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Abstract  
Although Rapidly Exploring Random Tree Star (RRT*) has been 
considered to be able to achieve convergence to an optimal solution, 
this method has a slow convergence speed and requires an infinite 
amount of time to produce a truly optimal solution. For this reason, 
RRT*-Smart which includes path optimization and intelligent 
sampling processes was introduced. Although the addition of these 
methods can directly complete infinite-duration RRT* searches, they 
will work once the initial path obtained with RRT* is available. The 
effectiveness of reducing the optimality time is determined by the 
initial path formed. If this path is not close to optimal, the path 
optimization and intelligent sampling process will take a long time, 
and vice-versa. For this reason, RRT*-Connect, which has the 
advantage of searching from two directions, is proposed in this study. 
The goal is to replace the RRT* algorithm to produce a more optimal 
initial formed path. Based on this approach, this method will be 
named Connect-RRT*-Smart. Several methods, such as RRT, RRT*, 
RRT*-Connect, and RRT*-Smart, are compared to see their 
performance in producing the feasible path. Regarding this 
comparative result, the proposed method shows better performance 
in terms of convergence speed and path optimality.  
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INTRODUCTION 

Path planning is one of the important 

techniques in developing autonomous robot 

navigation [1][2].  By solving this problem, the 
robot will be helped in determining the movement 

to reach a certain destination point [3]. There have 
been several types of path planning methods 
proposed so far. However, RRT*-Smart is claimed 
to be a method that can offer convergence speed 

and optimality simultaneously [4]. Different from its 

predecessors, RRT [5] or RRT* [6], RRT*-Smart 
involves path optimization and intelligent sampling 

methods [4, 5, 7]. The concept of these two 
additional methods is to explore an informed 
search space so that it is not strange if the path 
solution is better than RRT*. However, the two 
additional methods will only work if the path 

originally formed is available. Where this initial 
path will be obtained by applying conventional 

RRT*. Thus, the optimality that is not necessarily 

provided by RRT* will greatly affect the working 
speed of the two methods. In brief, if the initial path 
formed is sub-optimal, then there is a longer 
duration with a concentrated search space. This 

will improve the optimality of RRT*-Smart. 
However, this will very rarely happen because the 
RRT* exploration process applies to random 
sampling throughout the search area which 
searches undirected.  

As the use of mobile robots increases in 
human life, the number of studies on the theme of 
path planning also increases. This is proven by the 
many solving methods introduced by researchers. 

There are two classifications based on how 
expansion is carried out, namely sampling-based 
methods and search-based methods. Search-
based methods such as Breath First Search (BFS) 

[8], Depth First Search (DFS) [1][8], Dijkstra [9], 
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[10], and A*  [11][12], offer a high degree of path 
optimality. However, it has a slow convergence 
speed. Meanwhile, sampling-based methods tend 
to have low optimality but can work quickly. The 
researchers consider overcoming the speed of the 

search method to be more difficult than increasing 
the optimality of the sampling-based method. This 
is relatively the basis that influences the rapid 
development of sampling-based methods. Rapidly 

Exploring Random Trees (RRT) is the method that 
it is considered to have initiated this development. 
As the name suggests, RRT works by generating 
a random tree consisting of vertices that represent 
positions in the robot or vehicle configuration 

space. This tree is generated randomly by adding 
new nodes based on their randomness in the 
configuration space, then connecting these nodes 
with the closest node that was created before. 

Even though it has been able to solve the path 
planning problem, the solution provided is far from 
optimal. This is caused by an undirected random 
sampling process. So, by implementing the node 
reconnection stage, RRT develops with the name 

RRT* [13]. With this reconnection process, RRT* 
can improve the solution with a recursive iteration 
process. However, in a large environment, the 
time required to produce an optimal solution is as 
if infinite. This became a problem that was then 

paid attention to. In an effort to increase speed, 
this method is often combined with methods such 

as Potential Field [14, 15, 16], Genetic Algorithm 
[12, 17, 18, 19], Ant Colony Optimization [20][21], 

