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Abstract  

Convolutional neural networks (CNNs) represent a popular deep-
learning approach for image classification tasks. They have been 
extensively employed in studies aimed at classifying tuberculosis 
(TB), coronavirus disease 2019 (COVID-19), and normal conditions 
on chest X-ray images. However, there is limited research utilizing 
Indonesian data, and the integration of CNN models into user-
friendly interfaces accessible to healthcare professionals remains 
uncommon. This study addresses these gaps by employing three 
CNN architectures—AlexNet, LeNet, and a modified model—to 
classify TB, COVID-19, and normal condition images. Training data 
were sourced from both a local hospital in Indonesia (RSUP dr. 
Rivai Abdullah) and an additional online dataset. Results indicate 
that AlexNet achieved the highest accuracy, with rates of 97.52%, 
64.45%, and 92.43% on the Kaggle dataset, the RSUP Dr. Rivai 
Abdullah dataset, and the combined dataset, respectively. 
Subsequently, this model was integrated into a user interface and 
deployed for testing using new data from the RSUP Dr. Rivai 
Abdullah dataset. The web-based interface, powered by the Gradio 
library, successfully detected 7 out of 10 new cases with 70% 
accuracy. This implementation may enable medical professionals to 
make preliminary diagnoses. 
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INTRODUCTION  

Tuberculosis is a contagious disease that 
usually affects the lungs and is caused by a 
bacterial infection, namely, Mycobacterium 
tuberculosis (TB) [1]. The identification and 
diagnosis of TB are typically performed using 
chest X-ray images of the lungs. These images 
are examined by specialist radiologists to 
determine the final patient diagnosis. However, 
the number of specialist radiologists and the daily 
volume of TB patients undergoing X-ray imaging 
are often disproportionate, particularly in 
developing countries such as Indonesia. As a 
result, healthcare workers or radiologists may 
need more time to analyze each chest X-ray 
image, potentially leading to identification and 
diagnosis errors due to fatigue caused by 
inadequate rest. In Indonesia, which ranks 
second after India in terms of TB cases, 969,000 

cases and 93,000 deaths are recorded annually, 
equivalent to 11 deaths per hour [2].  

Efforts have been made to assist 
professionals in identifying TB using machine 
learning (ML) with chest X-ray imaging data, as 
observed in [3, 4, 5], where research was 
conducted to identify TB using convolutional 
neural network (CNN) models with datasets from 
China. Moreover, [6] utilized the VGG-16 
architecture to detect tuberculosis using X-ray 
image data from the NIAID TB dataset, and [7] 
compared nine different CNN models to classify 
TB. Additionally, [8] modified a method to 
improve the quality of TB chest X-rays using 
deep learning and the Shenzhen dataset.  

An ML model was then developed using an 
artificial neural network [9][10]. Subsequently,  
[11] utilized K-Nearest Neighbors (KNN) with 
HOG feature extraction. Meanwhile, [12] 
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proposed multitask optimization using a genetic 
algorithm to select the features to be fed into the 
support vector machine. However, these 
methods rely on features extracted from the X-
ray images. To address this, deep learning 
approaches have been implemented, as noted in 
[13, 14, 15]. Nevertheless, these studies primarily 
use global datasets. Furthermore, they were 
limited to creating and optimizing ML models and 
did not involve deployment processes, such as 
developing a user interface (UI) for healthcare 
professionals or radiology experts. In studies that 
did deploy ML models, such as  [16][17], python 
libraries and frameworks, including Bottle and 
Gradio, were used. However, research focusing 
on deploying ML models in UIs is still limited, 
especially for TB detection. Moreover, these 
studies utilized publicly accessible datasets from 
Kaggle [6][18] and datasets from China [3, 4, 5, 
16]. Data from Indonesia are limited and have 
only been presented in a few studies [19].  

