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Abstract -- The number of popular people is still growing because of the easiness to access information 
technology. Every time people upload things and let people watch it and give it a like or comment. People 
who can impress other people will grow their popularity and fame. Some famous people make influences, 
help poor people with powers, and others are causing troubles. Community these days drives people 
perspective by share their thoughts on social media. They spread information and makes others want 
to see things they are talked about. Troublesome popular people defended by their fan base and 
attacked by other communities. By these cases, the research tried to gather information on social media 
and used it for calculation and profiling. The method that proposed to rely on this information is based 
on sentiment analysis to look up someone’s record and listing them into top 10 best got from DBpedia. 
This system shows the list of people and contains all important record about that person which can be 
used for decision support for a policy or rewarding people. The results have successfully visualized the 
output in the list of people with any further details following by clicking their names. 
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INTRODUCTION 

A number of popular people are always 
growing in every day due the social media is 
growing too and make people more comfortable to 
know each other and show exciting things that 
they've got, and they can do. Through sentiment 
analyst, it can discover someone is the person that 
favorite enough or so much popular, because of 
good things or because of bad things either. By 
DBpedia to find articles, tweets, etc. as the source 
we going to connect the result with the trained 
model, to find out who is the most famous people 
and because of what are those people can be so 
much distinguished. Some people may know our 
favorite can be the one who has many good 
records or can be the one who has many bad 
records. Thera are categorizing process which 
people who have good careers and list them from 
the most to the least (Tavakolifard et al., 2013; Yu 
et al., 2012; Can, 2011). 

In 2016, the microblogging service 
averaged at 317 million monthly active users. 
Millions of them are these famous people, and the 
rest are people who talk about them. For example, 
as of July 2016, @realDonaldTrump had 
10,267,655 followers and still growing adding an 
average of 30,574 new followers per day. It’s so 
outperforming because recently his tweets have 
been retweeted a total of 12 million times. Donald 
Trump includes a hashtag in almost every other 
tweet for example #Trump2016 which is used 279 

times and #MakeAmericaGreatAgain which is 
used 186 times. 

The paper proposed people profiling using 
a sentiment analysis system. The sentiment 
analysis system is an ideal choice for modeling the 
reputation of a public figure from people thoughts 
in social media (Hussein, 2018; Ranjan et al., 
2018; Ozturk & Avyaz, 2018). The system also can 
differentiate the sentences into positive and 
negative sentences, calculate those sentences to 
create a score of likes and dislikes toward 
someone, and makes a list of people who have 
liked the most and having the dislikes the most. Its 
performance is good enough; hence can process 
thousands of data of tweets in a short time without 
much of manual work. The results hopefully have 
successfully visualized the output in the list of 
people with any further details following by clicking 
their names. 

 
MATERIAL AND METHOD 

Sentiment analysis was being used by 
companies to calculate people thoughts about 
their products or services. They decided to use 
sentiment analysis because it calculates the 
percentage of positive, negative and neutral 
opinion from people. It helped the company owner 
to make a wise decision and able to improve their 
products or services to satisfy people needs. They 
also paid attention to the aspect-based sentiment 
analysis, as it focuses on aspects being targeted 
by the reviewer. The reviewer gives their 



SINERGI Vol. 23, No. 1, February 2019: 1-10 

 

2  A.M. Damanhuri & Z. Huaping, People Profiling and Modeling Reputation Computation ... 
 

sentiments about a specific character of their 
products or services. It will narrow the review to a 
particular area and improve. 

 
User Profiling 

The use of user profiling previously done by 
Gulla et al. (2014). In their work, they have 
estimated and rank the evaluations of news 
articles to a user. The proposed method gives an 
advance recommendation technology to fulfill user 
preferences of news reading. Further, their 
research shows the categories that user enjoyed 
to read. It also considered the relevant news to the 
user profile.  