Artificial Bee Colony [21], Particle Swarm 

Optimization [23][24], and Neural Network [25], to 
produce a directed search process. In addition, 
there is also a fast method called RRT*-Connect 
[26], which adopts the working principle of RRT*-
Connect expansion while maintaining the node 

reconnection process. Meanwhile, to increase 
optimality, RRT* was developed by implementing 
triangle inequality. The use of a loose method like 
this is intended to optimize node determination 

when connection is made. So, the node 
connection provides the shortest path. Both 
methods specifically address certain limitations of 
the RRT* algorithm, focusing on improving either 
convergence speed or path optimality. However, 

they do not encompass a full solution to the 
broader challenges of RRT* path planning in 
complex environments. Based on this problem, a 
new method was introduced, namely RRT*-Smart.  

Unlike RRT*, RRT*-Smart implements Path 
Optimization and intelligent sampling, which works 
on the second layer when the initial path formed is 
given. For the record, the initial path formed is the 
path generated by RRT* which is then used as the 

basis for the application of the two methods. 

However, only a path that is at least sub-optimal 
will allow RRT*-Smart to work fast with a high level 
of optimality. Thus, to ensure that the initial path 
formed has high optimality, there needs to be 

development with a focus on replacing RRT* in the 
initial RRT*-Smart process. Where in this 
proposed research, RRT* will be replaced with 
RRT*-Connect in providing the initial path. RRT-

Connect (Rapidly Exploring Random Tree-
Connect) is a path planning algorithm designed to 
accelerate the exploration of configuration spaces 
in single-query problems. It works by constructing 
two trees from the starting and destination nodes 

until they are connected, providing higher 
efficiency than traditional RRT. Its development 
includes variants such as RRT*-Connect that 
introduce asymptotic optimality, allowing the 

discovered path to get closer to the optimal one 
with more iterations. Recent research has also 
integrated goal bias and node optimization 
strategies to improve search efficiency and path 
quality, which have been widely applied in mobile 

robotics and dynamic environments. However, the 
challenges in finding optimal paths have 
encouraged further development, such as the 
integration of artificial intelligence to improve real-

world adaptability [15, 26, 27]. 
Basically, RRT*-Smart improves the path 

quality when the initial path is obtained. However, 
this initial path was obtained using the 
conventional method adopted from RRT* which 

tends to be very slow [28]. Thus, RRT*-Connect 
and Bi-Directional expansion are applied to carry 

out the initial path determination process. The 
RRT*-Connect in question is a combined method 
between RRT-Connect and RRT*. This approach 
is feasible and scalable, considering the ability of 

RRT-Connect to perform two-way line generation 
from the starting point and the target point 
simultaneously. In addition, there is a rewiring 
stage adopted from RRT* in this approximated 

method, so that the optimality of the formed path 
is still considered. So, replacing RRT* with RRT-
Connect and bi-directional expansion at the early 
exploration stage of RRT*-Smart, will naturally 
optimize paths and increase planning speed. This 

description implies the contribution of this 
research, namely, improving RRT*-Smart. Initially, 
a random node is generated by surrounding the 
environment. Based on this node, the expansion 

of the start and goal point is carried out 
simultaneously. The result of this expansion 
process will be a series of nodes managed at 𝑇𝑠 
and 𝑇𝑔. The success of this expansion is marked 

by the existence of new nodes that can be 

connected to each of the nearest nodes at 𝑇𝑠 and 

𝑇𝑔 without collisions with any obstacles in the 
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environment. This process is done by adopting 
RRT* expansion work while maintaining rewiring 
processes. In addition, the connecting process is 
carried out referring to 𝑇𝑔. This is done by making 

a new node in 𝑇𝑠, 𝑞𝑛𝑒𝑤𝐴, a reference for steering the 
process to get a new node as a child of the last 

new node in 𝑇𝑔, 𝑞𝑛𝑒𝑤𝐵
. This process is the existing 

Greedy Extending. Thus, this expansion will 
remain centralized at the same meeting point. This 
also becomes the basis for stopping the expansion 
process in one cycle. This process then repeats 

until the initial path is found. Furthermore, the 
stages in RRT*-Smart, path optimization and 
intelligent sampling, were adopted and maintained 
in operation. With stages like this, you get RRT*-

Smart with a faster expansion process because 
there is bidirectional expansion and connection. 
Regarding this achievement, several methods 
including the proposed method are then 
performed to solve the same problem of global 

path planning. They are then analyzed and 
compared in terms of convergence speed and 
path optimality.  

