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Abstract  
This research aims to create a simulator for solving the global path 
planning of mobile robots. Various sampling-based methods such as 
Rapidly-exploring Random Tree (RRT), RRT*, and Fast-RRT, along 
with other derivative algorithms, have been widely used to solve path-

planning problems in mobile robots. The level of computational 
efficiency, path optimality, and the ability to adapt to variant 
environments are some of the issues that still arise, although these 
techniques have shown good results in many cases. Although the 

existing solutions are innovative, comparison between the existing 
methods is still difficult due to significant differences in convergence 
speed, implementation complexity, and quality of the resulting paths. 
This makes choosing the most suitable method for a particular 
application difficult. The simulator uses sampling-based path 

planning algorithms such as RRT*, Fast RRT*, RRT*-Smart, 

informed-RRT*, and Honey Bee Mating Optimization-based Fast-
RRT*. With this simulator, users can easily compare the performance 
of each algorithm and see the characteristics and efficiency of each 

algorithm in various situations. By running all methods through this 
simulator, the user can easily compare the methods based on 
convergence speed and optimality. Therefore, it will effectively help 
users understand robot navigation, improve the quality of learning, 

and promote the development of path-planning technology for mobile 
robots. 
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INTRODUCTION 
As the need for robotics for various 

applications, such as manufacturing, 
environmental exploration, and autonomous 
transportation, increases, mobile robot navigation 
becomes increasingly important. Planning the 
best path for the robot to reach the goal while 

avoiding obstacles is the main challenge in this 
navigation. Randomly exploring Random Tree 
(RRT)[1][2] and its variants (RRT* [3], Fast RRT 
[4], RRT*-Smart [5], informed-RRT* [6]) have 

been widely used due to their ability to explore 
large and complex search spaces. However, each 
method has its drawbacks, either in terms of 

computational efficiency, path optimality, or the 
ability to adapt to changing environments. 

Although these methods are very popular, 
users often have difficulty understanding the 
differences in characteristics between one 
algorithm and another and choosing the most 
appropriate method for a particular situation. 

Some algorithms may excel in computational 
speed, while others may be more optimal in the 
path quality generated. Due to the lack of tools that 
allow direct comparison between these methods, 

the learning process and the advancement of 
robotic navigation technology are increasingly 
difficult. 

http://creativecommons.org/licenses/by-sa/4.0/
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Given the need for tools that can accelerate 
the learning process and assess various path-
planning techniques, these simulators are 
essential. With this simulator, users can test 

algorithms directly and learn the advantages and 
disadvantages of each method in an applied and 
real-time context. In addition, this simulator is 
equipped with related references, so that users 

can not only test the performance of each method 
but also learn the theoretical concepts and 
mechanisms behind the implementation of the 
algorithm. These references provide a foundation 
for better algorithm design. MATLAB was chosen 

for this simulator because of its ability to visualize 
data and support various numerical operations 
quickly and accurately. In addition, its GUI 
program helps users interact with various path-

planning algorithms. This interface allows users to 
select algorithms, change parameters, and view 
simulation results visually. Simulation results can 
be viewed in the form of paths created or in the 
form of comparisons of performance metrics such 

as path optimality and computation time. As a 
result, this simulator not only facilitates algorithm 
testing but also makes it easier for users to 
analyze the performance of each method.  

 

MATERIAL AND METHOD 
This section explains some of the methods 

used in the simulator. The method used is 
sampling-based path planning. Sampling-based 

methods are path-planning approaches that rely 
on random sampling to explore the configuration 
space without requiring a full representation of the 
space. This method is often used in situations 

where full mapping of the space would be too 
difficult or inefficient. This method allows the 
search for valid paths between known points in the 
configuration space. This simulator is equipped 

with references to related methods so that it can 
provide a comprehensive explanation. Complete 
and varied references show the development of 
sampling-based path-planning methods. There 
are two types of path-planning problems, namely 

local and global. Global path planning plans a path 
from the starting point to the destination point by 
considering the entire environment or available 
maps, without considering changes in conditions 