To address this issue this study 
implements CNN methods with a private dataset 
containing chest X-ray images obtained from the 
Palembang city region in Indonesia. Unlike 
[20][21], which compared various traditional 
machine learning methods using the Brazil 
dataset, in this study, we compared three CNN 
architectures for identifying TB in the Palembang 
region of Indonesia. Subsequently, the CNN 
model is deployed in the form of a UI using the 
Gradio library. This library offers the advantage of 
enabling the creation of UIs for previously 
developed ML models, making them easier to 
access, such as by sharing URLs and 
applications. Furthermore, the resulting web 
interface is simpler and user-friendly. The 
deployment of this ML model is expected to 
assist doctors in rapidly and accurately identifying 
and diagnosing chest X-ray images 
automatically. 

The contributions of this study are as 
follows: 
(1) We developed a user-friendly website 

interface for identifying TB through X-ray 
images using a CNN with an Indonesian 
dataset, 

(2) We compared three architectures of deep 
learning for identifying TB. 

This paper is organized as follows. Section 1 
provides the background of the research. Section 
2 describes the methods used. The results and 
discussion are presented in Section 3. Finally, 
the conclusions are presented in Section 4.  
 
METHOD 

The data used in this research were 
sourced from the local hospital RSUP Dr. Rivai 

Abdullah in the form of chest X-ray images 
representing TB patients in the South Sumatra 
region. Additionally, data from Kaggle were 
utilized [12, 13, 14, 15, 16]. The collected data 
include chest X-ray images from TB, normal, and 
COVID-19 cases, with a total of 141 normal, 149 
TB, and 279 COVID-19 data. These data were 
obtained from residents of Banyuasin and its 
surrounding areas. Apart from the data acquired 
from RSUP Ddr. Rivai Abdullah, other data were 
obtained from Kaggle [7]. 

The Kaggle TB and normal case dataset 
consists of a combination of data from the 
BELARUS TB portal program dataset, NLM, and 
RSNA and includes 3500 normal data points and 
700 TB data points [7], and the TB dataset from 
Shenzen, China, comprises 662 data points [22]. 
Furthermore, the COVID-19 dataset, also 
obtained from Kaggle, is a combination of data 
from the PadChest dataset, a German medical 
school, SIRM, and GitHub, totaling 3500 COVID-
19 data points [23][24]. 

A comparison between these two datasets 
is presented in Table 1. According to the table, 
the two types of data exhibited significant 
differences, especially in the COVID-19 and TB 
image data. The data from RSUP Dr. Rivai 
Abdullah tended to be cleaner and clearer, while 
the data obtained from Kaggle were less clean 
and less clear, and they contained various 
biases. 

Table 1. Comparison Between the Chest X-Ray 
Image Conditions of the RSUP Dr. Rivai Abdullah 

And Kaggle Datasets 
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These two datasets were then grouped 
into three training datasets: a Kaggle dataset, an 
RSUP Dr. Rivai Abdullah dataset, and a 
combined dataset from both sources. These data 
were grouped in this way to obtain the best 
model for effectively generalizing test data. 

The data were then balanced using the 
undersampling method for the Kaggle data and 
the oversampling method for the RSUP data. 
Undersampling involves randomly removing or 
eliminating some members from the data group 
with more instances to make it proportionate to 
the group with fewer instances. Conversely, 
oversampling is the opposite of undersampling, 
where the group with fewer data points is 
randomly increased to match the group with more 
data points. Oversampling was applied to the 
RSUP Dr. Rivai Abdullah data because the 
number of data points in this dataset is relatively 
small (in the hundreds). The aim was to mitigate 
the impact of significant biases when performing 
data duplication. On the other hand, the 
undersampling method was applied to the Kaggle 
data because it had a larger number of data 
points, exceeding 1000. The aim was to prevent 
bias resulting from image similarity due to the 
oversampling process, even though some data 
were removed. The balancing results obtained for 
both datasets are shown in Figure 1.  