The rest of the paper is organized as 
follows: section II presents material and method 
supporting the work; section III discusses the 
proposed method and algorithm; section IV 
presents the result and discussion; Section V 

concludes this study.  

 
METHOD 

At this part, some methods are discussed 
including the Bidirectional-RRT*-Connect, RRT*-
Smart. However, before they are presented the 
problem definition of global path planning is given 
initially. Sequentially, RRT*-Smart and RRT*-
Connect are then compactly presented.   
 
Problem Statement 

Assuming that 𝑋 ∈ ℝ𝑛 is the state space 
representation of the path planning problem, 
where 𝑛 ∈ ℕ is the dimensions of this space, then 

𝑋 = {𝑋𝑜𝑏𝑠, 𝑋𝑓𝑟𝑒𝑒} or in another representation 

𝑋𝑜𝑏𝑠 ∈ 𝑋 which is the obstacle area and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋 

which represents free area in search space X. 
Furthermore, knowing the starting point  
𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒  and the ending point/destination 

𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒, then the ideal path or feasible path 

can be defined as 𝜎: [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒: where  

𝜎(0) = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and 𝜎(𝑇) ∈ 𝑋𝑔𝑜𝑎𝑙; where  

𝑋𝑔𝑜𝑎𝑙 = {𝑥 ∈ 𝑋|‖𝑥 − 𝑥𝑔𝑜𝑎𝑙‖ < 𝑟} where 𝑟 is the 

radius of the calculated termination area from 
𝑥𝑔𝑜𝑎𝑙. Therefore, with reference to the description 

above, the feasibility of the path planning can be 
described as follows: Given a search space  
𝑋 ∈ ℝ𝑛, barrier-free area 𝑋𝑓𝑟𝑒𝑒, knowledge of the 

location of all obstacles 𝑋𝑜𝑏𝑠, states at the starting 

point 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒, ending point/destination  

𝑥𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒  and the termination area around the 

end point 𝑋𝑔𝑜𝑎𝑙 ∈ 𝑋𝑓𝑟𝑒𝑒, how can the freeway be 

found 𝜎 = [0, 𝑇] ∈ 𝑋𝑓𝑟𝑒𝑒  with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡  and 

 𝜎(𝑇) ∈ 𝑋𝑔𝑜𝑎𝑙. Path Cost or path weight 𝜎𝑐𝑜𝑠𝑡 is an 

important observation in a path planning whose 
value must be positive. Furthermore, referring to 
this defined problem and to providing a basis for 
the proposal, some basic theories covering RRT*-
Connect, and RRT*-Smart are presented.  
 
RRT*-Connect 

RRT*-Connect as discussed in [24], is a 
combined form of RRT* and RRT-Connect. So, 
RRT*-Connect and RRT-Connect have 
differences. Even though they are different, both 
have the same exploration process, namely 
bidirectional search to form separate trees, 
namely 𝑇𝑎 (Tree built starting from the start point) 

and 𝑇𝑏 (Tree built starting from the goal point). 
The difference lies in the exploration, in RRT*-
Connect every time 𝑞𝑛𝑒𝑤𝐴 and 𝑞𝑛𝑒𝑤𝐵 are obtained 
and added to each of Trees A and Trees B, the 
connection is updated by applying the rewiring 
process found in RRT*. This is done to increase 
the optimality of the resulting path. The algorithm 
1 can be seen in Figure 1, where EXTEND* can 
be described as shown in Algorithm 2 (see Figure 
2) and CONNECT* is presented as Algorithm 3 as 
shown in Figure 3. 

The second important feature that RRT*-
Smart introduced is intelligent sampling. Because 
this sampling is focused on ideal path beacon 
nodes, it is not like random sampling. Using a 
Biasing Radius b, it establishes a radius for 
intelligent exploration around beacons. As soon as 
RRT*-Smart finds a shorter path, it repeats the 
path optimization process to construct more 
beacon nodes.  