in the field.  
Meanwhile, local path planning focuses on 

path planning based on real-time surrounding 
conditions, adjusting to changes in the 
surrounding environment to avoid obstacles or 

other dynamic conditions. Thus, global path 
planning is more holistic, while local path planning 
focuses on adjusting paths in local areas. This 
simulator is only limited to the use of the global 

path planning method. This simulator can help 
researchers compare one with another sampling 
method. Thus, the development of the method will 
be very possible. In addition, the presence of this 

scientific article will further complete the 
references that can be used in the form of an 
appropriate review. Before, all the methods are 
presented, the problem statement of global path 

planning [7] is explained. 

 
Problem Statements 

Let 𝑋 ∈ 𝑅𝑛  be the representation of state 

space for a path planning problem, with 𝑛 ∈ 𝑁 as 

space dimension, thus 𝑋 = {𝑋𝑜𝑏𝑠,  𝑋𝑓𝑟𝑒𝑒}  is state 

space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle coordinates 
and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋refers to the free space. Moreover, if 

the start node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒
 and goal node 

𝑔𝑜𝑎𝑙   

𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒
are given, then referring to 𝑋𝑜𝑏𝑠

, the 

path planning algorithm has to find the ideal path 
from to those nodes, denoted as 
 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒

with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡
and 

 𝜎(𝑇) = 𝑥𝑔𝑜𝑎𝑙
where 𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟} 

for 𝑟 is the radius around 𝑥𝑔𝑜𝑎𝑙
. 

 

Rapidly Exploring Random Tree (RRT) 
For robots moving in large and complex 

spaces, Rapidly Exploring Random Trees (RRT) 
is one of the most popular path-planning 
algorithms. Steven M. LaValle first used this 
algorithm in 1998 to explore the search space 

quickly and efficiently, especially in environments 
with many obstacles [2, 8, 9, 10]. After reaching a 
target or meeting certain conditions, RRT 
gradually builds a tree by randomly expanding 
nodes in the search space. Although RRT does 

not guarantee an ideal path, it is very effective for 
solving path-planning problems in large and 
complex environments [11, 12, 13, 14]. The 
algorithm works by selecting a random point in the 

search space and then expanding the tree from 
the nearest node to that point. This method makes 
RRT very useful for applications where rapid 
exploration of the search space is required, even 
though the path quality is not always optimal [15]. 

As shown in Figure 1, RRT starts its 
operation by initializing a tree (or trees) with the 
root node at the starting position. Then, this 
process is repeated several times until it reaches 

a set maximum number of iterations. The 
algorithm takes a random point in the search 
space at each iteration and searches for the 
nearest node in the tree. After finding the nearest 

node, the algorithm extends from that node 
towards the random point to generate a new node. 
Before adding a new node to the tree, the 
algorithm checks whether the path between the 



 

p-ISSN: 1410-2331  e-ISSN: 2460-1217 

 

 

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 461 

 

nearest node and the new node is collision-free. If 
not, the new node is anchored. In addition, the 
algorithm also checks whether the distance 

between the new node and the destination 
position is smaller than a certain threshold. If so, 
the path from the starting position to the 
destination can be returned. The algorithm returns 
to failure status if the path is not found after all 

iterations. In this way, RRT explores the search 
space and finds a route that can be used by the 
navigating robot. 
 

RRT* 
RRT* (RRT Star) is an evolution of the 

Randomly Exploring Random Tree (RRT) 
algorithm that aims to improve the optimality of the 

generated paths. While RRT focuses on rapidly 
exploring the search space, RRT* adds an 
optimization component by updating the 
generated paths as the tree grows [11, 16, 17, 18]. 
In RRT*, the algorithm examines existing nodes to 

see if a better path can be formed by connecting 
the new node to other nearby nodes in the tree. In 
this way, RRT* attempts to improve the quality of 
the solution and reduce the path length. RRT* also 

has a convergence guarantee, meaning that it will 
find a path that is close to the ideal in a complex 
search space as it iterates. In situations where 
path optimality is critical, such as in robotic 
settings that require high efficiency and minimal 

energy consumption, the application of RRT* is 
very beneficial.  

