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Abstract  
Osteoporosis is a medical disease marked by a reduction in 
bone density, which significantly increases the risk of 
fractures. Osteoporosis patients do not always exhibit 
symptoms, and because current diagnostic techniques have 
limitations, early detection is frequently needed. The 
osteoporosis dataset consists of 1.958 records, each 
containing 15 regular attributes and 1 special attribute as the 
label.  The attribute is represented as “1” for the presence of 
osteoporosis and “0” for its absence. The primary objective is 
to predict an individual’s risk of developing osteoporosis, 
including age, gender, bone density, lifestyle factors, medical 
history, and nutritional intake of calcium and vitamin D. To 
achieve this, Naïve Bayes and C4.5 have been employed. 
PSO is employed to identify the most relevant features, 
thereby optimizing the efficiency and accuracy of the 
classification models. The initial step in data preprocessing 
involved handling missing values to ensure data integrity. After 
implementing PSO, Naïve Bayes improved from 82,65% to 
83,67%, while C4.5 exhibited an even greater increase, rising 
from 91,07% to 96,17%. PSO significantly optimizes the 
model, with the most improvement in C4.5. PSO proves to be 
a valuable tool for feature selection. Age and Hormonal 
Change emerged as important for both models. Furthermore, 
Physical Activity and Calcium Intake, which despite having 
varying levels of influence, were consistently considered 
relevant.  By focusing on these significant attributes, we can 
more effectively monitor and recognize early signs of 
osteoporosis. Identifying individuals at high risk, more 
effective early detection and intervention, and improving the 
potential for timely management and prevention. 
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INTRODUCTION 

Collagen, calcium, and proteins make up 
normal bone, which gives the bones their strength 
[1]. Because bone resorption occurs more quickly 
than bone production, bones may lose bulk and 
become porous, brittle, and feeble [2]. 
Osteoporosis is the term for bone loss [3] and a 
medical disease marked by a reduction in bone 
density and loss of bone microstructure quality, 

significantly increasing the risk of fractures [4][5]. 
Over the past few decades, the prevalence of 
osteoporosis has grown significantly worldwide 
and has become one of the health problems that 
require serious attention [6]. Based on research 
studies [7], the prevalence of osteoporosis in the 
Asia-Pacific region shows that 10-30% of women 
over the age of 40 are affected. In contrast, in the 
European Union, the prevalence of this medical 
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disease in men elderly 50 years or older is 6.6%, 
increasing to 16.6% in men aged eighty years or 
older. As bones become more porous and fragile 
with age, osteoporosis predominantly affects the 
elderly and is more prevalent in women than men 
[8]. 

Compared to men, women are likely to 
acquire osteoporosis. Women go through phases 
of pregnancy and breastfeeding, which are one of 
the main causes of osteoporosis. In addition, there 
are hormonal changes that occur throughout the 
postmenopausal period. A considerable loss in 
bone density might result from a fall in estrogen 
[9]. Slowly decreasing bone density is difficult for 
people to recognize without a professional 
medical evaluation is difficult to identify early as it 
does not show typical symptoms [10]. 
Osteoporosis must be detected early, facilitate 
quicker and more efficient therapies, such as 
dietary modification, vitamin D and calcium 
supplementation, and medication use, to lower the 
risk of severe bone fractures and other 
complications [11]. However, because 
osteoporosis patients do not always exhibit 
symptoms and because current diagnostic 
techniques have limitations, early detection is 
frequently needed [12]. One of the methods for 
early detection of osteoporosis is the Dual Energy 
X-ray Absorptiometry (DEXA), as it is a current 
technology to determine bone mineral density 
(BMD) [13]. However, the DEXA method is not 
only costly but also less accessible to remote 
populations. In addition, when osteoporosis 
patients suffer from scoliosis, the BMD dimension 
of the usage of power DEXA becomes less 
accurate [14].   

Data analysis techniques like clustering, 
classification, and prediction are developing at a 
faster rate than technology and data complexity, 
which is creating new potential for innovation and 
increased efficiency across a range of scientific 
fields [15]. Researchers and practitioners are able 
to make more informed decisions and more 
accurate predictions using data mining 
techniques, which also aid in data classification 
and pattern recognition [16].  

Classification methods like Naive Bayes 
and Decision Tree C4.5 can be used as data 
analysis techniques [17]. As we know, Particle 
Swarm Optimization (PSO) is employed for 
optimization because it is robust, flexible, and 
efficient algorithm [18]. Particle Swarm 
Optimization (PSO) is used to find the most 
optimal or best value of the classification process, 
usually indicated by an increase in accuracy 
compared to a model without optimization. Particle 

Swarm Optimization (PSO) helps select the most 
relevant features so that the model becomes 
simpler and still effective [19].  