RRT*-Smart thereby increases path cost 
and quickens path convergence. During the first 
path-finding phase, RRT*-Smart uses a traditional 
sampling method. Using the maximum and 
minimum bounds of its representation, this 
strategy will produce nodes in the search space at 
random. Applying a Euclidean distance evaluation 
to the set of nodes based on these random nodes 
yields the nearest node. Then, as a reference 
direction for creating new nodes, the direction from 
the closest node to a random node is ascertained. 
The computed distance between the random node 
and the closest node is used to determine the new 
node locations in addition to the reference 
direction. The new node is positioned as far away 
from the closest node as the calculated distance 
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permits if the distance is less than or equal to the 
designated reference distance. 

However, the new node is positioned so 
that it is equal to the designated reference 
distance from the closest node. After the sampling 
procedure in line 7 is completed, Algorithm 2 in 
lines 9 and 10 represents this process. Following 
that, RRT*-Smart will keep running by keeping an 
eye on the new node. The new node is connected 
to the nearest node as an Edge E if its location 
differs from one of the obstacle's points of position 
and if the line that connects it to that node does 
not cross any lines from the obstruction. In RRT, 
this procedure is known as the wiring process. 
Additionally, the parent node 𝑧𝑛𝑒𝑎𝑟 of the new node 

𝑧𝑛𝑒𝑤 will be temporarily assumed to be the nearest 
node. Next, the closeness of each of the new 
node's neighbours is assessed. As the parent 
node of the new node, the node with the closest 
distance will be referred to as 𝑧𝑚𝑖𝑛he new node is 
connected to the nearest node as an Edge E if its 
location differs from one of the obstacle's points of 
position and if the line that connects it to that node 
does not cross any lines from the obstruction. In 
RRT, this procedure is known as the wiring 
process. Additionally, the parent node 𝑧𝑛𝑒𝑎𝑟 of the 
new node 𝑧𝑛𝑒𝑤 will be temporarily assumed to be 
the nearest node. Next, the closeness of each of 
the new node's neighbors is assessed. As the 
parent node of the new node, the node with the 
closest distance will be referred to as 𝑧𝑚𝑖𝑛his new 
set of nodes is referred to as beacons (z 𝑏𝑒𝑎𝑐𝑜𝑛𝑠) 
because it is located on line 23. All of these 
beacons are connected by a path that connects 
them all, and the costs associated with this path 
are referred to as 𝑑𝑖𝑟𝑒𝑐𝑡𝑐𝑜𝑠𝑡𝑠. When this initial 
path is found, several samples that are spawned 
around z_beacons will initiate intelligent sampling. 
By optimizing new nodes that may be superior to 
the beacon position without requiring laborious 
sampling, this is done to lower path costs. Once 
the lower direct cost is identified, the path 
correction is finally carried out in the global 
looping. The pseudocode of RRT*-Smart can be 
seen from Algorithm 4 in Figure 4. 

 

 
Figure 1. Algorithm 1: RRT*-Connect  

 
Figure 2. Algorithm 2: EXTEND 

 

 
Figure 3. Algorithm 3: CONNECT* 

 

 
Figure 4. Algorithm 4: RRT*-Smart  

 
Proposed Method (Bidirectional-RRT*-
Connect-Assisted RRT*-Smart) 

Since the RRT*-connect shows better 
optimality and convergence speed in producing 
the initial path, logically it can be applied on the 
RRT*-Smart. It is utilized to replace the RRT* on 
RRT*-Smart. Initially, two trees represented the 
trees for expansion process begin from starting 
and goal point are respectively defined as 𝑇𝑎  and 
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𝑇𝑏 . At this initialization, there is no edge belongs to 
the trees. Once this initialization is conducted, the 
search process is initiated by generating a random 
node, 𝑥𝑟𝑎𝑛𝑑 . This random node is then used as the 
base for expanding and getting the new node. It is 
done by applying directly EXTEND* step as 
presented previously. Regarding this process, 
there will be two new nodes, one is for new nodes 
used for 𝑇𝑎 expansion and one is for new nodes 
used for 𝑇𝑏  expansion. For this reason, in its 

