

SINERGI Vol. 29, No. 2, June 2025: 459-472
http://publikasi.mercubuana.ac.id/index.php/sinergi

http://doi.org/10.22441/sinergi.2025.2.016

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 459

Design of path planning robot simulator by applying sampling
based method

Heru Suwoyo*, Julpri Andika, Andi Adriansyah
Department of Electrical Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia

Abstract
This research aims to create a simulator for solving the global path
planning of mobile robots. Various sampling-based methods such as
Rapidly-exploring Random Tree (RRT), RRT*, and Fast-RRT, along
with other derivative algorithms, have been widely used to solve path-

planning problems in mobile robots. The level of computational
efficiency, path optimality, and the ability to adapt to variant
environments are some of the issues that still arise, although these
techniques have shown good results in many cases. Although the

existing solutions are innovative, comparison between the existing
methods is still difficult due to significant differences in convergence
speed, implementation complexity, and quality of the resulting paths.
This makes choosing the most suitable method for a particular
application difficult. The simulator uses sampling-based path

planning algorithms such as RRT*, Fast RRT*, RRT*-Smart,

informed-RRT*, and Honey Bee Mating Optimization-based Fast-
RRT*. With this simulator, users can easily compare the performance
of each algorithm and see the characteristics and efficiency of each

algorithm in various situations. By running all methods through this
simulator, the user can easily compare the methods based on
convergence speed and optimality. Therefore, it will effectively help
users understand robot navigation, improve the quality of learning,

and promote the development of path-planning technology for mobile
robots.

This is an open access article under the CC BY-SA license

Keywords:

Fast-RRT;

Global Path Planning;

HMBO-Integrated Fast-RRT*;

Mobile Robot;

Simulator;

Article History:

Received: September 30, 2024

Revised: December 1, 2024

Accepted: January 11, 2025

Published: May 15, 2025

Corresponding Author:

Heru Suwoyo

Electrical Engineering

Department, Faculty of

Engineering, Universitas Mercu

Buana, Indonesia

Email:

heru.suwoyo@mercubuana.ac.id

INTRODUCTION
As the need for robotics for various

applications, such as manufacturing,
environmental exploration, and autonomous
transportation, increases, mobile robot navigation
becomes increasingly important. Planning the
best path for the robot to reach the goal while

avoiding obstacles is the main challenge in this
navigation. Randomly exploring Random Tree
(RRT)[1][2] and its variants (RRT* [3], Fast RRT
[4], RRT*-Smart [5], informed-RRT* [6]) have

been widely used due to their ability to explore
large and complex search spaces. However, each
method has its drawbacks, either in terms of

computational efficiency, path optimality, or the
ability to adapt to changing environments.

Although these methods are very popular,
users often have difficulty understanding the
differences in characteristics between one
algorithm and another and choosing the most
appropriate method for a particular situation.

Some algorithms may excel in computational
speed, while others may be more optimal in the
path quality generated. Due to the lack of tools that
allow direct comparison between these methods,

the learning process and the advancement of
robotic navigation technology are increasingly
difficult.

http://creativecommons.org/licenses/by-sa/4.0/
mailto:heru.suwoyo@mercubuana.ac.id

SINERGI Vol. 29, No. 2, June 2025: 459-472

460 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

Given the need for tools that can accelerate
the learning process and assess various path-
planning techniques, these simulators are
essential. With this simulator, users can test

algorithms directly and learn the advantages and
disadvantages of each method in an applied and
real-time context. In addition, this simulator is
equipped with related references, so that users

can not only test the performance of each method
but also learn the theoretical concepts and
mechanisms behind the implementation of the
algorithm. These references provide a foundation
for better algorithm design. MATLAB was chosen

for this simulator because of its ability to visualize
data and support various numerical operations
quickly and accurately. In addition, its GUI
program helps users interact with various path-

planning algorithms. This interface allows users to
select algorithms, change parameters, and view
simulation results visually. Simulation results can
be viewed in the form of paths created or in the
form of comparisons of performance metrics such

as path optimality and computation time. As a
result, this simulator not only facilitates algorithm
testing but also makes it easier for users to
analyze the performance of each method.