Based on the provided explanation, it is 
important to investigate whether the application of 
PSO leads to improved evaluation metrics through 
feature optimization. Several recent studies have 
implemented PSO as an optimization model. Dedi 
et al., [20] conducted PSO on the C4.5, SVM, and 
the Naïve Bayes algorithm. Test results indicated 
that optimization leads to improvement in 
accuracy. In comparison among the Naïve Bayes 
and Naïve Bayes with PSO, the results showed a 
slight increase in accuracy, from 94.07% to 
95.56%. However, the precision and recall values 
are quite unusual with such a large discrepancy 
[21]. The optimization of the decision tree using 
PSO demonstrated an increase in accuracy from 
97.53& to 97.78% [22]. The research shows that 
the Naïve Bayes algorithm achieved an accuracy 
of 93,24%, whereas the Naïve Bayes algorithm 
enhanced with PSO reached a higher accuracy of 
98,16% compared to the standard Naïve Bayes 
[23]. In other investigations [24], classification was 
performed using four methods: DT, NB, SVM, and 
KNN.  The results show that accuracy increased 
for all algorithms. However, the most notable 
improvement was observed in SVM and KNN, with 
accuracies reaching 98.3%.  

This study aims to compare the Naïve 
Bayes and C4.5 algorithms, with the addition of 
Particle Swarm Optimization (PSO) to enhance 
both algorithms' optimization and feature 
selection. Combining Naïve Bayes and C.45 with 
PSO is highly suitable for predicting osteoporosis 
risk due to their specific strengths in handling 
complex data. The Naïve Bayes provides 
probabilistic predictions that account for 
uncertainty and variability in medical data, which 
is valuable for assessing various risk factors 
across different patient groups. C4.5 excels at 
handling complex datasets and determining the 
most relevant attributes for classification, such as 
age, bone density, and lifestyle factors for 
classification. PSO further enhances these 
methods by optimizing model parameters, 
ensuring more accurate and reliable predictions. 
The approach is expected to yield reliable 
predictive results in accuracy, precision, and 
recall, and to identify key predictors of 
osteoporosis risk. 

 
METHODS AND MATERIALS 
 The research method is depicted in Figure 
1. The research method is designed to ensure a 
systematic and structured approach. 
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Figure 1. Researched Methodology 

 
It begins with data collection through data 
acquisition, followed by data preprocessing to 
prepare for data analysis. The data validation step 
is crucial to ensure the accuracy and reliability of 
the data. During the model deployment process, 
four different models are tested to determine their 
effectiveness. These models include Naïve 
Bayes, C4.5, PSO, and Naïve Bayes, PSO, and 
C4.5.  
 
Data Collection 
  The data collection was carried out using 
open data acquisition techniques. It is a data 
collection that contains searching, downloading, 
and organizing datasets that are publicly and 
openly available through Kaggle, which provides 
datasets for analysis and predictive model 
development. Data collection involved searching 
for relevant datasets to ensure that the data used 
is appropriate for predicting osteoporosis. For 
access to the osteoporosis dataset in this 
research, please refer to the following link: 
https://www.kaggle.com/code/docxian/osteoporos
is-risk-prediction/input. The osteoporosis dataset 
consists of 1.958 records with 15 regular attributes 
and 1 special attribute as a label. The dataset 
provides a sufficient foundation for building a 
predictive model, as it offers a reasonable sample 
size to capture patterns related to osteoporosis.  

The osteoporosis dataset is valid as it is 
complete, with no missing values, which ensures 
no additional data cleaning is required. 
Furthermore, the dataset is relevant for predicting 
osteoporosis as it includes key risk factors such as 
age, gender, and other medical history, and it can 
represent the condition effectively. Established 

statistical models, like Naïve Bayes and C4.5, can 
perform well with moderate-sized datasets, 
ensuring reliable predictions despite the dataset’s 
size. The details of the dataset are described in 
Table 1. 

Table 1 contains lifestyle data, including 
medical history, physical activity, smoking, and 
alcohol intake [25], [26]. As well as demographics 
information with and without osteoporosis. It is 
intended to support research in analyzing and 
predicting osteoporosis risk. 

 
Data Pre-Processing 

The initial step of preprocessing in 
predicting osteoporosis using Naïve Bayes and 
Decision Tree C4.5 is data cleaning.  
 