A running context for a user is built from all 
user acts of that user that have happened after the 
last time a full user profile was generated. It 
describes the overall topics of what the user has 
been clicking on or reading lately without reflecting 
what she might have been interested in at earlier 
occasions. The running context gives us the user’s 
current news focus. The mobile news app records 
every gesture from the user and maintains an 
updated running context at all time. Even the user 
decides to reset his context, the running context is 
compared with his old user profile on the server 
side. They presume to construct the user profile of 
a particular user following by these steps (1) 
extract interest from user acts, (2) build running 
context from all user acts, (3) combine running 
context and long-term interests into a new user 
profile (Lian et al., 2018).  

However, experiments with the news 
recommender system show that some issues 
need to be careful of, their research implemented 
the category interests and content interests 
equally important. Many users would prefer a 
stronger focus on either the category as Sport or 
on its particular topics as its player or just sure 
team. The balance between stable long-term user 
interests and short-term news context should be 
delicate, and even if long-term benefits are 
preferred, the user risks less there is no relevant 
news available. And should there is a balance 
between profile-relevant news stories and also 
report that are not directly within a user's profile to 
trigger new interests and widen their perspective. 
The system is highly configurable, with some 
parameters that seriously affect the news stories 
recommended to the user no visible best 
configuration of the system. They assume wisely 
expanding the recommender system with 
semantic features for modeling news event and 
entities. A new log-in feature also intends to use 
social media sites like Twitter to deepen the 
understanding of the user's preferences.  

 

Online Reputation Management 
Reputation dimensions contribute to a 

better understanding of the topic of a tweet or 
group of tweets, while author profiling provides 
essential information for priority ranking of tweets. 
In 2014, RepLab focused on two aspects of 
reputation analysis, which is Reputation 
Dimensions Classification and Author Profiling 
(Amigo et al., 2014). RepLab has always been 
focused on Twitter content, as Twitter is the 
essential media for early detection of potential 
reputation issues. Reputation dimensions 
classification purpose is to assign tweets to one of 
the seven standard reputation dimensions of the 
RepTrak Framework developed (Cossu et al., 
2013; Amigo et al., 2013a; Amigo et al., 2013b).  

These dimensions reflect the practical and 
cognitive perceptions of the company by any 
stakeholder groups (Performance, Products & 
services, Leadership, Citizenship, Governance, 
Workplace, and Innovation). Author profiling is 
composed of two subtask, Author categorization 
that classify twitter profiles by type (i.e. Company, 
Professional, Celebrity, Employee, Stockholder, 
Investor, Journalist, Sportsman, Public Institution, 
and Non-Governmental Organization) and Author 
Ranking to find out which authors had more 
reputational influence and which profiles are less 
or have no influence at all. Aspects that determine 
the impact can be the number of followers, number 
of comments on a domain or type of author.   

They let participants involved in this 
research, 11 groups of 49 groups have submitted 
result in the time. Eight groups participated in the 
Reputation Dimension task, and five groups 
introduced their effect to Author Profiling. They 
included a baseline that employs SVM using 
words as features besides the participant systems. 
By classifying every tweet as majority class 
baseline would get an accuracy of 56% for 
Reputation Dimension Classification task the top 
systems used a variety of methods such as a basic 
Naïve Bayes approach. Tweets that labeled as 
"Undefined" harmed their performance. Replacing 
the "Undecidable" labels by "Product and 
Services" just giving a similar result. Most of the 
systems tend to assign the majority class "Product 
and Services" to a greater extent than the gold 
standard. One of participant applying distance to 
class vectors get the most significant accuracy 
and the most tweets being processed. Author 
categorization, on the other hand, proved to be 
challenging in this initial approximation. 

 
SFL (Systemic Functional Linguistics) 

Computational linguistics is still linguistics, 
and this is something that they think especially 
these days people may lose sight of because a lot 
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the computational linguistics world is very highly 
computational. There are a problem that deals 
with language theory. To solve the problem, you're 
counting words in a text then you are saying that 
the only useful feature of the language that you 
need is there are words in a text, and some of 
them occur more frequently. That is not just a 
statistical model that helps you solve a problem 
that's a reflection on how you're thinking about 
language when you're trying to solve that problem. 
Every time you do something computationally you 
are making some assumptions about how 
language works, and that is something that they 
are found is valuable.  