MATERIAL AND METHOD
This section explains some of the methods

used in the simulator. The method used is
sampling-based path planning. Sampling-based

methods are path-planning approaches that rely
on random sampling to explore the configuration
space without requiring a full representation of the
space. This method is often used in situations

where full mapping of the space would be too
difficult or inefficient. This method allows the
search for valid paths between known points in the
configuration space. This simulator is equipped

with references to related methods so that it can
provide a comprehensive explanation. Complete
and varied references show the development of
sampling-based path-planning methods. There
are two types of path-planning problems, namely

local and global. Global path planning plans a path
from the starting point to the destination point by
considering the entire environment or available
maps, without considering changes in conditions

in the field.
Meanwhile, local path planning focuses on

path planning based on real-time surrounding
conditions, adjusting to changes in the
surrounding environment to avoid obstacles or

other dynamic conditions. Thus, global path
planning is more holistic, while local path planning
focuses on adjusting paths in local areas. This
simulator is only limited to the use of the global

path planning method. This simulator can help
researchers compare one with another sampling
method. Thus, the development of the method will
be very possible. In addition, the presence of this

scientific article will further complete the
references that can be used in the form of an
appropriate review. Before, all the methods are
presented, the problem statement of global path

planning [7] is explained.

Problem Statements

Let 𝑋 ∈ 𝑅𝑛 be the representation of state

space for a path planning problem, with 𝑛 ∈ 𝑁 as

space dimension, thus 𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑓𝑟𝑒𝑒} is state

space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle coordinates
and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋refers to the free space. Moreover, if

the start node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒
 and goal node

𝑔𝑜𝑎𝑙

𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒
are given, then referring to 𝑋𝑜𝑏𝑠

, the

path planning algorithm has to find the ideal path
from to those nodes, denoted as
 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒

with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡
and

 𝜎(𝑇) = 𝑥𝑔𝑜𝑎𝑙
where 𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟}

for 𝑟 is the radius around 𝑥𝑔𝑜𝑎𝑙
.

Rapidly Exploring Random Tree (RRT)
For robots moving in large and complex

spaces, Rapidly Exploring Random Trees (RRT)
is one of the most popular path-planning
algorithms. Steven M. LaValle first used this
algorithm in 1998 to explore the search space

quickly and efficiently, especially in environments
with many obstacles [2, 8, 9, 10]. After reaching a
target or meeting certain conditions, RRT
gradually builds a tree by randomly expanding
nodes in the search space. Although RRT does

not guarantee an ideal path, it is very effective for
solving path-planning problems in large and
complex environments [11, 12, 13, 14]. The
algorithm works by selecting a random point in the

search space and then expanding the tree from
the nearest node to that point. This method makes
RRT very useful for applications where rapid
exploration of the search space is required, even
though the path quality is not always optimal [15].

As shown in Figure 1, RRT starts its
operation by initializing a tree (or trees) with the
root node at the starting position. Then, this
process is repeated several times until it reaches

a set maximum number of iterations. The
algorithm takes a random point in the search
space at each iteration and searches for the
nearest node in the tree. After finding the nearest

node, the algorithm extends from that node
towards the random point to generate a new node.
Before adding a new node to the tree, the
algorithm checks whether the path between the

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 461

nearest node and the new node is collision-free. If
not, the new node is anchored. In addition, the
algorithm also checks whether the distance

between the new node and the destination
position is smaller than a certain threshold. If so,
the path from the starting position to the
destination can be returned. The algorithm returns
to failure status if the path is not found after all

iterations. In this way, RRT explores the search
space and finds a route that can be used by the
navigating robot.

RRT*
RRT* (RRT Star) is an evolution of the

Randomly Exploring Random Tree (RRT)
algorithm that aims to improve the optimality of the

generated paths. While RRT focuses on rapidly
exploring the search space, RRT* adds an
optimization component by updating the
generated paths as the tree grows [11, 16, 17, 18].
In RRT*, the algorithm examines existing nodes to

see if a better path can be formed by connecting
the new node to other nearby nodes in the tree. In
this way, RRT* attempts to improve the quality of
the solution and reduce the path length. RRT* also

has a convergence guarantee, meaning that it will
find a path that is close to the ideal in a complex
search space as it iterates. In situations where
path optimality is critical, such as in robotic
settings that require high efficiency and minimal

energy consumption, the application of RRT* is
very beneficial.

Referring to Figure 2, the RRT* algorithm
starts by initializing a tree (or trees) with the root

node at the starting position. This process
performs several iterations until it reaches a
specified maximum number of iterations. The
algorithm takes a random point in the search
space at each iteration and searches for the

nearest node in the tree from that random point.
The algorithm generates a new node by extending
from the nearest node to the random point. Then,
if the path between the new and nearest nodes

does not collide, the new node is inserted into the
tree and connected to the nearest node. At this
stage, RRT* also functions to optimize the path
that has been found by checking the nodes that
are within the range of the new node to determine

if a better path can be created. If found, the
relationships between the nodes are updated to
create a more efficient path. In addition, the
algorithm checks whether the distance between

the new node and the destination position is
smaller than a certain threshold. If so, the path
from the starting position to the destination can be
returned.