Table 1. Osteoporosis Dataset 
No. Attribute Description 

1.  Id Unique Identifier 
2.  Age Individual age in years 

3.  Gender Male, Female 

4.  Hormonal Change Normal, 
Postmenopausal 

5.  Family History Yes, No 
6.  Race/Ethnicity Caucasia, Africa-

Amerika, Asia,  

7.  Body Weight Normal, Underweight 
8.  Calcium Intake Low, Adequate 

9.  Vitamin D Intake Insufficient, Sufficient 

10.  Physical Activity Sedentary, Active 
11.  Smoking Yes, No 

12.  Alcohol Consumption None, Moderate 
13.  Medical Condition Rheumatoid arthritis, 

None, 

Hyperthyroidism 
14.  Medication Corticosteroid, None 

15.  Prior Factor Yes, None 
16.  Osteoporosis 0, 1 

https://www.kaggle.com/code/docxian/osteoporosis-risk-prediction/input
https://www.kaggle.com/code/docxian/osteoporosis-risk-prediction/input
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To ensure the accuracy and completeness 
of the data, the osteoporosis dataset was 
analyzed. During the initial stage of the analysis, it 
was confirmed that there were no empty, missing, 
or incomplete entries within the dataset. An 
overview of the initial analysis indicates that the 
dataset is in good condition for further analysis, as 
there are no missing or incomplete data entries. 
This confirms that no additional steps are 
necessary to address missing data. The 
subsequent stage involves building models using 
RapidMiner, specifically implementing Naive 
Bayes and the C4.5 algorithm. 
 
Data Validation 
  The data validation stage is designed to 
objectively assess the performance of the model 
and its ability to generalize to unseen data. To 
achieve this, the split data validation and cross-
validation methods were employed. The split data 
validation, osteoporosis dataset comprising 1.958 
records, was divided into two subsets: 80% of the 
data (1.566 records) was allocated for model 
training, while the remaining 20%, or 392 records) 
was reserved for testing. This approach ensures 
that the model’s effectiveness is evaluated on a 
separate test set, simulating its performance in a 
real-world scenario. In contrast, cross-validation 
divided the dataset into k equal folds, where the 
model is trained on k-1 folds and tested on the 
remaining fold. This process is repeated multiple 
times to ensure that each fold is used for testing at 
least once, providing more comprehensive 
evaluation of the model’s generalization ability. 
 
Naive Bayes 
  As a machine learning algorithm, Naïve 
Bayes works according to Bayes’ theorem, which 
relies on the conditional probability and maximum 
probability of an event [27]. The Naive Bayes 
calculation employed (1) as follows: 

P(a/y) = P(y/a)P(a)

P(y)

 
(1) 

  The Naive Bayes calculation employed 
(1) as follows:  
P(a/y) :  the probability of event a given that y is 

true (posterior probability) 
P(y/a)  :  the probability of event y occurring given 

 that a is true 
P(a)  : the prior probability of event a 
P(y) : the overall probability of event y 

happening 
 This method allows us to update our beliefs 
about event a based on the observation of y[28] 
following Bayes’ theorem. Calculating probabilities 
in Naïve Bayes involved in five stages. The first 
stage entailed reading the training data that has 

been input into the database. The second stage 
involves calculating the prior probability, which 
represents the likelihood of class occurrence 
without considering specific attributes. The third 
stage computes the probability of each class, 
assuming that each attribute is independent of the 
other. The fourth stage involves selecting the 
class with the greatest likelihood, which indicates 
the likelihood of each class given the attributes. 
The final stage is to derive the classification result 
based on the probabilities[29]. 
 
C4.5 

C4.5 workflow starts with building a 
decision tree from the given training data. This 
process involves selecting the most informative 
attributes as nodes on the tree, the variable with 
the having greatest gain value will be selected as 
the attribute that becomes the root of the tree[30]. 
Following attribute selection, smaller subsets of 
the training data are created based on the attribute 
values. Every data subset goes through this 
recursive procedure until all the data subsets are 
categorized into the same class or until a decision 
tree is built and specified halting criteria are 
satisfied[31]. In a decision tree, nodes represent 
attributes, branches represent results, and leaves 
represent decisions[32].  

In C4.5, the process starts with determining 
entropy using (2) and (3) and proceeds to (6).  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)  =  ∑𝑛 − 𝑝𝑖 ∗  𝑙𝑜𝑔2 𝑝𝑖 (2) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)  =  ∑𝑛 − 𝑝𝑖 ∗  𝑙𝑜𝑔2 𝑝𝑖 (3) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆, 𝐴) =  𝐸𝑡𝑟𝑜𝑝𝑦 (𝑆) −  ∑
|𝑆𝑖|

|𝑆|
 

𝑛

𝑖=1

∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑖)
 

(4) 

𝑅𝑎𝑠𝑖𝑜𝐺𝑎𝑖𝑛 (𝑠, 𝑗) =  
𝐺𝑎𝑖𝑛 (𝑠,𝑗)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑠,𝑗)

  (5) 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑠, 𝑗) =  ∑  𝑝(𝑣log2𝑝(𝑣𝑖|𝑠)

𝑘

𝑖=1

 
(6) 

Equation (4) calculates information gain, a 
measure used to assess how effectively attribute 
reduces uncertainty in dataset S. This measure 
quantifies the reduction uncertainly (entropy) 
when dataset S is partitioned based on attribute A. 
First, we determine the entropy of dataset S, which 
reflect the level of uncertainty or disorder within 
the dataset. Next, dataset S is divided into n 
subsets, Si, according to the values of attribute A 
[33].  