Referring to Figure 2, the RRT* algorithm 
starts by initializing a tree (or trees) with the root 

node at the starting position. This process 
performs several iterations until it reaches a 
specified maximum number of iterations. The 
algorithm takes a random point in the search 
space at each iteration and searches for the 

nearest node in the tree from that random point. 
The algorithm generates a new node by extending 
from the nearest node to the random point. Then, 
if the path between the new and nearest nodes 

does not collide, the new node is inserted into the 
tree and connected to the nearest node. At this 
stage, RRT* also functions to optimize the path 
that has been found by checking the nodes that 
are within the range of the new node to determine 

if a better path can be created. If found, the 
relationships between the nodes are updated to 
create a more efficient path. In addition, the 
algorithm checks whether the distance between 

the new node and the destination position is 
smaller than a certain threshold. If so, the path 
from the starting position to the destination can be 
returned.  

 

Figure 1. Pseudocode of RRT 
 

 

Figure 2. Pseudocode RRT* 
 

The algorithm will return to failure status if the path 
is not found after all iterations. These steps allow 

RRT* to find valid paths and optimize them to 
improve navigation efficiency. 

 

Fast-RRT 
To improve the speed and efficiency of path 

planning, Fast RRT is a variant of the Rapidly 
exploring Random Tree (RRT) algorithm that 
focuses on reducing the computation time 
required to find a path while maintaining effective 

space exploration capabilities. Fast RRT 
implements a more efficient sampling strategy and 
reduces the complexity of the path-finding process 
[4, 7, 10]. Biased sampling is a way that the Fast 

RRT algorithm more often selects random points 
around the target area or previously discovered 
paths. In this way, the algorithm can quickly direct 
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the growth of the tree towards the desired goal. In 
addition, Fast RRT also implements constraint 
sampling, which means that the algorithm 
considers physical constraints and environmental 

obstacles when sampling. Keeping the path within 
the allowed limits helps prevent contention and 
improves the quality of the generated paths. 

As seen in Figure 3, Fast RRT has two 

stages, namely improved RRT and fast optimal, 
both of which can be seen in Figure 4 and Figure 
7. Referring to Figure 4, Fast Optimal consists of 
two methods, namely Fast Sampling and 
RandomSteer, which can be seen in Figure 5 and 

Figure 6. Meanwhile, for RandomSteer it can be 
seen in Figure 6. 

 
 

Figure 3. Pseudocode of Fast RRT 
 

 

Figure 4. Pseudocode of Improve RRT 
 

 

Figure 5. Pseudocode of FastSample 
 

 

Figure 6. Pseudocode of RandomSteer 

 
 

Figure 7. Pseudocode of FastOptimal 

 

Figure 8. Pseudocode of OptimizePath 
 

Unlike other methods, Fast RRT utilizes 

fusion and path optimization strategies to improve 
the initial path solution. It can be seen in Figure 7. 
Where OptimizePath is also used in all methods 
used in this simulator as seen in Figure 8. 

 

RRT*-Smart 
RRT-Smart* is a variant of the RRT* 

algorithm that aims to improve path quality and 
efficiency by incorporating more intelligent data 

processing techniques. The working process of 
RRT*-Smart is the same as standard RRT*: the 
tree is initialized with the root node at the starting 
position. The algorithm searches for the nearest 

node in the tree from a random point in the search 
space at each iteration. However, RRT*-Smart 
performs further optimization by using a more 
directed sampling approach, which considers 
random points and directs the sampling process to 

regions that are more relevant to the final goal. 
The algorithm creates new nodes by extending to 
random points after finding the nearest node. 
Then, it checks the paths between the new and the 

nearest nodes to ensure that the paths do not 
collide. RRT*-Smart not only adds new nodes to 
the tree but also evaluates other nodes within the 
range of the new node to determine the most ideal 
path. This process increases productivity because 

the time required to find better quality paths is 
reduced [1, 13, 19]. One of the main advantages 
of RRT*-Smart is the ability to generate smoother 
and more ideal paths faster than traditional RRT*. 