application, they are named as 𝑞𝑛𝑒𝑤𝐴 and 𝑞𝑛𝑒𝑤𝐵. 
The expansion is sequentially performed. 
𝑇𝑎  expansion is conducted and if the qnewA is 
successfully obtained, expansion process for 𝑇𝑏 is 
begun. Once the process is done, CONNECT* is 
performed. It is done by applying Algorithm 3 as 
presented before. This function aims to make the 
𝑇𝑏  expansion in the same direction with 
𝑇𝑎 . According to this process, the termination 
criteria is set to further used as indicator to 
measure whether the initial path is found or not. 
This process shows how the first step in this 
proposed method is just the same as RRT*-
Connect applied. 

Furthermore, 𝑛 is set to be equal to number 

of iterations 𝑖 when the initial path is found. It is 
then used as a factor when the intelligent sampling 
is performed. As can be seen in Algorithm 5 line 4, 
when 𝑛 is add with biasing radius b return the 
same values as current iteration gives, the 
intelligent sampling is performed. The intelligent 
sampling will improve the path by more dominant 
conducting the free sampling of node around 
beacons 𝑧𝑏𝑒𝑎𝑐𝑜𝑛𝑠 .  The beacons here are the 
nodes consisted of the tree after its optimized. 
Simultaneously, the 𝑑𝑖𝑟𝑒𝑐𝑡𝑐𝑜𝑠𝑡 are also calculated 
by measuring the distance of nodes from the 
starting to the goal point. This cost is then saved 
and named prevCost immediately when the initial 
path is found. It is further compared with the new 
beacon cost obtained. if the current beacon cost is 
better, prevCost will be updated and vice versa. 
The use of RRT*-Connect with bidirectional 
search speeds up the new path to be obtained. 
Therefore, the convergence speed of RRT*-Smart 
must be enhanced. Following these ideas, the 
algorithm of the proposed method is defined as 
follows 

As can be seen from Algorithm 5, the only 
difference between RRT*-Smart and this 
proposed method lies on line 9-16 in Algorithm 4 
which is replaced by Algorithm 1 and mentioned 
as shown in line 9 in Algorithm 5 in Figure 5. 

RESULTS AND DISCUSSION 
To evaluate the performance of the 

proposed algorithm, a series of experiments were 
carried out. As mentioned before, the proposed 
method RRT*-Smart-Bidirectional-RRT*-Connect 
can quickly find the initial path and is faster than 
RRT*-Smart. This claim is due to the presence of 
Bidirectional-RRT*-Connect in the proposed new 
method which replaces RRT* in RRT*-Smart. 
Therefore, RRT*-Smart-Bidirectional-RRT*-
Connect and RRT* are first compared with 
reference to the number of samplings required to 
find the initial path. The fewer the number of 
sampling nodes required, the better the 
performance in this determination, and vice versa. 
In this comparison study, there will be four 
different scenarios of environment, namely simple 
and complex environment. The following 
representative result shows the performance of 
determining initial path in the simple environment. 

 Figure 6 illustrates the efficiency of 
Bidirectional-RRT*-Connect to determine the 
initial path in terms of search time. Compared to 
RRT* which requires 1427 sampling nodes, the 
Bidirectional-RRT*-Connect search time is faster 
by only requiring 374 sampling nodes to determine 
the initial path. Apart from that, the optimality 
provided is also better, shown by lower costs by a 
quite high margin. However, the validity of path 
search efficiency needs to be tested in a more 
complex environment. As shown in Figure 7, the 
environment is set with moderate complexity. 