For each subset Si, we calculate its relative 
size |Si|/|S| and multiply it by its entropy, Entropy 
Si, then sum these values across all subsets. 
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Information Gain is then computed as the 
difference between the initial entropy of dataset S 
and the weighted sum of the entropies of the 
subset Si. Equation 5 represents the gen ratio, 
which evaluates how well the attribute divides the 
data while accounting for the number of resulting 
divisions. Equation 6 calculated the split 
information, which measures the extent to which 
dataset S is partitioned into smaller parts based on 
the values of attribute A.  
 
Particle Swarm Optimization (PSO) 
 Particle Swarm Optimization (PSO) is one 
of the most effective methods influenced by the 
behavior of a group in the universe, especially the 
movement and interaction of a group of particles 
in search of the best possible solution. In particle 
swarm optimization (PSO), a set of particles is 
considered as agents moving within the range of 
possible solutions. Each particle has a location 
and velocity that changes over time, and they 
move in the search space with the goal of finding 
the best solution. The interaction among particles 
in Particle Swarm Optimization (PSO) is decided 
by means of their ability to share information about 
the location of the optimal solution found by other 
particles with the population[34]. In a very short 
amount of time, PSO may effectively search the 
targeted space and identify a close-to-ideal 
solution [35]. 
 The Particle Swarm Optimization (PSO) 
method begins by initializing the position (𝐶𝑖) and 

velocities (𝑉𝑖) of the particles within the swarm. 
Next step, it evaluates the objective function value 
for each particle (𝑓(𝐶𝑖)). The algorithm then 

determines the initial personal best 𝑝(𝑏𝑒𝑠𝑡) and 

global best (𝑔𝑏𝑒𝑠𝑡).  The velocity is updated using 
a specific equation, followed by updating the 
position of each particle. The objective functions 
are re-evaluated. If the new value improves upon 
the previous best, the personal best is updated. 
This process continues until the maximum number 
of iterations is reached, at which point the 
algorithm stops, otherwise, it returns to updating 
the velocity in the particle [36]. 
 Particle Swarm Optimization or PSO can be 
applied to enhance the performance of Naïve 
Bayes and C4.5 models in several specific ways, 
one of which is through feature selection. In C4.5, 
PSO helps identify the most relevant features to 
be used in the C4.5 algorithm, improving the tree’s 
structure and reducing complexity. By selecting 
only the significant feature, the model can achieve 
higher accuracy and better interpretability. In the 
Naïve Bayes model, PSO can be used to select 
features that most contribute to the classification 
performance, enhancing the model's predictive 

power. The feature selection process using PSO 
is depicted in Figure 2. 

Figure 2 outlines the process of using PSO 
to enhance model training for Naïve Bayes and 
C4.5. It begins with a set of training samples 
followed by the initialization of a swarm of particles 
representing potential parameter solutions. PSO 
selects parameters based on current particle 
positions and trains the model with these selected 
values. The model’s performance is then 
evaluated using a fitness function to determine 
accuracy. The particles update their positions 
based on both global and personal best fitness 
values. This iterative process continues until a 
termination condition is met, at which point the 
optimal parameters are outputted. Finally, the 
model is retrained with these parameters, 
enabling improved predictions. 

Confusion Matrix 
A crucial technique for assessing model 

performance in data processing is called a 
confusion matrix, containing metrics used to 
assess the effectiveness of a model’s predictions 
with the true values of the observed data [37]. 
Confusion matrix has four cells that represent the 
four possible outcomes of the classification 
process: the model correctly predicts the positive 
class (TP); the model incorrectly predicts the 
positive class when it is actually negative (FP); the 
model correctly predicts the negative class (TN); 
and the model incorrectly predict the negative 
class when it actually positive (FN) [38].  
 

 
Figure 2. PSO process for enhancing Naïve 

Bayes and C4.5 models 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃

 
(7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝐹𝑃 + 𝑇𝑃) (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃

 
(9) 

Equation 7 calculates accuracy by dividing 
the number of corrections (TP and TN) by the total 
amount of observed data. Equation 8 calculates 
precision to measure the ratio of correct positive 
predictions (TP) to the sum of positive predictions 
generated. Equation 9 calculates sensitivity to 
measure how well the model detects all instances 
that belong to the positive class [39]. 
 
RESULTS AND DISCUSSION 
Split Validation 
 The first method applied in this study was 
split validation, where the performance of various 
models was assessed, including Naïve Bayes, 
C4.5, PSO, and Naïve Bayes, as well as PSO with 
C4.5, to determine which approach yielded better 
results in predicting osteoporosis. 
 