With the combination of intelligent sampling and 
path optimization, RRT*-Smart becomes a better 
choice for robotics applications that require fast 
and efficient navigation in obstacle-filled spaces. 
The algorithm can better adapt to complex 

environments and reduce overall computation 
time thanks to this smarter processing technology. 
The Pseudocode of RRT*-Smart can be seen in 
Figure 9. 

 

Informed-RRT* 
Informed-RRT* is a modified RRT* 

algorithm. Its goal is to improve the efficiency of 
pathfinding by using additional information about 



 

p-ISSN: 1410-2331  e-ISSN: 2460-1217 

 

 

H. Suwoyo et al., Design of path planning robot simulator by applying sampling based … 463 

 

the search space. The algorithm starts by 
initializing a tree (or trees) with the root node at the 
initial position. Then, based on the initial position 

and the goal, a bounding box is determined. The 
iteration process continues until certain conditions 
are met, such as reaching a maximum number of 
iterations or a set time. The algorithm uses the 
SampleWithinBoundingBox function to pick a 

random point from within the bounding box at each 
iteration. This makes sampling more efficient by 
limiting the search area. Next, the algorithm 
identifies the nearest node x_nearest in the tree 

and extends from that node towards the random 
point to generate a new node x_new. Then, the 
algorithm evaluates whether the path from the 
nearest node to the new node is not interrupted by 

collisions. The new node is embedded into the tree 
and connected to the nearest node if the path is 
not broken. Its ability to perform path optimization 
through rewiring is one of the advantages of 
Informed-RRT* [6, 11, 18, 20].  

The algorithm will examine neighboring 
nodes near the new node to find a more optimal 
path. If a better path is found, the connections 
between the nodes will be updated to produce a 

more efficient path. In addition, the algorithm 
checks whether the distance between the new 
node and the goal position is smaller than a certain 
threshold. If it is true, the path from the starting 
position to the goal can be recovered. The 

algorithm will return a failure status if the path is 
not found after all iterations. 

 
 

Figure 9. Pseudocode RRT*-Smart 
 

 

Figure 10. Pseudocode of informed-RRT* 
 

 

Figure 11. Pseudocode of informed Sample 

 
These steps allow Informed-RRT* to find valid 
paths more efficiently and optimally; this makes it 
very useful for applications that require path 
planning in complex spaces. Informed-RRT* has a 

different way to do sampling when the initial path 
is found. It can be represented visually in Figure 
10 and Figure 11. 

 

HBMO-Integrated Fast-RRT* 
HBMO-integrated Fast-RRT* [21, 22, 23, 

24, 25] utilizes fast sampling and random steering 
in Fast RRT. In addition, there is a rewiring 
process that supports this process not only 

focusing on the speed of finding the initial path but 
also better optimality on the initial path found. As 
explained in Fast-RRT, by utilizing fast sampling 
which applies the concept of constraint sampling, 

exploration is not repeated in areas that have been 
touched. In addition, random steering which 
shows the work of bias sampling also allows the 
method to be relevant in solving problems in a 

narrow environment. Furthermore, by not using 
the fast optimal in Fast-RRT, optimization is 
carried out by applying batch beacon-based 
optimization utilizing the Honey Bee Mating 
Optimization procedure. From the initial path 

obtained, all waypoints are called beacons, a term 
commonly used in RRT*-Smart. From several 
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beacons, they will be selected randomly to then be 
repositioned with a focus on reducing path costs. 
This reduction involves HBMO by assuming that 
candidate solutions are nodes located around the 

selected beacon. The fitness function in this 
optimization is not only the cost path but also the 
feasibility of the path (freedom from obstacles). 
This approach replaces the fusion process that 

previously existed in Fast-RRT. The main reason 
is that fusion involves two different paths, which 
rarely obtain new paths that vary by simply adding 
samples. Another reason is that the process of 
merging paths takes a long time. Therefore, this is 

contrary to the initial motivation. Fast sampling, is 
done to increase the convergence rate of Fast 
RRT. It can be represented visually in Figure 12. 
 