 

 
Figure 5. Algorithm 5: RRT*Connect-Assisted 

RRT*-Smart 
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(a) (b) 

Figure 6. Performance of RRT* (a) and Bidirectional-RRT*-Connect (b) for Determining Initial Path in 
1st Environment 

 

  
(a) (b) 

Figure 7. Performance of RRT* (a) and Bidirectional-RRT*-Connect (b) for Determining Initial Path in 
2nd Environment 

 

  
(a) (b) 

Figure 8. Performance of RRT* (a) and Bidirectional-RRT*-Connect (b) for Determining Initial Path in 
3rd Environment 
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Compared with RRT*, the search time 
represented by the number of sampling nodes of 
Bidirectional-RRT*-Connect is significantly 
reduced as shown in Figure 7. It can be seen that 
there are several ways to connect the starting 
point, and the destination point in the case of the 
second experiment. This means that the 
performance of the initial Bidirectional-RRT*-
Connect exploration method still has the potential 
for failure if it is limited by the number of options 
available. Thus, the third and fourth experiments 
were carried out. Referring to the results of the 
third test shown in Figure 8, the consistency of 
Bidirectional-RRT*-Connect in maintaining 
optimality and search time has been fulfilled. This 
is indicated by the low-cost value and the small 
number of sampling nodes, respectively. 

The claim above is also supported by the 
results of the fourth test with increased 
environmental complexity. Referring to Figure 9, 
the search time of Bidirectional-RRT*-Connect is 
reliable with a low number of sampling nodes 
compared to RRT*.  

This is then used as a basis for confidently 
replacing the conventional method of RRT*-Smart 
with bidirectional-RRT*-Connect to determine the 
initial path. With implementation in this way, an 
integrated method named Bidirectional-RRT*-
Connect-RRT*-Smart is proposed. Supported by 
the test results during research time, further 
testing of the proposed method was carried out. 
Different from previous testing and analysis, in this 
study the proposed method will be compared with 
its predecessor method, namely RRT*-Smart in 
terms of optimality represented by the cost path. 
Furthermore, to give the clearance of these 
performances, the ability of determining the initial 
path is also compared based on the time in 
second. This comparison is shown in Table 1.  

There are two environments used for this 
test with different complexities. To test optimality 
which includes the path optimization process for 
each method, this test will maintain the same 
number of samplings, namely 5000 times.  
 
Table 1. Comparative Result in Term of Search 

Time. 

Environment 
RRT* 

(second) 

Bidirectional-RRT*-

Connect (second) 

1st 0.70012 0.50272 

2nd 0.79222 0.67019 

3rd 0.50307 0.39783 

4th 0.62637 0.47851 

 

 
(a) 

 

 
(b) 

Figure 9. Performance of RRT* (a) and 
Bidirectional-RRT*-Connect (b) for Determining 

Initial Path in 4th Environment 
 

The comparative result of RRT*-Smart and 
the proposed method in the first environment is 
shown in Figure 10. As can be seen from Figure 
1, the start and goal point are assumed to be 
known by robot which are located on (65,5) and 
(5,75), respectively. Before the simulation is 
conducted, parameterization is conducted. it 
includes to defining EPS as the distance allowed 
to place the newly generated node to the trees. 
According to this information, the following results 
are obtained. 
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(a) 

 

 
(b) 

Figure 10. Optimality RRT*-Smart (a) and 
Bidirectional-RRT*-Connect-Assisted RRT*-

Smart (b) for 5000 Number of Sampling Node 
 

As shown in Figure 10, RRT*-Smart and 
Bidirectional-RRT*-Connect-Assisted RRT*-
Smart successfully determined a feasible path. 
However, based on the path costs obtained from 
the limited sampling number of 5000, the 
optimality of RRT*-Smart is limited. In theory, this 
is caused by the high sampling requirements in 
determining the initial path. So that this point is 
clear, the initial hypothesis that increasing the 
optimality of RRT*-Smart can be done by 
replacing the exploration process using 
Bidirectional-RRT*-Connect has been accepted. 
This is supported by the achievements of two 
methods when the number of samplings is only 
limited to 1500 which is shown in Figure 11. 

 It can be seen in Figure 11 that RRT*-
Smart cannot solve path planning problems 
caused by paths with narrow aisles and the 

starting point being far from the goal point. On the 
other hand, the proposed method can solve the 
problem with a good optimality of 100.4 which is 
similar to its achievement when the number of 
sampling nodes is increased up to 5000. In Figure 
11, the environment is designed with a hallway 
that is moderately narrow but there are few 
alternatives for connecting the starting point with 
the goal point. Therefore, representative results 
are not enough to prove that the optimality of the 
proposed method is better. Based on this, the two 
methods were compared again by applying them 
to an environment consisting of narrower 
passages with the alternative that the start-goal 
point connection was increased. This performance 
was first observed when the number of samples 
allowed was 4000 times. These results are shown 
in Figure 12. 
 