Naïve Bayes Algorithm  

The first model was conducted using Naïve 
Bayes, the osteoporosis dataset was taken for 
processing into RapidMiner, as shown in Figure 3. 
Figure 3 showcases the application of the Naive 
Bayes algorithm using RapidMiner. It involves 
retrieving the osteoporosis dataset. This initial 
step is crucial as it provides the data necessary for 
the subsequent analysis. The data is split into the 
training set and the testing set. To build the model, 
the Naive Bayes algorithm is implemented on the 
training data. Subsequently, the trained model is 
used to make a prediction on the testing data. 
Finally, performance metrics such as accuracy, 
precision, and recall are calculated to assess the 
model’s effectiveness. The Naive Bayes algorithm 
values are presented in Table 2. Three evaluation 
metrics, such as accuracy, precision, and recall, 
were derived from (1). 

 
 Table 2. The Naive Bayes test value 

No. Description Naive Bayes 

1.  Accuracy 82.65 % 
2.  Precision 91.03 % 

3.  Recall 72.45 % 

 

The Naive Bayes model demonstrated in 
Table 2 has solid performance. However, the 
recall rate is lower, suggesting the model misses 
some positive instances. Overall, the Naïve Bayes 
proves to be a reliable and efficient classifier with 
strength in precision, though there is room for 
improvement in recall [40]. 
 
C4.5 Algorithm 

The second model was conducted using the 
C4.5 algorithm, as seen in Figure 4. Figure 4 
showcases the implementation of the C4.5 
algorithm using RapidMiner. It involves retrieving 
the osteoporosis dataset. This initial step is crucial 
as it provides the data necessary for the 
subsequent analysis. The data is divided into the 
training set and the testing set. To build the model, 
the method is applied to the training data. 
Subsequently, the trained model is used to make 
predictions on the testing data. Finally, 
performance metrics such as accuracy, precision, 
and recall are calculated to assess the model’s 
effectiveness. The evaluation metrics of this 
algorithm are presented in Table 3. 

The C4.5 algorithm is presented in Table 3 
and shows strong performance metrics in the 
model deployment. It achieved impressive 
accuracy, indicating a high rate of correct 
classification. The model is highly reliable when 
predicting positive outcomes. The recall rate is a 
significant improvement over the Naïve Bayes 
model, suggesting that the C4.5 algorithm 
effectively identified most positive instances. The 
C4.5 model demonstrates high accuracy, 
precision, and recall. 
 
PSO and Naïve Bayes 

PSO and Naïve Bayes modelling are shown 
in Figure 5. The workflow begins with the retrieve 
ensembles module for feature extraction, followed  
by the split data module that divides the data into 
subsets. The optimize weight module optimizes 
the model’s weight using PSO. The optimized data 
is applied to the Naïve Bayes for classification. 
Finally, the performance module evaluates how 
well performing models are by computing various 
metrics. This process aims to optimize the Naïve 
Bayes model’s accuracy through weight 
adjustment via PSO. Test results can be observed 
in Table 4. 
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Figure 3. The Naive Bayes process view 

 

 
 Figure 4. The C4.5 process view 

 
Table 3. The C.45 test value 

No. Description Decision Tree 

1.  Accuracy 91.07 % 

2.  Precision 97.63 % 

3.  Recall 84.18 % 

 
Table 4. PSO and Naive Bayes test value 

No. Description Naive Bayes 

1.  Accuracy 83.67 % 

2.  Precision 93.42 % 
3.  Recall 72.45 % 

 
The provided data in Table 4 shows that 

after applying PSO for weight optimization, the 
Naïve Bayes models show improvement in 
accuracy and precision, while maintaining the 
same recall. This suggests that while PSO 
optimization has enhanced the model’s overall 
correctness and precision, making it more 
effective in identifying true positive cases while the 
recall remains unchanged. Table 5 describes the 
attribute weight obtained from analyzing the 
osteoporosis dataset using PSO and Naïve 

Bayes. It shows that the most influential attributes 
are gender and smoking.  
 
PSO and C4.5 

 PSO and C4.5 modelling show in Figure 6. 
 

Table 5. Attribute weights test value 
No. Description Weight Attribute 

1.  Most Influential 0.636 – 

1.000 

Gender, Smoking 

2.  Medium 
Influence 

0.242 – 
0.586 

Age, Hormonal 
Changes, Physical 

Activity 
3.  Less Influence 0.033 – 

0.334 

Medications, 

Calcium Intake 

4.  No Influence 0 Prior Fractures, 
Medical Conditions, 

Alcohol 

Consumption, 
Vitamin D Intake, 

Body Weight, 
Race/Ethnicity, 

Family History 

5.  Irrelevant - Id 

 
 

 
Figure 5. PSO and Naïve Bayes process view 
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Figure 6. PSO and C4.5 process view 

 
  In this workflow, data is first collected and 
preprocessed. Then feature extraction is 
performed to identify key attributes. The Particle 
PSO is applied to efficacy the model’s parameters. 
Following this, the C4.5 algorithm creates a model 
by segmenting the data based on significant 
features, leading to classification or predictors. 
The model’s effectiveness is assessed using 
metrics such as accuracy, precision, and recall. 
The test value can be seen in Table 6. 