SIMULATOR DESIGN 
The process of designing this path-planning 

simulator is carried out systematically and 
consists of several stages. The purpose of this 
process is to produce a tool that can help people 

learn and experiment with various path-planning 
algorithms. The process of developing this 
simulator is systematically structured as follows:  
 

 

Figure 12. Pseudocode of HBMO-Integrated 
Fast-RRT* 

 

 

Figure 13. Select the available Algorithms from 
the popup menu in the Simulator 

Determination of Objectives and Scope 
The main purpose of the simulator is to 

provide an interactive tool that allows users to 
compare and understand various sampling-based 

path planning algorithms such as RRT, RRT*, Fast 
RRT, RRT*-Smart, informed-RRT*, and HBMO-
based Fast-RRT*. In scenarios involving 
environments with obstacles, the scope of the 

simulator is designed to support robotic 
navigation. 
 

Architecture and User Interface (GUI) Design 
MATLAB is used to design the Architecture 

and User Interface (GUI) simulator. The GUI 
provides an easy-to-use interface where the user 
can select an algorithm to be tested, enter 
parameters such as starting position and 

destination, and view the resulting path visually. 
The user interface components should include: 
In this simulator, the user can directly select the 
method they want to operate based on the popup 
menu provided in Figure 13. 

Parameters such as the number of 
iterations, step size, and minimum distance to the 
destination can be set. For the number of 
iterations, the user can directly fill in the number of 

samples on the number of nodes. The step size 
has been determined in it, which requires the user 
to edit the master code if the setting is needed. 
While for the destination, it can be set by 
determining the x and y coordinates at the goal 

point in Figure 14. Before running, the 
determination of the starting point is also provided 
with the same setting steps.   

In a simple way, users can determine the 

test environment used for testing. There are 21 
environments modeled with varying levels of 
difficulty in Figure 15. Users only need to select 
one of the environments on the Choose Map 

popup menu.  
Visualization of the path generated by the 

algorithm in the form of a two-dimensional graph 
can be generated by clicking run and the text box 
will show the cost of the path after this operation 

is complete. While at the bottom of the graph is 
written the number of nodes needed, in finding the 
initial path.  

The Open Reference button is provided to 

ease the user seeing the related reference by only 
clicking it. The Reset button is also given, to 
cancel any setting is needed. 

 
 

Figure 14. Set Start and Goal Point 
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Figure 15. Select the Map Used for Simulation 

 
 

Figure 16. Simulator Appearance 
 

Implementation of Some Algorithms 
Path Planning Algorithm Implementation 

MATLAB implements selected path planning 

algorithms, such as RRT, RRT*, Fast RRT, RRT*-
Smart, informed RRT*, and HBMO-integrated 
Fast-RRT*. Each algorithm is written in the form of 
a function that can process GUI input and produce 

an optimal path with given parameters. All 
algorithms are implemented modularly so that it is 
easy for users if there is a desire for modification, 
and integration with other algorithms, or even its 
development. Some important features/modules 

contained in the method function include: 

1. Sampling Method (different methods have their 
concept of sampling and exploration way) 

2. Detection of collisions in the test environment 
3. Rewiring process (in several algorithms such 

as RRT*, RRT*-Smart, informed-RRT*, and 
HBMO-integrated Fast-RRT*) 

4. Sampling bias method and sampling area 
limitation in Fast-RRT and HBMO-integrated 
Fast-RRT*. 

The ability to compare path planning 

algorithms is a key feature of the simulator. In 
addition to having a visual display, the quality of 
the path can also be viewed and compared based 
on the path costs available in the text box. Users 
can also record any changes that occur when 

operating a particular algorithm and perform 
analysis based on the knowledge built through 
theoretical learning through references. 