Figure 1. Pseudocode of RRT

Figure 2. Pseudocode RRT*

The algorithm will return to failure status if the path
is not found after all iterations. These steps allow

RRT* to find valid paths and optimize them to
improve navigation efficiency.

Fast-RRT
To improve the speed and efficiency of path

planning, Fast RRT is a variant of the Rapidly
exploring Random Tree (RRT) algorithm that
focuses on reducing the computation time
required to find a path while maintaining effective

space exploration capabilities. Fast RRT
implements a more efficient sampling strategy and
reduces the complexity of the path-finding process
[4, 7, 10]. Biased sampling is a way that the Fast

RRT algorithm more often selects random points
around the target area or previously discovered
paths. In this way, the algorithm can quickly direct

SINERGI Vol. 29, No. 2, June 2025: 459-472

462 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

the growth of the tree towards the desired goal. In
addition, Fast RRT also implements constraint
sampling, which means that the algorithm
considers physical constraints and environmental

obstacles when sampling. Keeping the path within
the allowed limits helps prevent contention and
improves the quality of the generated paths.

As seen in Figure 3, Fast RRT has two

stages, namely improved RRT and fast optimal,
both of which can be seen in Figure 4 and Figure
7. Referring to Figure 4, Fast Optimal consists of
two methods, namely Fast Sampling and
RandomSteer, which can be seen in Figure 5 and

Figure 6. Meanwhile, for RandomSteer it can be
seen in Figure 6.

Figure 3. Pseudocode of Fast RRT

Figure 4. Pseudocode of Improve RRT

Figure 5. Pseudocode of FastSample

Figure 6. Pseudocode of RandomSteer

Figure 7. Pseudocode of FastOptimal

Figure 8. Pseudocode of OptimizePath

Unlike other methods, Fast RRT utilizes

fusion and path optimization strategies to improve
the initial path solution. It can be seen in Figure 7.
Where OptimizePath is also used in all methods
used in this simulator as seen in Figure 8.

RRT*-Smart
RRT-Smart* is a variant of the RRT*

algorithm that aims to improve path quality and
efficiency by incorporating more intelligent data

processing techniques. The working process of
RRT*-Smart is the same as standard RRT*: the
tree is initialized with the root node at the starting
position. The algorithm searches for the nearest

node in the tree from a random point in the search
space at each iteration. However, RRT*-Smart
performs further optimization by using a more
directed sampling approach, which considers
random points and directs the sampling process to

regions that are more relevant to the final goal.
The algorithm creates new nodes by extending to
random points after finding the nearest node.
Then, it checks the paths between the new and the

nearest nodes to ensure that the paths do not
collide. RRT*-Smart not only adds new nodes to
the tree but also evaluates other nodes within the
range of the new node to determine the most ideal
path. This process increases productivity because

the time required to find better quality paths is
reduced [1, 13, 19]. One of the main advantages
of RRT*-Smart is the ability to generate smoother
and more ideal paths faster than traditional RRT*.

With the combination of intelligent sampling and
path optimization, RRT*-Smart becomes a better
choice for robotics applications that require fast
and efficient navigation in obstacle-filled spaces.
The algorithm can better adapt to complex

environments and reduce overall computation
time thanks to this smarter processing technology.
The Pseudocode of RRT*-Smart can be seen in
Figure 9.

Informed-RRT*
Informed-RRT* is a modified RRT*

algorithm. Its goal is to improve the efficiency of
pathfinding by using additional information about

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 463

the search space. The algorithm starts by
initializing a tree (or trees) with the root node at the
initial position. Then, based on the initial position

and the goal, a bounding box is determined. The
iteration process continues until certain conditions
are met, such as reaching a maximum number of
iterations or a set time. The algorithm uses the
SampleWithinBoundingBox function to pick a

random point from within the bounding box at each
iteration. This makes sampling more efficient by
limiting the search area. Next, the algorithm
identifies the nearest node x_nearest in the tree

and extends from that node towards the random
point to generate a new node x_new. Then, the
algorithm evaluates whether the path from the
nearest node to the new node is not interrupted by

collisions. The new node is embedded into the tree
and connected to the nearest node if the path is
not broken. Its ability to perform path optimization
through rewiring is one of the advantages of
Informed-RRT* [6, 11, 18, 20].