SFL is probabilistic if there is most of the 
way you are producing is not by discrete choices 
but by skewing endure in particular directions this 
its network. System networks from the basis of the 
description of grammars within SFL, they have 
semantically organized a network of choices doing 
possible distributions. They will end up having 
realizations in particular grammatical 
constructions or particular words but that decision 
is only made at the most delicate level within their 
system network, up until then you are making 
choices between possible distributions or meaning. 
By selecting across all the system in grammar at 
once, you will end up determining the final text. So, 
if they had two clauses and we'd like to join them 
together in some way, then the way we merge 
these two clauses expresses a meaning between 
those two clauses, so in SFL this is broken down 
in terms of conjunction system. It could choose to 
use the second clause to elaborate upon the first 
clause so they will be performing elaboration. It 
can be used to clarify the second clause to specify 
the first clause.  

 
MediaWiki API 

MediaWiki action API provides developers 
code-level access of the entire Wikipedia 
reference. MediaWiki API can be used to high-
level access to the data contained in MediaWiki 
databases. It is going to use to get all the names 
of famous people and their ontology. The API uses 
RESTful calls and support a wide variety of format 
including XML, JSON, PHP, YAML, etc. (Qureshi 
et al., 2014). 

 
Twitter 

Twitter is a treasure trove of sentiment; 
people around the world output thousands of 
reactions and opinions on every topic under the 
sun every second and every day. Twitter is 
becoming a psychological database that's 
continually being updated, and we can use it to 
analyze millions of text snippets in seconds with 
the power of machine learning (Cossu et al., 2014). 

System Planning 
Fig. 1 shows a diagram that describes the 

task and flow of system planning.  
 

 
Figure 1. Task and Flow of System Planning 

 
The paper is arranging over the task above, 

and the first task is about retrieving names. We 
were planning to retrieves all of the names which 
come to the internet, and we know DBpedia 
provides many data about most important people. 
So, we were going to coding with SPARQL to get 
DBpedia data. The data that we want to retrieves 
are the link to the article and the name. We 
download it to our directory in JSON format.  

These files are going to be opened by the 
python program, and the name is read for being 
the query in Stream twitter step. In the stream 
twitter step, the tweet that is going to show up is 
the tweet that includes the question which is the 
name of a specific person in it. And the tweets are 
tweets from someone who sent it to or talked 
about him (the person) or from the person himself. 
All tweets will be saved in a JSON file with format 
‘person_name.json’. 

By calling the files with format above in 
specific directory we able to read all the tweet that 
saved in JSON files. Those tweets are going to be 
tokenized and classified by Textblob. Textblob is 
one of a python module that able to process NLP 
and help with tokenization and sentiment analysis 
(Cambria & White, 2014). Textblob is going to 
divide the tweet one by one, word by word and 
classify them positive or negative tweets. The 
tweet that has been classified is saved and kept in 
a different directory. 

Positive and negative tweets are saved with 
format “ID+person_name+PosTweets.json” or 
“ID+person_name+NegTweets.json" so we were 
able to call the tweets of specific person only if 
needed. 

The tweet that has been classified can be 
scored for sentiment purposes. By using Textblob 
feature ".sentiment.polarity" where tweet will be 
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scored -1 to 1. Less than 0 for negative and more 
than 0 for positive. The train data that we are going 
to use is provided by textblob and the default 
library of textblob is pattern library. The purpose of 
this step is to measure the likes and the dislikes 
by calculating the number of positive and negative 
tweets. 

The visualization step is going to read the 
data from sentiment step. It is going to arrange the 
array of people from the one who is having the 
most likes or from the one who is having the most 
dislikes. This page will be a list of 5 people and 
showing their names, description, some likes and 
dislikes and the position of that person in the list. 
It will be two pages to show the detail even more. 
The second page will be teaching some positive 
tweets and the tweets and also negative tweets.   

 
DBpedia 

By querying on DBpedia frontend 
(https://dbpedia.org/sparql) using SPARQL 
language, aims to retrieves all names from all of 
the countries.  Names stored to JSON file to be 
read by the application that we are going to use 
which is C# and Python. Fig. 2 shows a flowchart 
of retrieving data.  