 

Simulator Testing and Validation 
After the implementation is complete, the 

simulator is tested to ensure that each algorithm 
runs as expected. To test the algorithm's ability to 
find the optimal path, trials are carried out with 

various environmental scenarios, ranging from 
simple to complex, as a sample represented in 
Figure 16. There are 21 different synthesis 
environments with different levels of difficulty in 
this simulator. By testing all these environments, 

users can get a variety of comparisons as a basis 
for further development. In addition, the testing 
process ensures an easy-to-understand user 
interface and a clear display of comparison results 

between algorithms. 
 

Reference Integration 
The simulator has references related to the 

algorithms used to help users understand them. 
This documentation includes a brief description of 

how the algorithm works, suitable applications, 
and its advantages and disadvantages. This 
documentation can be accessed directly from the 
GUI, making it easier for users to understand the 
method in more depth. 

 

Code and performance optimization 
The final stage of code and performance 

optimization involves improving the performance 
of the simulator, especially in terms of execution 
speed and memory usage. This is important to 

ensure that the simulator is real-time and 
responsive because path-planning algorithms 
often require a lot of computation time. Some 
steps in this optimization include reducing the 
computational complexity of certain algorithms 

and using memo management techniques. 
 

RESULT and DISCUSSION 
Regarding the result shown in Figure 17, 

through the simulator, the user can conclude that 
in this first environment, HBMO-Fast RRT* has the 
best performance. Not only is it fast, but the 
resulting path is also the most optimal. To ease 

observation, the user can observe the value below 
the visual result that shows the number of nodes 
needed to obtain the initial path and observe the 
path cost in the text box to observe the optimality 
of the path. To facilitate the analysis and 

comparison, Table 1 is provided. 
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Table 1. Comparative Results of Cost Path and 
Required Nodes to Find Initial Path 

Method Path Cost 
Number of 

Sampling 

RRT 79.42 115 

RRT* 79.42 124 

Fast RRT 76.93 106 
RRT*-Smart 73.49 121 

Informed-RRT* 72.43 127 
HBMO-Fast RRT* 70.83 102 

 
In the first test, all algorithms are operated 

to solve the path planning problem in test 
environment 1. With a low level of difficulty. In this 

test, the start and goal points are placed at (10,40) 
and (70,40), respectively. The test is carried out by 
limiting the number of samples to only 1000 
repetitions. The results of this test can be seen in 
Figure 17. 

In a simple case like this, the characteristics 
of the exploration process of each method are 
difficult to compare. This is shown in the same 
number of samplings between one method and 

another. Therefore, users can use other more 
complex environments such as environment 18, 

environment 19, environment 20, and 
environment 16 as depicted in Figure 18.  

It can be seen in Figure 20 that the RRT*-
Smart method focuses on generating more 

dominant random nodes around the beacon. This 
is as mentioned in the reference, with the aim of 
optimizing the rewiring process in line with 
reducing the cost path. 

Meanwhile, referring to Figure 18 (b), 
informed-RRT* can effectively improve the 
optimality of the path by centering the distribution 
of nodes with elliptical restrictions, which are 
determined based on the initial cost path 

information, and direct cost from start to goal. 
Thus, not only theoretically, but users can also 
observe the optimality directly and prove that the 
underlying theory is correct. As a note, the results 

in the form of a straight path given by the two 
tested methods (Figure 19) are the result of the 
path optimization that applies triangular inequality. 
In this simulator, all methods have been equipped 
with the ability to shorten the final path by applying 

the method. 

 
   

(a) (b) (c) 
   

(d) (e) (f) 

Figure 17. Simulator testing for all algorithms on test environment 1 (a) RRT (b) RRT* (c) Fast-RRT (d) 
RRT*-Smart (e) Informed-RRT* (f) HBMO-Fast-RRT* 
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(a) (b) 

  
  

(c) (d) 
Figure 18. Test Environment (a) environment 18, (b) environment 19, (c) environment 20, (d) 

environment 16 
 

  

(a) (b) 
Figure 19. Comparison of Path Optimization Technique (a) RRT*-Smart (b) Informed-RRT* and 

HBMO-Integrated Fast-RRT* 
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(a) (b) (c) 
   