The algorithm will examine neighboring
nodes near the new node to find a more optimal
path. If a better path is found, the connections
between the nodes will be updated to produce a

more efficient path. In addition, the algorithm
checks whether the distance between the new
node and the goal position is smaller than a certain
threshold. If it is true, the path from the starting
position to the goal can be recovered. The

algorithm will return a failure status if the path is
not found after all iterations.

Figure 9. Pseudocode RRT*-Smart

Figure 10. Pseudocode of informed-RRT*

Figure 11. Pseudocode of informed Sample

These steps allow Informed-RRT* to find valid
paths more efficiently and optimally; this makes it
very useful for applications that require path
planning in complex spaces. Informed-RRT* has a

different way to do sampling when the initial path
is found. It can be represented visually in Figure
10 and Figure 11.

HBMO-Integrated Fast-RRT*
HBMO-integrated Fast-RRT* [21, 22, 23,

24, 25] utilizes fast sampling and random steering
in Fast RRT. In addition, there is a rewiring
process that supports this process not only

focusing on the speed of finding the initial path but
also better optimality on the initial path found. As
explained in Fast-RRT, by utilizing fast sampling
which applies the concept of constraint sampling,

exploration is not repeated in areas that have been
touched. In addition, random steering which
shows the work of bias sampling also allows the
method to be relevant in solving problems in a

narrow environment. Furthermore, by not using
the fast optimal in Fast-RRT, optimization is
carried out by applying batch beacon-based
optimization utilizing the Honey Bee Mating
Optimization procedure. From the initial path

obtained, all waypoints are called beacons, a term
commonly used in RRT*-Smart. From several

SINERGI Vol. 29, No. 2, June 2025: 459-472

464 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

beacons, they will be selected randomly to then be
repositioned with a focus on reducing path costs.
This reduction involves HBMO by assuming that
candidate solutions are nodes located around the

selected beacon. The fitness function in this
optimization is not only the cost path but also the
feasibility of the path (freedom from obstacles).
This approach replaces the fusion process that

previously existed in Fast-RRT. The main reason
is that fusion involves two different paths, which
rarely obtain new paths that vary by simply adding
samples. Another reason is that the process of
merging paths takes a long time. Therefore, this is

contrary to the initial motivation. Fast sampling, is
done to increase the convergence rate of Fast
RRT. It can be represented visually in Figure 12.

SIMULATOR DESIGN
The process of designing this path-planning

simulator is carried out systematically and
consists of several stages. The purpose of this
process is to produce a tool that can help people

learn and experiment with various path-planning
algorithms. The process of developing this
simulator is systematically structured as follows:

Figure 12. Pseudocode of HBMO-Integrated
Fast-RRT*

Figure 13. Select the available Algorithms from
the popup menu in the Simulator

Determination of Objectives and Scope
The main purpose of the simulator is to

provide an interactive tool that allows users to
compare and understand various sampling-based

path planning algorithms such as RRT, RRT*, Fast
RRT, RRT*-Smart, informed-RRT*, and HBMO-
based Fast-RRT*. In scenarios involving
environments with obstacles, the scope of the

simulator is designed to support robotic
navigation.

Architecture and User Interface (GUI) Design
MATLAB is used to design the Architecture

and User Interface (GUI) simulator. The GUI
provides an easy-to-use interface where the user
can select an algorithm to be tested, enter
parameters such as starting position and

destination, and view the resulting path visually.
The user interface components should include:
In this simulator, the user can directly select the
method they want to operate based on the popup
menu provided in Figure 13.

Parameters such as the number of
iterations, step size, and minimum distance to the
destination can be set. For the number of
iterations, the user can directly fill in the number of

samples on the number of nodes. The step size
has been determined in it, which requires the user
to edit the master code if the setting is needed.
While for the destination, it can be set by
determining the x and y coordinates at the goal

point in Figure 14. Before running, the
determination of the starting point is also provided
with the same setting steps.

In a simple way, users can determine the

test environment used for testing. There are 21
environments modeled with varying levels of
difficulty in Figure 15. Users only need to select
one of the environments on the Choose Map

popup menu.
Visualization of the path generated by the

algorithm in the form of a two-dimensional graph
can be generated by clicking run and the text box
will show the cost of the path after this operation

is complete. While at the bottom of the graph is
written the number of nodes needed, in finding the
initial path.

The Open Reference button is provided to

ease the user seeing the related reference by only
clicking it. The Reset button is also given, to
cancel any setting is needed.