 
 

 
Figure 2. Flowchart of retrieving data from 

DBpedia 
 

Since this DBpedia limits the output to 9999 
data at once, so we only able to retrieve all names 
by a country that we put in the filter, we again filter 
the output by alphabet and birth date related to 
who possibly are alive these nowadays this meant 
to get the output less than 9999 data.  

Twitter Streaming API 
Once the names stored in JSON files and 

saved in the specified directory. We can call the 
JSON file and load all the names inside, and use 
them to the next task.  The study uses Twitter API 
and applies keyword filtering to crawl most 
relevant tweets, which then is stored in a database 
for easier retrieval and manipulation. To use the 
API first thing, we need to do is register to get 
token keys. 

After registering and requesting permission 
to Twitter for building an application, some keys 
and token were received. These keys are 
necessary for Twitter to grant consent while 
streaming the tweets. This study made the use of 
Tweepy, a python module that connects to Twitter 
Streaming API with modification to suit the study. 
Fig. 3 shows a flowchart of parsing twitter tweets.  

 
 

 
Figure 3. Flowchart of parsing twitter tweets 
 

Once we’ve been through the authorization, 
we can search tweets that include our query inside 
their text body and parse the text only, the poster, 
the date or another attribute. The question itself is 
one of the names from DBpedia. So, the tweets 
are going to tweet from their self or someone to 
them. But tweepy limits the output only tweets 
from the day of the running system to three days 
behind. Again, all the tweets are going to be saved 
to JSON file according to the name of the query.  
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Preprocessing 
The next step is preprocessing of text we 

used textblob to manage tokenization, part-of-
speech tagging, noun phrase extraction, 
sentiment analysis, and language translation and 
detection. Other twitter centric features are also 
removed like URL and punctuations. 
a. Tokenization 

>>> from textblob import TextBlob 
>>> 
>>> wiki = TextBlob("I enjoying myself live in beijing 

and studying at BIT") 
>>> wiki.words 
WordList(['I', 'enjoying', 'myself', 'live', 'in', 'beijing', 

'and', 'studying', 'at', 'BIT']) 
 

b. Part-of-speech Tagging 

Each sentence object also has an attribute 
that works as a unit called phrases. Phrases can 
be divided into a smaller phrase and forming a 
structure. Textblob makes extracting noun 
phrases super easy: 

>>> from textblob import TextBlob 
>>> 
>>> wiki = TextBlob("I enjoying myself live in beijing 

and studying at BIT") 
>>> wiki.tags 
[('I', u'PRP'), ('enjoying', u'VBG'), ('myself', u'PRP'), 

('live', u'JJ'), ('in', u'IN'), ('beijing', u'NN'), ('and', u'CC'), 
('studying', u'VBG'), ('at', u'IN'), ('BIT', u'NNP')] 

Tags are assigning to a single word according 
to what is its role in the sentence. Traditional 
grammar classifies words based on eight part of 
speech: verb, noun, pronoun, adjective, adverb, 
preposition, conjunction, and interjection. 

 
Sentiment Analysis 

Sentiment analysis will be used this time 
right after the current tweet is tokenized by 
textblob. Textblob is also going to perform its 
sentiment analysis feature “.sentiment.polarity”. 
Textblob used NaiveBayes Library. Textblob has 
values 0 to 1 for positive words and 0 to -1 for 
negative words. Textblob could look up the 
sentiment value for each word from a sentiment 
lexicon that has it all pre-recorded to classify the 
total sentiment value of our tweet. If a sentiment 
exists in a dictionary, the sentiment will be scored, 
and it is counted toward a person, and the score 
is calculated. And this step will be going on and on 
until all sentiment is all checked and there are no 
tweets scored for each person. 

After getting the number of people and the 
number of tweets of each person, the number of 
likes dislikes, a score of positive or negative 
tweets will be set to 0 for the first time. And it will 
be added in every time it occurs inside the loop 
together with sentiment process. A flowchart of 
sentiment analysis is shown in Fig. 4.   