(d) (e) (f) 
Figure 20. Performance of each method in solving complex problems (a) RRT (b) RRT* (c) Fast RRT 

(d) RRT*-Smart (e) informed-RRT* (f) HBMO-Integrated Fast-RRT* 

 
Furthermore, to be able to determine the 

performance of each method in solving more 
complex problems, simulations were carried out in 

test environment 8. In this test, the start and goal 
points were positioned at (10,10) and (70,50), 
respectively. With a sampling restriction of 2000, 
the results are visually shown in Figure 19. As 
seen in Figure 19, with a limited number of nodes 

and a wider exploration scope, only the method 
with the expansion method can effectively solve 
the problem. The effectiveness is seen from the 
speed of finding the initial path, and also the path 

cost on the optimization path. To present the 
detailed results of this experiment, Table 2 is 
given. 

By observing Table 2, the fast ability to 
provide the initial path greatly determines the path 

optimization process. A method with good speed 
in determining the initial path will have a great 
chance of optimizing the optimization process. As 
shown in Figure 20, RRT*-Smart is not better than 

informed-RRT* while the optimization method and 
concept in it show very good performance 
referring to Figure 19. 

Table 2. Comparison of Cost Path and Required 
Nodes to Find Initial Path 

Method Path Cost 
Number of 

Sampling 

RRT 80.6443 345 

RRT* 80.1165 319 

Fast RRT 80.2662 209 
RRT*-Smart 81.8190 321 

Informed-RRT* 80.0095 223 

HBMO-Fast RRT* 80.0045 205 

 
This is not because of the uncertainty of the 

optimization method but rather the different 
optimization time adequacy. In RRT*-Smart, the 

duration of the initial path is longer than that of 
informed-RRT*. So the effectiveness of 
optimization, the adequacy of time, is very much 
determined by the method in the algorithm.  

Furthermore, in informed-RRT* and RRT*-
Smart, the path expansion method is carried out 
by maintaining the method in RRT* which tends to 
be slow, while in HBMO-Integrated Fast-RRT* 
there is fast sampling (as proven in Figure 20) 

because it adopts a method of determining the 
initial path that is almost the same as Fast RRT.  
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(d) 

Figure 21. Comparison of Informed-RRT* and HBMO-Integrated Fast-RRT* for Solving Path Planning 
in Map 9 

 
So that it is possible for HBMO-integrated 

Fast-RRT* to have sufficient time to perform 
optimization. This statement can be strengthened 
by the test results in environment 9 for the 
informed-RRT* and HBMO-integrated Fast-RRT* 
methods with the number of allowed samplings 

limited to only 2000 values, and the start and goal 
points spanning positions (10,10) and (75,75), 
which are presented in Figure 21. Then, with the 
addition of the number of samplings by 4000, 

informed-RRT* can effectively produce paths with 
relatively the same path cost as HBMO-integrated 
Fast-RRT*, namely 114.7 and 114.9, respectively. 

By comparing Figure 20 (b) and Figure 20 
(d), with a limited number of samplings, HBMO-

Integrated Fast-RRT* can still perform its task well 
even though it is not more optimal if the number of 
allowed samplings is large, such as 4000 (in this 
case). 

 

CONCLUSION 
The developed path planning simulator 

enables the understanding and analysis of various 
sampling-based path planning algorithms, such as 

RRT, RRT*, Fast RRT, and other variations. It 
helps in determining the advantages and 
disadvantages of each method in a realistic and 
applicable context by providing a platform that 

allows users to directly test and compare the 
characteristics of each algorithm. Furthermore, 
thanks to the integration of in-depth references 
and explanations, the simulator enhances the 

user's understanding of the concepts and how 
each algorithm works. The simulator is highly 
relevant for education and research in the field of 
robotics and automation systems because it can 
accelerate the learning process and provide a 

more accurate evaluation of path-planning 

techniques. As a result, the simulator serves not 
only as a learning aid but also as a useful tool for 
developers and researchers to create more 
effective navigation solutions. 
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