Figure 14. Set Start and Goal Point

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 465

Figure 15. Select the Map Used for Simulation

Figure 16. Simulator Appearance

Implementation of Some Algorithms
Path Planning Algorithm Implementation

MATLAB implements selected path planning

algorithms, such as RRT, RRT*, Fast RRT, RRT*-
Smart, informed RRT*, and HBMO-integrated
Fast-RRT*. Each algorithm is written in the form of
a function that can process GUI input and produce

an optimal path with given parameters. All
algorithms are implemented modularly so that it is
easy for users if there is a desire for modification,
and integration with other algorithms, or even its
development. Some important features/modules

contained in the method function include:

1. Sampling Method (different methods have their
concept of sampling and exploration way)

2. Detection of collisions in the test environment
3. Rewiring process (in several algorithms such

as RRT*, RRT*-Smart, informed-RRT*, and
HBMO-integrated Fast-RRT*)

4. Sampling bias method and sampling area
limitation in Fast-RRT and HBMO-integrated
Fast-RRT*.

The ability to compare path planning

algorithms is a key feature of the simulator. In
addition to having a visual display, the quality of
the path can also be viewed and compared based
on the path costs available in the text box. Users
can also record any changes that occur when

operating a particular algorithm and perform
analysis based on the knowledge built through
theoretical learning through references.

Simulator Testing and Validation
After the implementation is complete, the

simulator is tested to ensure that each algorithm
runs as expected. To test the algorithm's ability to
find the optimal path, trials are carried out with

various environmental scenarios, ranging from
simple to complex, as a sample represented in
Figure 16. There are 21 different synthesis
environments with different levels of difficulty in
this simulator. By testing all these environments,

users can get a variety of comparisons as a basis
for further development. In addition, the testing
process ensures an easy-to-understand user
interface and a clear display of comparison results

between algorithms.

Reference Integration
The simulator has references related to the

algorithms used to help users understand them.
This documentation includes a brief description of

how the algorithm works, suitable applications,
and its advantages and disadvantages. This
documentation can be accessed directly from the
GUI, making it easier for users to understand the
method in more depth.

Code and performance optimization
The final stage of code and performance

optimization involves improving the performance
of the simulator, especially in terms of execution
speed and memory usage. This is important to

ensure that the simulator is real-time and
responsive because path-planning algorithms
often require a lot of computation time. Some
steps in this optimization include reducing the
computational complexity of certain algorithms

and using memo management techniques.

RESULT and DISCUSSION
Regarding the result shown in Figure 17,

through the simulator, the user can conclude that
in this first environment, HBMO-Fast RRT* has the
best performance. Not only is it fast, but the
resulting path is also the most optimal. To ease

observation, the user can observe the value below
the visual result that shows the number of nodes
needed to obtain the initial path and observe the
path cost in the text box to observe the optimality
of the path. To facilitate the analysis and

comparison, Table 1 is provided.

SINERGI Vol. 29, No. 2, June 2025: 459-472

466 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

Table 1. Comparative Results of Cost Path and
Required Nodes to Find Initial Path

Method Path Cost
Number of

Sampling

RRT 79.42 115

RRT* 79.42 124

Fast RRT 76.93 106
RRT*-Smart 73.49 121

Informed-RRT* 72.43 127
HBMO-Fast RRT* 70.83 102

In the first test, all algorithms are operated

to solve the path planning problem in test
environment 1. With a low level of difficulty. In this

test, the start and goal points are placed at (10,40)
and (70,40), respectively. The test is carried out by
limiting the number of samples to only 1000
repetitions. The results of this test can be seen in
Figure 17.

In a simple case like this, the characteristics
of the exploration process of each method are
difficult to compare. This is shown in the same
number of samplings between one method and

another. Therefore, users can use other more
complex environments such as environment 18,

environment 19, environment 20, and
environment 16 as depicted in Figure 18.

It can be seen in Figure 20 that the RRT*-
Smart method focuses on generating more

dominant random nodes around the beacon. This
is as mentioned in the reference, with the aim of
optimizing the rewiring process in line with
reducing the cost path.

Meanwhile, referring to Figure 18 (b),
informed-RRT* can effectively improve the
optimality of the path by centering the distribution
of nodes with elliptical restrictions, which are
determined based on the initial cost path

information, and direct cost from start to goal.
Thus, not only theoretically, but users can also
observe the optimality directly and prove that the
underlying theory is correct. As a note, the results

in the form of a straight path given by the two
tested methods (Figure 19) are the result of the
path optimization that applies triangular inequality.
In this simulator, all methods have been equipped
with the ability to shorten the final path by applying

the method.