 

 

 
Figure 4. Flowchart of a Sentiment analysis 

process 
 
Visualization 

All calculation result recorded inside an 
array, hence every element of the collection 
contains the JSON file name and the likes and 
dislikes calculation the variety can be arranged 
from the most likes or the most dislikes. C# will 
arrange the array and provide the list by clicking 
the button of "Likes the most" or "Dislikes the 
most". C# window can handle the visualization 
part, and the design will be done on Photoshop. 
Fig. 5 and Fig. 6 show diagrams that describe the 
configuration for visualization model.  

 

 
Figure 5. Design for visualization model  

(first page) 
 

At this time, we will have two pages to 
visualize this model, and the first page will show 
five people from the most likes and most dislikes. 
This page contains their full name, description, 
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and position on the list and there are two buttons 
on the right corner to show like or dislike the most. 

 

 
Figure 6. Design for visualization model  

(second page) 
 

The second page can be accessed by 
clicking the full name label of a person to show us 
the detail of that person like his / her number of 
positive tweets and negative tweets, text of 
positive tweets also negative tweets. 
 
RESULTS AND DISCUSSION 
Data Set 

The data set that is used in this project is 
retrieved from two different sources. The first one 
retrieved from DBpedia by coding on 
https://dbpedia.org/sparql using SPARQL 
language, and retrieved 1603 names from a 
country called Indonesia. 

The names that we got from DBpedia is the 
query for getting the next data set which is tweets 
from twitter. In this step, we are coding on python, 
and we are using a python library called tweeps. 
By read the name from JSON file and parse the 
tweets from 3 days before the system is running 
(March 27th, 2017) we have got 81,825 tweets. 

 
SPARQL 

In purpose to retrieving people names who 
internet ever is known, we look into DBpedia to 
looking for the database used by Wikipedia. We 
looked after all people in DBpedia, but it limits its 
output to 9999 names only. Next, we filtered the 
output by birthplace, which is we need to name a 
country to define the birthplace. We used 
Indonesia as a filter for these people's birthplace. 
And the result showing 1603 names even the 
name of independent fighter included in it. We 
filtered the birthdate right after that and showing 
the expected result.   

The code showed numbers of politicians, 
musicians, singers, sports players (footballer, 
tennis player, golf player, etc.), actors and 
actresses and the other names whoever recorded 
on the internet with their achievement. Fig. 7 
shows names retrieved from DPpedia.  

 

 
Figure 7. Names retrieved from DBpedia 

 
Tweepy 

We need to register to use twitter API to get 
the consumer key and access token. Consumer 
key, consumer secret is used to confirm the 
authority of the Twitter user. The following code is 
my authority keys: 

 

 
 

Authentic with twitter which means login via 
code, to do that we will create the variable code off 
for authentication and use the OAuth handler 
method of tweeps. This method takes two 
arguments, the consumer key, and the consumer 
secret. This method was written inside of the 
tweepy library with a bunch of code that is hidden 
to us. We can name the method, and all of its 
functionality is in our hands. The arguments are 
what the method uses to perform its internal 
calculation. We are halfway through the 
authentication. The other half is to call the set 
access token method on the auth variable which 
takes two arguments, the access token, and the 
access token secret. That is, we created out 
authentication variable. Next, we are going to 
search for tweets for our use case we want to 
collect tweets that a specific keyword in this a 
person name. To do that create a public tweets 
variable that is going to store a list of tweets to fill 
it, we will call the search method of the API 
variable. The search method takes a sing 
argument, the query which is the name. This 

https://dbpedia.org/sparql
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method is going to retrieve a bunch of that contain 
the word this “person name”. 

The writer is having trouble with the 
workspace, the pc that the writer use to do this 
experiment cannot parse the tweets because of 
the proxy. Even VPN is used to perform this step 
the system kept showing "time out". Hence, the 
writer borrowed another pc from his mate. This 
incident makes we can retrieve all tweets from 
each person in a JSON file. 

Because of that, we took ten random names 
from the file. We used these names as a query to 
find the tweets that include their names inside the 
text body. Tweepy limit the output only will be the 
tweets by the date of the system is running until 
the tweets from 3 (three) days ago. And it will be 
the tweets "To" this person or "From" this person 
that will be showing up. 

The tweets that retrieved contains another 
attribute not only the tweet text itself. It includes 
the data of the poster (the one who posted it), the 
item that attached such image, video, and link, and 
contain data retweeted from another post.  

