as
name

Called same
person as the
name that
received before

4 Shows desc,
likes,
dislikes.

Load the correct
desc, likes, and
dislikes.

Loaded the
correct desc,
likes, and
dislikes.

5 Read
positive and
negative
tweets

Read current
person positive
and negative
tweets files

Read current
person positive
and negative
files

6 Load
positive and
negative
tweets

Loads positive
and negatives
tweets

Loaded positive
and negative
tweets

Table 5 lists the test case explains how the

related tweets showed after the pre-condition. The
pre-condition is that the list has visualized and a
person's name has clicked. Then the name is sent
to the second page, the second page opened the
list and matched the name. The system shows the
description, likes, dislikes, and read positive and
negative tweets saved directory. That's how the
system gets related tweets for the selected person.
The test case matched all the expected result and
met the post-condition which is shows description,
likes, dislikes, positive and negative tweets. Thus,
the test case is passed.

CONCLUSION

The people profiling and modeling
reputation computation based on sentiment
analysis is a system for monitoring reputation. It
looks up people opinion and conversation about
someone on Twitter and gives a score of it. It
provides the ratings for each people based on
tweets sentiments and arranges the list of these
people from the most liked or the most disliked to
be easy to understand. Let see the result and it
also provides proof about how many likes and
dislikes that particular person has according to
people's tweets on twitter.

The people profiling and modeling
reputation computation based on sentiment
analysis system is running well and performing

SINERGI Vol. 23, No. 1, February 2019: 1-10

10 A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ...

good by tested with some test case. The precision
and the recall showing the good result either. But
in the future, this system needs to be updated. The
new library will be required as the original word will
also keep growing. For now, system people
profiling and modeling reputation computation
based on sentiment analysis only run by crawling
the tweets that saved to the local directory. Twitter
cannot be accessed without a VPN in China, and
it became a problem in building this system.
Hence, in the future people, profiling and modeling
reputation computation based on sentiment
analysis will retrieve the tweets as real time, so
able to monitoring and updating the list while the
program keeps getting the new datasets which are
the tweets.

REFERENCES
Amigo E., Albornoz J., Chugur I., Coruju A.,

Gonzalo J., Meij E., Rijke M., Spina D. (2014).
Overview of Replab 2014: Author Profiling and
Reputation Dimensions for Online Reputation
Management. In Workshop Proceeding of
CLED 2014 Working Notes, 1180, Sheffield,
UK. (pp. 1438-1457).

Amigo, E., Carrillo De Albornoz, J., Chugur, I.,
Coruju, A., Gonzalo, J., Martin, T., Meij, E., De
Rijke, M., Spina, D. (2013). Overview of Replab
2013: Evaluating Online Reputation Monitoring
System. In Proceeding of the Fourth
International Conference of the CLEF Initiative.
LNCS, Springer. (pp. 333-352).

Cambria, E. & White, B. (2014). Jumping NLP
Curves: A Review of Natural Language
Processing Research [Review Article]. IEEE
Computational Intelligence Magazine, 9(2), 48-
57. http://doi.org/10.1109/MCI.2014.2307227

Cann A. (2011). Social Media: A Guide for
Researchers. Research Information Network.
UK.

Cossu, J., Bigot, B., Bonnefoy, L., Morchid, M.,
Bost, X., Senay, G., Dufour, R., Bouview, V.,
Torres-Moreno, J., El-Beze, M. (2013).
LIA@Replab 2013. In CLEF 2013 Evaluation
Labs and Workshop Online Working Notes.
(pp.1-13)

Cossu, JV, Bigot, B. Bonnefoy, L. & Senay, G.
(2014). Towards the Improvement of Topic
Priority Assignment Using Various Topic
Detection Methods For E-Reputation
Monitoring on Twitter. In International
Conference on Applications of Natural
Language to Data Bases/Information Systems.
(pp. 154-159). http://doi.org/10.1007/978-3-
319-07983-7_20

Gulla. J.A., Fidjestol. A.D., Su. X. & Castejon. H.
(2014). Implicit User Profiling in News

Recommender System. In International
Conference on Web System and Technologies
2013. Barcelona, Spain.

Hussein, D.M.E.M. (2018). A survey on sentiment
analysis challenges, Journal of King Saud
University - Engineering Sciences, 30(4), 330-
338.
http://doi.org/10.1016/j.jksues.2016.04.002

Lian, S., Zhang, Z., Ren, Z. & Kanoulas, E. (2018).
Dynamic Embeddings for User Profiling in
Twitter. In Proceeding of the 24th ACM
SIGKDD International Conference on
Discovery & Data Mining. London, UK. (pp.
1764-1773).
http://doi.org/10.1145/3219819.3220043

Ozturk, N. & Ayvaz, S. (2018). Sentiment analysis
on Twitter: A text mining approach to the Syrian
refugee crisis, Telematics and Informatics,
35(1), 136-147.
https://doi.org/10.1016/j.tele.2017.10.006

Qureshi M.A., O’Riordan C., Pasi G. (2014)
Exploiting Wikipedia for Entity Name
Disambiguation in Tweets. In Métais E.,
Roche M., Teisseire M. (eds) Natural
Language Processing and Information
Systems. NLDB 2014. Lecture Notes in
Computer Science, 8455. Springer, Cham.
http://doi.org/10.1007/978-3-319-07983-
7_25

Ranjan, S., Sood, S. and Verma, V. (2018). Twitter
Sentiment Analysis of Real-Time Customer
Experience Feedback for Predicting Growth of
Indian Telecom Companies. In 2018 4th
International Conference on Computing
Sciences (ICCS), Jalandhar, India. (pp. 166-
174). http://doi.org/10.1109/ICCS.2018.00035

Tavakolifard, M., Gulla, J. A., Almeroth, K. C.,
Ingvaldsen, J. E., Nygreen, G., & Berg, E.
(2013). Tailored News in The Palm of Tour
Hand: A Multi-Perspective Transparent
Approach to News Recommendation. In
Proceeding of the 22nd International
Conference on World Wide Web. Rio de
Janeiro, Brazil. (pp. 305-308).

Yu, K., Zhang B., Zhu H., Cao H., Tian J. (2012)
Towards Personalized Context-Aware
Recommendation by Mining Context Logs
through Topic Models. In: Tan PN., Chawla
S., Ho C.K., Bailey J. (Eds.) Advances in
Knowledge Discovery and Data Mining.
PAKDD 2012. Lecture Notes in Computer
Science, 7301. Springer, Berlin, Heidelberg.
http://doi.org/10.1007/978-3-642-30217-
6_36

http://doi.org/10.1109/MCI.2014.2307227
http://doi.org/10.1007/978-3-319-07983-7_20
http://doi.org/10.1007/978-3-319-07983-7_20
http://doi.org/10.1016/j.jksues.2016.04.002
http://doi.org/10.1145/3219819.3220043
https://doi.org/10.1016/j.tele.2017.10.006
http://doi.org/10.1007/978-3-319-07983-7_25
http://doi.org/10.1007/978-3-319-07983-7_25
http://doi.org/10.1109/ICCS.2018.00035
http://doi.org/10.1007/978-3-642-30217-6_36
http://doi.org/10.1007/978-3-642-30217-6_36