 
(a) 

 
(b) 

Figure 11. Optimality RRT*-Smart (a) and 
Bidirectional-RRT*-Connect-Assisted RRT*-

Smart (b) for 1500 Number of Sampling Node 
(5th Environment) 
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(a) 

 

 
(b) 

Figure 12. Optimality RRT*-Smart (a) and 
Bidirectional-RRT*-Connect-Assisted RRT*-

Smart (b) for 4000 Number of Sampling Node 
(6th Environment) 

 
Figure 12 shows a comparison between 

RRT*-Smart (a) and the proposed method (b). It 
can be seen that RRT*-Smart cannot solve the 
problem when the number of samples allowed is 
only 4000. While the proposed method can 
optimally produce the expected path. This shows 

that in a complex environment with narrow 
channels, the role of RRT* in Smart-RRT* cannot 
expand properly. Instead of obtaining an optimal 
path, the solution cannot be provided by RRT*-
Smart.  

With the same environment shown in 
Figure 12, the next experiment was observed 
based on the number of nodes in trees, elapsed 
time, and path cost solving the problem. It was 
conducted in order to prove that the proposed 
method offers the convergence rate and enough 
optimality as the new alternative algorithm to solve 
the global path planning. This result can be seen 
in Table 2.  

 
Table 2. Performance of Bidirectional-RRT*-

Connect-Assisted RRT*-Smart Based on 10 Trial 
Runs 

No 
Elapsed Time 

(Seconds) 

Number of 

Nodes in Tree 
Path Cost 

1 0.6909 1741 133.9696 

2 0.7259 1829 129.7226 

3 0.7568 1907 125.6812 

4 0.7195 1813 128.5003 

5 0.6846 1725 131.7774 

6 0.6719 1693 139.3332 

7 0.7033 1772 135.3682 

8 0.7064 1780 135.9793 

9 0.6929 1746 133.3820 

10 0.7239 1824 129.8406 

 
The last experiment used the number of 

sampling nodes as 4000, and there were 10 trial 
runs using MATLAB R2017b through a computer 
with a specification as follows: 3,6 GHz Quad-
Core Intel Core i3, 8 GB 2667 MHZ DDR4. 
According to the results presented in Table 2, the 
representative graph is given in Figure 13.  

Figure 13 shows a visualization of Table 2 
and represents the consistency in solving path 
problems in the 6th environment. This can be seen 
in the range (0.67, 0.75) for the search time, 
[1693,1907] for the number of nodes, and [125.68, 
139.33] in finding an initial path that is linear with 
the resulting path cost. 

 

 
(a) 
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(b) 

 

 
(c) 

Figure 13. Performance of Bidirectional-RRT*-Connect-Assisted RRT*-Smart After 10 Trial Runs with 
4000 Sampling Nodes Allowed, in Term of (a) Elapsed Time, (b) Number of Nodes in Tree, (c) Path 

Cost 
 

CONCLUSION 
The RRT*-Smart consists of smart 

sampling and path optimization that makes it 
better than RRT*. However, the optimality of the 
resulting path does not only depend on this 
optimization process, but also on the length of time 
to carry out the optimization. Where the ideal 
duration will be obtained when the initial path is 
obtained faster. Therefore, the exploration 
process and determining the initial path greatly 
influences the optimality that can be provided by 
RRT*-Smart. This is different from the 
characteristics of RRT* exploration with uniform 
sampling found in the initial RRT*-Smart process. 
Referring to this phenomenon, a bidirectional-
RRT*-connect method with a good convergence 
rate is proposed in determining the initial path. 
This method is applied to RRT*-Smart by 
replacing the sampling and wiring process 
methods at the beginning of the stage. Therefore, 
the duration that can be used for path optimization 
increases at limited sampling times. This is in line 
with the desire of most researchers to design an 
RRT* that can work effectively and optimally 
without relying on an infinite sampling process.  
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