After balancing the datasets derived from 
both sources, i.e., RSUP Dr. Rivai Abdullah and 
Kaggle, the next step was data splitting. The data 
were divided into training, validation, and testing 
data. The testing data consisted of 10 images 
from each class (normal, TB, and COVID-19), 
resulting in a total of 30 images used as test 
data. These test data were obtained from both 
the RSUP Dr. Rivai Abdullah and Kaggle 
datasets. However, the primary test data used 
were from the RSUP Dr. Rivai Abdullah dataset 
because the main focus of the research was the 
ability to identify TB in X-ray images of 
Indonesian individuals. The data from Kaggle 
were only used for comparison purposes. 

 

 
Figure 1. Result of Dataset Balancing 

Once the test data were obtained, the 
remaining data were divided into training and 
validation data. The training data were used to 
train or build a CNN model, while the validation 
data were used to optimize the model obtained 
from the training process. The CNN model was 
trained using the training data, and its 
performance during training was evaluated using 
the validation data. 

During the CNN model training process, 
the splitting ratio between the training and 
validation data was 80:20, meaning that 80% of 
the total data was used as training data, while the 
remaining 20% was used as validation data. The 
results of the data-splitting step are shown in 
Figure 2. 

The data that had been previously divided 
needed to undergo a preprocessing stage before 
being used as inputs for the CNN model training 
process. The data preprocessing steps carried 
out in this research included cropping, grayscale 
conversion, resizing, scaling, and augmentation. 

The cropping process was performed on 
some images that had backgrounds other than 
chest X-ray images. The cropping process was 
performed manually for certain images. One of 
the results of this cropping procedure is shown in 
Figure 3.  

After the cropping process was completed, 
the next preprocessing step was to convert the 
images in the dataset into grayscale to ensure 
that each image became a grayscale image with 
consistent grayscale intensity levels, as some 
images may have had varying intensity levels. 
This method was employed to minimize research 
bias. Examples of X-ray images with different 
pixel intensity values are shown in Figure 4 (a). 
Many of these images were primarily sourced 
from the Kaggle dataset. The next preprocessing 
step was the resizing process, which was 
implemented to ensure that all utilized images 
were the same size. 
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Figure 2. Splits of the Training, Validation, 

and Testing Data 
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Figure 3. Sample of the Cropping Results 

 

  

  
(a) 

  

  
(b) 

Figure 4. (a) An example of a chest X-ray image 
with non-gray-scale image intensity. (b) A chest 

X-ray image after the grayscaling process 
 
This step was achieved by changing the Kaggle 
data, which originally had a size of 512 x 512 
pixels and the RSUP Dr. Rivai Abdullah data, 
which was originally approximately 2000 x 2000 
pixels, to sizes of 150 x 150 pixels. Resizing was 
performed to reduce the data size, as this 
parameter affects the computation time during 
the training process. 

The data that were resized were then 
preprocessed in the scaling stage, where the 
images were multiplied by a value of 1/255. 
Images are represented as 3D arrays or tensors 
with values ranging from 0 to 255. Therefore, 
multiplying each value by 1/255 results in a value 
range between 0 and 1. Scaling was 
implemented to facilitate the neural network 
learning process. 

The final preprocessing step was 
augmentation. The purpose of data augmentation 
is to create numerous image variations. The data 
augmentation strategy used included parameters 
such as width_shift_range=0.1, 
height_shift_range=0.1, zoom_range=0.1, 
horizontal_flip=True, rotation_range=0.1, and 
fill_mode='nearest'.  

In this study, the training process was 
conducted using three CNN architectures—the 
AlexNet architecture (Model A), the LeNet 
architecture (Model B), and the modified 
architecture (Model C)—using the three datasets 
discussed above.  AlexNet [25][26] and LeNet 
[27] were chosen because have yielded good 
medical image identification results.  Model C is a 
modified architecture resulting from self-
modification and development, with fewer 
parameters than those in AlexNet but deeper 
layers than those of LeNet, as shown in Table 2.  