 
Experiments 

We ran some test and minimized the model 
on my system. We called a first hundred tweets 
from one of person and used textblob to extract it. 
We used textblob noun phrase extraction by 
access through the noun phrases property, and 
the system can understand it. Fig. 8 show some 
part of the results.  

 

 
Figure 8. List of noun phrase from first 100 

tweets 
 
Fig. 8 is lists of noun phrase from 100 

sentences. The system extracted those words 
which are known as noun or word from another 
language. These are a total of 513 words from 100 
sentences, which is quite good. It extracts the 
word that normally denoted by NN, NNS or NNP 
all of which indicate Noun. For example, the 
sentence “@iko_uwais You are an amazing 
martial artist Iko. The Raid is one of the best action 
films I have seen. You're very talented #theraid”. 
The parse is shown in Fig. 9. 

[(u'@', u'JJ'), (u'iko_uwais', u'NN'), (u'You', 
u'PRP'), (u'are', u'VBP'), (u'an', u'DT'), (u'amazing', 
u'JJ'), (u'martial', u'JJ'), (u'artist', u'NN'), (u'Iko', 
u'NNP'), (u'The', u'DT'), (u'Raid', u'NNP'), (u'is', 
u'VBZ'), (u'one', u'CD'), (u'of', u'IN'), (u'the', u'DT'), 
(u'best', u'JJS'), (u'action', u'NN'), (u'films', u'NNS'), 
(u'I', u'PRP'), (u'have', u'VBP'), (u'seen', u'VBN'), 
(u'You', u'PRP'), (u"'re", u'VBP'), (u'very', u'RB'), 
(u'talented', u'JJ'), (u'theraid', u'NN')] 

From the sentence, it can be seen that the 
noun is Action films. 

 

 
Figure 9. List of adjective words from first 100 

tweets 
 

This is the list of sentiments extracted for 
those 100 sentences. These are extracted by 
showing only the word tagged by POS JJ, JJR, or 
JJS. For each tweet, one or more sentiments are 
extracted if found. These sentiments usually are 
adjective denoted. We found 233 adjectives from 
100 sentences in this case tweets. 

 
Precision and Recall 

At precision and recall step we used 2339 
tweets to be checked manually, annotated the 
sentiments in sentences. There are 2189 
sentiments are selected. The system is run on the 
data and showed the result. According to which 
the precision and recall are calculated. From 2339 
sentences, we decided 2031 tweets denoted as 
Tp (True positive), and it is followed by 158 tweets 
denoted as Fp (False negative). And 37 tweets 
were missing. They were expected as positive but 
missed, indicated as Fn (False image). If we put 
together these values in formals of precision and 
recall, we get the following result.  
a. Precision:   

 𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                                   (1)  

 𝑃 =
2031

2031+158
 

𝑃 = =
2031

2189
 

𝑃 = 0.9278209 
 

b. Recall:   

 𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                   (2) 

𝑅 =
2031

2031+37
 

𝑅 =
2031

2069
 

𝑅 =0.9816336 
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c. F1 Score:  

F1= 2
𝑃∗𝑅

𝑃+𝑅
                                   (3) 

F1= 2
92∗98

92+98
   

F1= 94.90526 
 

Testing 
The system proposed is tested by running 

different test cases. Test cases will explain the 
performance of the system when it performs a task. 
It shows the actual result and the expected result. 
And also, pre-conditions and post-conditions of 
the test case will be given. The test case will show 
the priority low, medium or high. These test cases 
are showing the step of how the system is running 
to get a happy result.  

 
Retrieve Tweets. 

Test case ID:     Input_2 
Test Title:       Retrieved tweets and details from 
Twitter. 
Priority: High 
Pre-condition:   User has opened the system. 
Post-condition:  The tweets are retrieved, selected 
only the related tweets. 