(a) (b) (c)

(d) (e) (f)

Figure 17. Simulator testing for all algorithms on test environment 1 (a) RRT (b) RRT* (c) Fast-RRT (d)
RRT*-Smart (e) Informed-RRT* (f) HBMO-Fast-RRT*

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 467

(a) (b)

(c) (d)
Figure 18. Test Environment (a) environment 18, (b) environment 19, (c) environment 20, (d)

environment 16

(a) (b)
Figure 19. Comparison of Path Optimization Technique (a) RRT*-Smart (b) Informed-RRT* and

HBMO-Integrated Fast-RRT*

SINERGI Vol. 29, No. 2, June 2025: 459-472

468 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

(a) (b) (c)

(d) (e) (f)
Figure 20. Performance of each method in solving complex problems (a) RRT (b) RRT* (c) Fast RRT

(d) RRT*-Smart (e) informed-RRT* (f) HBMO-Integrated Fast-RRT*

Furthermore, to be able to determine the

performance of each method in solving more
complex problems, simulations were carried out in

test environment 8. In this test, the start and goal
points were positioned at (10,10) and (70,50),
respectively. With a sampling restriction of 2000,
the results are visually shown in Figure 19. As
seen in Figure 19, with a limited number of nodes

and a wider exploration scope, only the method
with the expansion method can effectively solve
the problem. The effectiveness is seen from the
speed of finding the initial path, and also the path

cost on the optimization path. To present the
detailed results of this experiment, Table 2 is
given.

By observing Table 2, the fast ability to
provide the initial path greatly determines the path

optimization process. A method with good speed
in determining the initial path will have a great
chance of optimizing the optimization process. As
shown in Figure 20, RRT*-Smart is not better than

informed-RRT* while the optimization method and
concept in it show very good performance
referring to Figure 19.

Table 2. Comparison of Cost Path and Required
Nodes to Find Initial Path

Method Path Cost
Number of

Sampling

RRT 80.6443 345

RRT* 80.1165 319

Fast RRT 80.2662 209
RRT*-Smart 81.8190 321

Informed-RRT* 80.0095 223

HBMO-Fast RRT* 80.0045 205

This is not because of the uncertainty of the

optimization method but rather the different
optimization time adequacy. In RRT*-Smart, the

duration of the initial path is longer than that of
informed-RRT*. So the effectiveness of
optimization, the adequacy of time, is very much
determined by the method in the algorithm.

Furthermore, in informed-RRT* and RRT*-
Smart, the path expansion method is carried out
by maintaining the method in RRT* which tends to
be slow, while in HBMO-Integrated Fast-RRT*
there is fast sampling (as proven in Figure 20)

because it adopts a method of determining the
initial path that is almost the same as Fast RRT.

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 469

(a)

(b)

(c)

SINERGI Vol. 29, No. 2, June 2025: 459-472

470 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

(d)

Figure 21. Comparison of Informed-RRT* and HBMO-Integrated Fast-RRT* for Solving Path Planning
in Map 9

So that it is possible for HBMO-integrated

Fast-RRT* to have sufficient time to perform
optimization. This statement can be strengthened
by the test results in environment 9 for the
informed-RRT* and HBMO-integrated Fast-RRT*
methods with the number of allowed samplings

limited to only 2000 values, and the start and goal
points spanning positions (10,10) and (75,75),
which are presented in Figure 21. Then, with the
addition of the number of samplings by 4000,

informed-RRT* can effectively produce paths with
relatively the same path cost as HBMO-integrated
Fast-RRT*, namely 114.7 and 114.9, respectively.

By comparing Figure 20 (b) and Figure 20
(d), with a limited number of samplings, HBMO-

Integrated Fast-RRT* can still perform its task well
even though it is not more optimal if the number of
allowed samplings is large, such as 4000 (in this
case).

CONCLUSION
The developed path planning simulator

enables the understanding and analysis of various
sampling-based path planning algorithms, such as

RRT, RRT*, Fast RRT, and other variations. It
helps in determining the advantages and
disadvantages of each method in a realistic and
applicable context by providing a platform that

allows users to directly test and compare the
characteristics of each algorithm. Furthermore,
thanks to the integration of in-depth references
and explanations, the simulator enhances the

user's understanding of the concepts and how
each algorithm works. The simulator is highly
relevant for education and research in the field of
robotics and automation systems because it can
accelerate the learning process and provide a

more accurate evaluation of path-planning

techniques. As a result, the simulator serves not
only as a learning aid but also as a useful tool for
developers and researchers to create more
effective navigation solutions.