Table 6 demonstrates outstanding 
performance in the model deployment. By 
performing this model, we seek to assess how a 
feature selection influences the model 
performance and to establish the effectiveness of 
the C4.5 in pinpointing the most critical attribute 
for accurate prediction [41]. The attribute weights 
of the test value are shown in Table 7. Table 7 
describes that prior fracture, age, and hormonal 
change are the most influential attributes. The 
comparison of attribute weight tables relative to 
Naïve Bayes and C4.5 reveals notable 
differences.  

This difference is due to their distinct 
methodologies. Naïve Bayes assumes feature 
independence, which can limit its performance 
when features are correlated [42].  The C4.5 does 
not rely on this assumption and is better at 
capturing complex feature interactions. 
Additionally, C4.5 handled non-linear relationships 
more effectively, making them more adaptable to 
varied data patterns[43].  

 
Table 6. PSO and C4.5 test value 

No. Description C4.5 

1.  Accuracy 96.17 % 

2.  Precision 95.02 % 
3.  Recall 97.45 % 

 
 

Table 7. Attribute weights test value 
No. Description Weight Attribute 

1.  Most 

Influential 

0.939 – 1.000 Prior Fracture, 

Age, Hormonal 
Changes 

2.  Medium 
Influence 

0.455 – 0.684 Physical 
Activity, 

Calcium 

Intake, 
Smoking, 

Medical 
Conditions 

3.  Less 

Influence 

0.200 – 0.280 Family History, 

Body Weight, 
Race/Ethnicity 

4.  No Influence 0 Medication, 

Alcohol 
Consumption, 

Vitamin D 
Intake, Gender 

5.  Irrelevant - Id 

 
In addition to comparing attribute weights, 

the evaluation matrix results from the model are 
also compared. The results of each model test are 
compiled into a table containing test comparison 
values to facilitate analysis and evaluation of 
model performances. The test comparison values 
are displayed in Table 8.  

In terms of effectiveness, models based on 
Table 8 show competitive results in data 
classification. The C4.5 outperforms Naïve Bayes 
in accuracy, precision, and recall, both with and 
without PSO. Without PSO, C4.5 achieved an 
accuracy of 91.07% compared to Naïve Bayes, 
82.65%. With PSO, C4.5’s accuracy increased to 
96.17% while Naïve Bayes improved slightly to 
83,67%. Precision for C4.5 was 97.63% without 
PSO and 95.02% with PSO. It is still higher than 
Naïve Bayes precision, which increased from 
91.03% to 93.42% with PSO. Recall for C4.5 was 
81.48% without PSO, whereas Naïve Bayes 
remained consistent at 72.45%.  
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Table 8. Test comparison values on the split 
validation method 

No. Model 
Evaluation Matrix 

Accuracy Precision Recall 
1.  Naive Bayes 82.65% 91.03% 72.45% 

2.  C4.5 91.07% 97.63% 84.13% 

3.  PSO + Naive 

Bayes 

83.67% 93.42% 72.45% 

  
Cross Validation 

The second method applied is cross-
validation. The testing process follows the same 
steps as in split data validation, where the model 
is trained on a portion of the data and tested on a 
separate portion. In this experiment, four 
combinations were evaluated: C4.5 with cross-
validation, Naïve Bayes with cross-validation, 
C4.5 with cross-validation and PSO, and Naïve 
Bayes with cross-validation and PSO. These 
combinations were used to assess the 
performance of each model and technique, 
comparing their accuracy and generalization 
capabilities on the osteoporosis dataset, while 
ensuring that the model is not overly reliant on a 
single training-test split, which may be sensitive to 
data distribution. 
 
Naïve Bayes with cross-validation 

The first model applied was Naïve Bayes 
with cross-validation. The data was tested starting 
from k = 1 and increasing up to k = 10. Throughout 
this process, different values of k were used to 
evaluate the model’s performance in terms of 
accuracy and generalization. The aim was to 
identify the most suitable value of k that would 
provide the best balance between training and 
testing data. The test result is displayed in Table 
9. Table 9 shows that after testing each fold, the 
model achieved its optimal performance at k = 9, 
indicating that this value provided the most reliable 
and accurate result for the dataset, which is 
85.45%. 
 
C4.5 with cross-validation 

The second model applied was C.45 with 
cross-validation. The test result is displayed in 
Table 10. Table 10 shows that when C4.5 with a 
cross-validation model was applied, the optimal 
result was achieved at k = 8, yielding an accuracy 
of 90,40%. This represents an improvement of 
4,95% compared to the Naïve Bayes model. 

Additionally, the precision and recall shown by the 
C4.5 model were higher than those Naïve Bayes 
model. 
 