 
Table 1. Test Case Retrieves tweets 

# Steps Expected Result Actual Result 

1 read auth 
key 

Authorization Authorized 

2 Read given 
name 

Read query Show message 
reading 

3 Search 
tweets 

Search related 
tweets 

Got tweets 
“from” and 
“toward” current 
name 

4 Retrieve 
tweets 

Tweets and the 
other attribute 
arranged in an 
array 

Divide tweets 
per array 

5 Save into 
json file 

Create new json 
file 

New json file 
named as 
person name 

 
Table 1 list the test case that explains how 

the tweets retrieved per person and the actual 
result meets the expectation. It also explained the 
pre-condition which from a user has opened the 
system and postcondition for the test case able to 
retrieves only for the related tweets that saved. 
This test case is passed.   

 
Arrange Tweet’s attributes. 

Test case ID:     Input_3 
Test Title:       Create a simple list of arrays. 
Priority: Medium 
Pre-condition:   Tweets files are loaded. 
Post-condition:  The tweets array is simplified, a list of 
tweets is created for each person. 
 
 
 
 

Table 2. Test Case Arrange tweet’s attributes 

# Steps 
Expected 

Result 
Actual Result 

1 read json 
content 

Read json string json array 
detected 

2 Format string Replace null 
space by “,” 

Replace null 
space by “,” 

3 Deserialize 
object 

String read as 
json list of arrays 

String read as 
json list of 
arrays 

4 get attributes 
that needed 

Needed 
attributes called 

Need attributes 
called 

5 Clear symbol 
and ascii 
character  

Removed 
symbol and ascii 
characters 

Removed 
symbol and 
ascii characters 

6 Repeat step 1 
to 5 

Repeat till all 
tweets selected 

Repeat all 
tweets 

    
7 Create 

simplified list 
Create new list Create new 

simplified list 
8 Save new 

json file 
Create new json 
file 

Created new 
json file 

 
The test case that listed in Table 2 explains the 

steps to simplify the tweet's attributes that we have 
got from the previous task. The pre-condition for 
this test case starts from loading the tweets files 
and end when the tweets list is simplified and 
saved to another JSON file. The test case showing 
we removed the symbol and ascii characters 
inside the tweets body text, and it shows the 
expected and the actual result for all the step too. 
It matched the postcondition and created the new 
JSON files also. Thus, the test case is passed. 

 
Tokenize and sentiment analyze. 

Test case ID:     Input_4 
Test Title:       Tokenize and sentiment analyze the 
tweets. 
Priority: High 
Pre-condition:   New tweets files are loaded. 
Post-condition:  All tweets got classified, and scored. 
Likes and dislike calculated  

 
Table 3 lists the test case that explains how 

the tweets got sentiment analyzed and scored. 
The pre-condition is that new tweets files are 
loaded. The system loads them by calling the file 
per file, and tweet per tweet. The system checks 
the sentiment of tweets in a dictionary if sentiment 
exists it will be scored. And it will decide the tweet 
is positive or negative and likes and dislike 
calculated as postcondition of the test case. Thus, 
the test case is passed. 

 
Position the list. 

Test case ID:     Input_5 
Test Title:       Position on the list. 
Priority: High 
Pre-condition:   People likes dislikes json file loaded. 
Post-condition:  Five people most liked or dislike 
arranged. 
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Table 3. – Test Case tokenize and sentiment 
analyze 