ACKNOWLEDGMENT
This research was funded by the

Directorate of Research, Technology, and
Community Service, Directorate General of Higher

Education, Research and Technology, Ministry of
Education, Culture, Research, and Technology, in
the Fundamental-Regular Research Scheme,
2024, and supported by Universitas Mercu Buana.

REFERENCES
[1] Y. Huang and C. Jin, ''Path Planning Based

on Improved RRT Algorithm," 2023 2nd
International Symposium on Control

Engineering and Robotics (ISCER),
Hangzhou, China, 2023, pp. 136-140, doi:
10.1109/ISCER58777.2023.00030.

[2] S. Ganesan, B. Ramalingam, and R. E.
Mohan, “A hybrid sampling-based RRT* path

planning algorithm for autonomous mobile
robot navigation,” Expert Systems with
Applications, vol. 258, pp. 125206–125206,
Aug. 2024, doi: 10.1016/j.eswa.2024.

125206.
[3] Z. Chen, X. Zhang, L. Wang and Y. Xia, "A

Fast Path Planning Method Based on RRT
Star Algorithm," 2023 3rd International

Conference on Consumer Electronics and
Computer Engineering (ICCECE),
Guangzhou, China, 2023, pp. 258-262, doi:
10.1109/ICCECE58074.2023.10135365.

[4] Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-

p-ISSN: 1410-2331 e-ISSN: 2460-1217

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 471

RRT: A RRT-based optimal path finding
method,” Applied Sciences, vol. 11, no. 24,
2021, doi: 10.3390/app112411777.

[5] S. Li and C. Zhu, "Improved RRT*-Smart
Algorithm for UGV Path Planning in
Emergency Rescue Scenarios," 2024 7th
International Conference on Robotics,
Control and Automation Engineering

(RCAE), Wuhu, China, 2024, pp. 212-218,
doi: 10.1109/RCAE62637.2024.10833983.

[6] Y. Zhao, Y. Liu, H. Gao and S. Yan,
"Research on Informed-RRT* with Improved

Initial Solution," 2022 4th International
Conference on Intelligent Control,
Measurement and Signal Processing
(ICMSP), Hangzhou, China, 2022, pp. 977-

981, doi: 10.1109/ICMSP55950.2022.
9859229.

[7] H. Suwoyo, A. Adriansyah, J. Andika, A.
Ubaidillah, and M. F. Zakaria, “An Integrated
RRT*SMART-A* Algorithm for solving the

Global Path Planning Problem in a Static
Environment,” IIUM Engineering Journal, vol.
24, no. 1, pp. 269–284, Jan. 2023, doi:
10.31436/iiumej.v24i1.2529.

[8] D. K. Muhsen, F. A. Raheem, and A. T.
Sadiq, “A Systematic Review of Rapidly
Exploring Random Tree RRT Algorithm for
Single and Multiple Robots,” Cybernetics and
Information Technologies, vol. 24, no. 3, pp.

78–101, Sep. 2024, doi: 10.2478/cait-2024-
0026.

[9] D. Muriyatmoko, A. Djunaidy, and A.
Muklason, “Heuristics and Metaheuristics for

Solving Capacitated Vehicle Routing
Problem: An Algorithm
Comparison,” Procedia Computer Science,
vol. 234, pp. 494–501, 2024, doi:
10.1016/j.procs.2024.03.032.

[10] F. Martinez, E. Jacinto, and H. Montiel,
“Rapidly Exploring Random Trees for
Autonomous Navigation in Observable and
Uncertain Environments,” International

Journal of Advanced Computer Science and
Applications, vol. 14, no. 3, Jan. 2023, doi:
10.14569/ijacsa.2023.0140399.

[11] W. Wu, C. Kong, Z. Xiao, Q. Huang, M. Yu,
and Z. Ren, “Multi-Indicator Heuristic

Evaluation-Based Rapidly Exploring Random
Tree Algorithm for Robot Path Planning in
Complex Environments,” Machines, vol. 13,
no. 4, p. 274, Mar. 2025, doi:

10.3390/machines13040274.
[12] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan,

“PQ-RRT*: An improved path planning
algorithm for mobile robots,” Expert Systems

with Applications, vol. 152, pp. 113425–
113425, Apr. 2020, doi:
10.1016/j.eswa.2020.113425.