PSO and Naïve Bayes with cross-validation  

The third model applied was PSO and 
Naïve Bayes with cross-validation. The test result 
is displayed in Table 11. Table 11 shows that 
when PSO was applied to the Naïve Bayes model, 
there was a noticeable improvement in evaluation 
metrics, including accuracy, precision, and recall. 
This optimal performance was achieved at k = 4 
and k = 5, indicating that the integration of PSO 
enhanced the model's ability to predict 
osteoporosis effectively. From the test result, the 
attribute weights are outlined in Table 12. 

The presents a list of attributes along with 
their corresponding weights. Key attributes such 
as Age, Calcium intake, Vitamin D, Physical 
activity, and Alcohol consumption all have the 
highest weight of 1, indicating their strong 
relevance in the model or dataset. Meanwhile, 
Prior Fractures has a much lower weight of 0.092, 
showing less significance in comparison. The 
attributes Id, Gender, Hormonal history, Family 
history, Race/Ethnicity, Body weight, Smoking, 
Medical history, and Medications all have a weight 
of 0, suggesting that they were not considered 
relevant or influential in this analysis. 
 
Table 9. Naïve Bayes with cross-validation value 

No. Description Naïve Bayes 

1.  Accuracy 85.45% 

2.  Precision 94.04% 
3.  Recall 75.69 % 

 
Table 10. C4.5 with cross-validation value 

No. Description Naïve Bayes 

1.  Accuracy 90.40% 

2.  Precision 97.94% 

3.  Recall 82.53% 

 
Table 11. PSO and Naïve Bayes value 

No. Description 
PSO and 

Naïve Bayes 

1.  Accuracy 86.06% 
2.  Precision 95.37% 

3.  Recall 75.79% 

 
 

 
Table 12. Attribute weights test value 

No. Description Weight Attribute 

1.  Most 

Influential 

1.000 Age, Calcium Intake, Vitamin D Intake, Physical Activity, Alcohol 

Consumption,  
2.  Less 

Influence 

0.0092 Prior Fracture 

3.  No Influence 0 Gender, Hormonal Changes, Family History, Race/Ethnicity, 
Body Weight, Smoking, Medical Condition, Medication, 

4.  Irrelevant - Id 
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PSO and C4.5 with cross-validation  
  The fourth model applied was PSO and 
C4.5 with cross-validation. The test result is 
displayed in Table 13. Table 13 described that 
when PSO and C4.5 were applied, there was a 
slight improvement across all metrics, though the 
increase was not particularly significant. The most 
noticeable gain was in terms of precision, which 
rose by 1.45% from 97.94% to 99.39%. The 
optimal performance was achieved at k = 7, 
indicating a modest improvement in the model’s 
ability to correctly classify positive cases, though 
overall effectiveness showed only minor 
enhancement.  

The attribute weights are outlined in Table 
14. Table 14 categorizes attributes based on their 
weight and influence on the model performance. It 
identifies age, body weight, alcohol consumption, 
medication, and prior fractures as the most 
influential, with weights ranging from 0.714 to 
1.000, indicating their significant impact on 
predictions. Physical Activity and Gender fall into 
the less influential category, with weights between 
0.328 and 0.428, suggesting a moderate 
contribution to the model's predictive power.  

 
 
 
 
 
 

In contrast, other attributes exhibit no 
influence, with weights of 0. Lastly, the attribute Id 
is classified as irrelevant, indicating it does not 
contribute to the analysis. After applying the four 
models, conclusions can be drawn from the 
evaluation result presented in Table 15.  

The table summarizes the performance 
metrics of each model, highlighting their 
respective strengths and weaknesses in 
predicting osteoporosis. When comparing Table 8 
and Table 15, it can be concluded that the C4.5 
model, especially when optimized with PSO, 
exhibits superior performance in predicting 
osteoporosis. It achieved the highest accuracy of 
96.17% in split data validation and 91.16% in 
cross-validation compared to Naïve Bayes. In 
contrast, the Naïve Bayes model improved its 
accuracy slightly and constantly showed lower 
performance, with accuracy rates of 83.67% and 
86.45% in the respective validation methods.  

Although incorporating PSO into the Naïve 
Bayes model improves its accuracy slightly, it 
remained inferior for both the standalone C4.5 and 
PSO with C4.5 models. Additionally, the 
combination of C4.5 with PSO is more reliable in 
improving model accuracy, precision, and recall, 
providing better predictive performance across 
different validation methods compared to Naïve 
Bayes [44][45], thereby confirming its 
effectiveness in osteoporosis prediction.  