# Steps 
Expected 

Result 
Actual Result 

1 read people 
files 

Read all person 
json files 

Read all person 
json files 

2 Call person 
file  

Calls 1 by 1 
Person file 

Calls file per 
person 

3 Retrieves 
person 
details from 
Wiki 

Retrieves first 
paragraph from 
wiki 

Show retrieving 
message  

4 Call tweets  Load tweets 1 by 
1 

Load tweets 1 
by 1 

5 Tokenize 
tweet 

Tokenize per 
sentence 

Tokenize per 
sentence 

6 Giving score Giving score for 
each tweet 

Giving score for 
each tweet 

7 Clustering 
positive & 
negative 
tweets 

Divides the 
positive and the 
negative tweets 
to different 
places 

Showing 
saving positive 
and negatives 
tweets 

8 Repeat step 
1 to 7 

Repeat steps 
until all tweets 
got scored 

Repeat until all 
tweets got 
scored 

9 Repeat step 
1 to 8 

Repeat until all 
files classified 

Repeat until all 
files classified 

10 Save each 
person likes, 
dislikes 
calculation 

Save each 
person likes and 
dislikes 
calculation in 
json file 

Create new 
json files 

 
Table 4. Test Case position the list 

# Steps Expected Result Actual Result 

1 read file Read people 
record 

Read people 
record 

2 Call the list Call the list of 
people 

Call the list of 
people 

3 Move the 
person who 
has more 
likes 

Move the person 
who has more 
likes to the first of 
list 

Moves the 
person who has 
more likes to the 
first of list 

4 Repeat step 
3 

Repeat step 3 
until the most likes 
are the first one in 
the list 

Repeat step 3, 
the most liked 
person in first of 
list 

5 Move the 
person who 
has more 
dislikes 

Move the person 
who has more 
dislikes to the first 
of list 

The list arranged 
well from the 
most dislikes to 
the less dislikes 

6 Repeat step 
5 

Repeat step 5 
until the most 
dislikes are the 
first one 

Repeat step 5, 
the most dislikes 
person in the 
first 

 
The above test case that listed in Table 4 

explains step by step how to the list arranged. The 
pre-condition for this test case is people likes 
dislikes files are loaded. The system is looking for 
the person with more likes or dislikes and moves 
the position to the first of the list. That step will be 
repeated until all the person in the list moved and 
arranged. The test case meets the post-condition 
which is most likes and dislikes people arranged, 
thus test case is passed. 

 

Visualizing detail and tweets. 
Test case ID:     Input_6 
Test Title:       Visualizing detail and tweets. 
Priority: High 
Pre-condition:   List has visualized, a person has 
clicked. 
Post-condition:  Showing description, likes, dislikes, 
positive and negative tweets. 

 
Table 5. – Test Case visualizing detail and 

tweets 
# Steps Expected Result Actual Result 

1 Got the 
name 

Clicked name 
received 

Got the name 

2 Read the list Open the list Read the list 
3 Call a 

certain 
person  

Call person from 
the list who has 
same name as 
name 

Called same 
person as the 
name that 
received before 

4 Shows desc, 
likes, 
dislikes. 

Load the correct 
desc, likes, and 
dislikes. 

Loaded the 
correct desc, 
likes, and 
dislikes. 

5 Read 
positive and 
negative 
tweets 

Read current 
person positive 
and negative 
tweets files 

Read current 
person positive 
and negative 
files 

6 Load 
positive and 
negative 
tweets 

Loads positive 
and negatives 
tweets 

Loaded positive 
and negative 
tweets 

 
Table 5 lists the test case explains how the 

related tweets showed after the pre-condition. The 
pre-condition is that the list has visualized and a 
person's name has clicked. Then the name is sent 
to the second page, the second page opened the 
list and matched the name. The system shows the 
description, likes, dislikes, and read positive and 
negative tweets saved directory. That's how the 
system gets related tweets for the selected person. 
The test case matched all the expected result and 
met the post-condition which is shows description, 
likes, dislikes, positive and negative tweets. Thus, 
the test case is passed.  

 
CONCLUSION 

The people profiling and modeling 
reputation computation based on sentiment 
analysis is a system for monitoring reputation. It 
looks up people opinion and conversation about 
someone on Twitter and gives a score of it. It 
provides the ratings for each people based on 
tweets sentiments and arranges the list of these 
people from the most liked or the most disliked to 
be easy to understand. Let see the result and it 
also provides proof about how many likes and 
dislikes that particular person has according to 
people's tweets on twitter. 

The people profiling and modeling 
reputation computation based on sentiment 
analysis system is running well and performing 
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good by tested with some test case. The precision 
and the recall showing the good result either. But 
in the future, this system needs to be updated. The 
new library will be required as the original word will 
also keep growing. For now, system people 
profiling and modeling reputation computation 
based on sentiment analysis only run by crawling 
the tweets that saved to the local directory. Twitter 
cannot be accessed without a VPN in China, and 
it became a problem in building this system. 
Hence, in the future people, profiling and modeling 
reputation computation based on sentiment 
analysis will retrieve the tweets as real time, so 
able to monitoring and updating the list while the 
program keeps getting the new datasets which are 
the tweets.  
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