[13] B. Liao, F. Wan, Y. Hua, R. Ma, S. Zhu, and
X. Qing, “F-RRT*: An improved path planning
algorithm with improved initial solution and
convergence rate,” Expert Systems with
Applications, vol. 184, pp. 115457–115457,

Jun. 2021, doi: 10.1016/j.eswa.2021.115457.
[14] Z. Ma and J. Chen, “Adaptive path planning

method for UAVs in complex
environments,” International Journal of

Applied Earth Observation and
Geoinformation, vol. 115, p. 103133, Dec.
2022, doi: 10.1016/j.jag.2022.103133.

[15] M. i. Hossain, M. -U. Alam, M. K. Rahat, M.

A. Rahman, A. Shufian and M. S. R. Zishan,
"Autonomous Parking Valet System: Path
Planning and Control in Complex
Environments," 2025 2nd International
Conference on Advanced Innovations in

Smart Cities (ICAISC), Jeddah, Saudi Arabia,
2025, pp. 1-6, doi:
10.1109/ICAISC64594.2025.10959602.

[16] J. Tian, T. Chao, M. Yang, J. Zhu and S.

Wang, "A path planning algorithm based on
improved RRT* for UAVs," 2022 IEEE

International Conference on Unmanned
Systems (ICUS), Guangzhou, China, 2022,
pp. 1-6, doi: 10.1109/ICUS55513.2022.

9986963.
[17] Z. Yu and L. Xiang, “NPQ-RRT ∗ : An

Improved RRT ∗ Approach to Hybrid Path

Planning,” Complexity, vol. 2021, no. 1, Jan.
2021, doi: 10.1155/2021/6633878.

[18] C. Li, C. Wang, J. Wang, Y. Shen and M. Q.
. -H. Meng, "Sliding-Window Informed RRT*:
A Method for Speeding Up the Optimization

and Path Smoothing," 2021 IEEE
International Conference on Real-time
Computing and Robotics (RCAR), Xining,
China, 2021, pp. 141-146, doi:

10.1109/RCAR52367.2021.9517672
[19] H. Tao, Z. Yi and Z. Xiang, "Research On

Path Planning of Mobile Robot Based On
Improved RRT* Algorithm," 2022 IEEE 6th
Information Technology and Mechatronics

Engineering Conference (ITOEC),
Chongqing, China, 2022, pp. 666-670, doi:
10.1109/ITOEC53115.2022.9734505.

[20] D. Wu, L. Wei, G. Wang, L. Tian, and G. Dai,

“APF-IRRT*: An Improved Informed Rapidly-
Exploring Random Trees-Star Algorithm by
Introducing Artificial Potential Field Method
for Mobile Robot Path Planning,” Applied

Sciences, vol. 12, no. 21, p. 10905, Oct.

SINERGI Vol. 29, No. 2, June 2025: 459-472

472 H. Suwoyo et al., Design of path planning robot simulator by applying sampling based …

2022, doi: 10.3390/app122110905.
[21] H. Suwoyo, Y. Tian, A. Adriansyah, and J.

Andika, “A HBMO-based batch beacon
adjustment for improving the Fast-

RRT,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 38,
no. 1, pp. 107–107, Jan. 2025, doi:
10.11591/ijeecs.v38.i1.pp107-119.

[22] W. Wang, H. Gao, Q. Yi, K. Zheng and T. Gu,
"An Improved RRT* Path Planning Algorithm
for Service Robot," 2020 IEEE 4th
Information Technology, Networking,
Electronic and Automation Control

Conference (ITNEC), Chongqing, China,
2020, pp. 1824-1828, doi:
10.1109/ITNEC48623.2020.9085226.

[23] Q. Li, J. Wang, H. Li, B. Wang, and C. Feng,
“Fast‐RRT*: An Improved Motion Planner for

Mobile Robot in Two‐Dimensional

Space,” IEEJ Transactions on Electrical and
Electronic Engineering, vol. 17, no. 2, pp.
200–208, Oct. 2021, doi: 10.1002/tee.23502.

[24] Z. Iklima and T. M. Kadarina, “Distributed
Path Planning Classification with Web-based

3D Visualization using Deep Neural Network
for Internet of Robotic Things," Journal of
Science and Technology, vol. 13, no. 2, pp.
47–53, Dec. 2021.

[25] H. Suwoyo, A. Burhanudin, Y. Tian, and J.
Andika, “Problem solving path planning and
path tracking in a 3 DOF hexapod robot using
the RRT* algorithm with path optimization
and Pose-to-Pose,” SINERGI, vol. 28, no. 2,

p. 265, Apr. 2024, doi:
10.22441/sinergi.2024.2.007