Table 13. PSO and C.45 value 
No. Description PSO and C4.5 

1.  Accuracy 91.16% 
2.  Precision 99.39% 

3.  Recall 82.84% 

   
Table 14. Attribute weights test value 

No. Description Weight Attribute 

1.  Most 

Influential 

0.714-1.000 Age, Body Weight, Alcohol Consumption, Medication, Prior 

Fractures  
2.  Less 

Influence 

0.328-0.428 Physical Activity, Gender 

3.  No Influence 0 Hormonal Changes, Family History, Race/Ethnicity, Calcium 
Intake, Vitamin D Intake, Smoking, Medical Condition,  

4.  Irrelevant - Id 

 
Table 15. Test comparison values on the cross-validation method 

No. Model 
Evaluation Matrix 

Accuracy Precision Recall 

1.  Naive Bayes 85.45% 
 

94.04% 75.79% 

2.  C4.5 90.40% 97.94% 82.53% 

 
3.  PSO + Naive Bayes  86.06% 95.37% 82.53% 

4.  PSO + C4.5 91.16% 99.39% 82.84% 
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In the context of osteoporosis detection, 
Particle Swarm Optimization (PSO) proves to be a 
valuable tool for feature selection. By efficiently 
optimizing relevant features, PSO enhances 
model performance in identifying predictors of 
osteoporosis risk. The ability of PSO to refine 
feature selection allows for a more accurate 
understanding of which attributes are most 
influential. For instance, Age and Hormonal 
Change emerged as important for both models. 
Age is a critical factor as bone density naturally 
decreases over time, increasing the risk of 
fractures [46]. Hormonal changes, particularly in 
postmenopausal women, lead to a decline in 
estrogen levels, which is essential for bone health 
[47].  This suggests that both algorithms agree that 
age and hormonal changes are significant 
indicators in osteoporosis risk. In addition, PSO 
helped recognize attributes such as Physical 
Activity and Calcium Intake, which, despite having 
varying levels of influence on each model, were 
consistently considered relevant. Smoking has 
been linked to reduced bone mass and slower 
healing of fractures. Regular physical activity, on 
the other hand, is beneficial as it helps strengthen 
bones and improve balance, thereby reducing the 
risk of falls and fractures.  

One possible reason for C4.5's 
performance could be its ability to handle non-
linear relationships and complex decision 
boundaries more effectively than Naïve Bayes, 
which assumes independence between features 
(the Naïve Bayes assumption). In real-world 
osteoporosis prediction, the relationships between 
risk factors (e.g., age, gender, hormonal changes) 
are often non-linear and interdependent, making 
C4.5 better suited to capture these interactions. 
Furthermore, PSO’s role in optimizing the decision 
tree structure may provide further advantages by 
enhancing feature selection and tuning 
parameters to maximize predictive performance 
[48]. Based on the result of the study conducted 
with the PSO and Naïve Bayes, PSO, utilizing the 
principles of Bayes’ theorem, was able to reduce 
the initial 15 features to 7 significant features that 
influence osteoporosis. In contrast, when PSO 
was combined with the C4.5 model, it successfully 
selected 10 influential features. This indicates that 
the approach of integrating PSO with C4.5 may be 
more effective in identifying risk factors for 
osteoporosis compared to the Naïve Bayes 
algorithm. 
 
CONCLUSION  

The comparison of test results indicates 
that the C4.5 algorithm is the most effective in 
predicting osteoporosis, as evidenced by its 
superior accuracy, precision, and recall compared 

to the Naïve Bayes. This trend is consistent in both 
the split data validation and cross-validation 
methods, where C4.5 consistently outperformed 
Naïve Bayes across various metrics. Additionally, 
the use of PSO contributes to improving the 
reliability and interpretability of the predictive 
models for osteoporosis. This research concluded 
that age, hormonal change, smoking, and physical 
activity significantly influence the development of 
osteoporosis. These findings underscore the 
importance of addressing these factors to mitigate 
the risk of osteoporosis. This allows for preventive 
measures to be implemented effectively. 
Preventive actions include lifestyle modifications 
such as increasing physical activity to strengthen 
bones, ensuring adequate intake of calcium and 
vitamin D, quitting smoking to improve bone 
health, and managing hormonal changes through 
medical consultation. These steps help in 
reducing the risk of developing osteoporosis, 
thereby improving overall bone health and 
preventing fractures.  

To further enhance prediction accuracy, 
one alternative method that could be implemented 
for predicting the osteoporosis dataset is the use 
of ensemble learning techniques such as Random 
Forest or Gradient Boosting. These methods can 
effectively handle complex interactions between 
features, which may be present in osteoporosis 
risk factors. Regarding PSO, the main difficulties 
encountered may relate to time complexity, which 
could be a limitation, as PSO might require a 
substantial number of iterations to find an optimal 
solution, especially when working with more 
complex models. Additionally, the study could face 
limitations such as a small dataset size, which 
affects the model’s ability to generalize to unseen 
data. With fewer data points, models are more 
prone to overfitting, where they perform well on the 
training data but fail to generalize in real-world 
applications. 
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