Table 2. Modified Architecture (Model C) 

 Layer (Type) Output Shape 
Chest X-
Ray 
Parameter 

conv2d (Conv2D) (None, 148, 148, 32) 896 

conv2d_1 (Conv2D) (None, 146, 146, 64) 18496 

max_pooling2d 
(MaxPooling2D) 

(None, 73, 73, 64) 0 

dropout (Ddrpout) (None, 73, 73, 64) 0 

conv2d_2 (Conv2D) (None, 71, 71, 64) 36928 

max_pooling2d_1 
(MaxPooling2D) 

(None, 35, 35, 64) 0 

dropout_1 (Ddrpout) (None, 35, 35, 64) 0 

conv2d_3 (Conv2D) (None, 33, 33, 128) 73856 

max_pooling2d_2 
(MaxPooling2D) 

(None, 16, 16, 128) 0 

dropout_2 (Ddrpout) (None, 16, 16, 128) 0 

flatten (Flatten) (None, 32768) 0 

dense (Dense) (None, 64) 2097216 

dropout_3 (Ddrpout) (None, 64) 0 

dense_1 (Dense) (None, 3) 195 

 
Table 3. Training Parameters of the CNNs 
Parameter Value 

Optimizer Adam 

Learning Rate 5e-5–0 

Batch Size 32 

Loss Categorical Cross-Entropy 

Number of Epochs 100 

 
This architecture is used to compare the 
capabilities of AlexNet and LeNet in identifying 
conditions on chest X-rays. 

The training results of these three 
architectures served as comparison data to 
determine the best CNN model, which was used 
in the model deployment phase in the UI. The 
parameters used to train the three models were 
the same to ensure an equitable comparison 
among the three architectures. The parameters 
used in the training process can be found in 
Table 3. 
 
RESULTS AND DISCUSSION 
Training Results Obtained Using Three 
Models 

 The training was conducted on Model A, 
Model B, and Model C using the same 
parameters, namely, the adaptive moment 
estimation (Adam) optimizer, a batch size of 32, 
an initial learning rate of 5×10^(-5) (which then 
gradually decreased until it reached a value of 0), 
the categorical cross-entropy loss as the loss 
function, and a total of 100 epochs for training. 
The learning rate was gradually decreased by 
implementing a learning rate scheduler to prevent 
overfitting, which is an undesired behavior in ML 
by which a model provides accurate predictions 
for the training data but not for new data. The 
extent of overfitting could be observed from the 
difference between the training accuracy and 
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validation accuracy or that between the training 
loss and validation loss. 
 
Training Using the Kaggle Dataset 

The results of training and the comparison 
among the three models using the Kaggle 
dataset are shown in Figure 5. This figure shows 
the comparison graphs of the training and 
validation processes for the three models. In 
general, all three models experienced optimal 
increases in accuracy and decreases in their 
losses, as shown in Figures 5 (a) and (c). 

Model A exhibited greater accuracy 
increases and lower loss decreases for both the 
training data and the validation data than did the 
other two models. This result indicates that Model 
A was the best-performing model in this training 
scenario, followed by Model C and Model B. 
These results show that Model C (the modified 
model) performed well even though it has fewer 
parameters than AlexNet (Model A). Additionally, 
the performance was LeNet (Model B) was lower 
than that of the modified model. 
 
Training Using the RSUP Dataset 

The training results and the comparison 
among the three models using the RSUP dataset 
are shown in Figure 6. The images provide a 
clearer comparison of the three models. These 
images show the comparison graphs produced 
for the training and validation processes of the 
three models.  

In general, all three models experienced 
significant increases in accuracy and significant 
decreases in their losses. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Comparison Graphs for the (a) Training 
Accuracies, (b) Validation Accuracies, (c) 

Training Losses, and (d) Validation Losses 
Achieved on the Kaggle Dataset 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Comparison Graphs for the (a) Training 
Accuracies, (b) Validation Accuracies, (c) 

Training Losses, and (d) Validation Losses 
Achieved by the Three Models on the RSUP 

Dataset 
 
Model A exhibited greater accuracy increases 
and greater loss decreases than did the other two 
models. These results indicate that Model A 
performed best in this training scenario, followed 
by Model B and Model C, with nearly identical 
graph comparisons. These results indicate that 
Model C (the modified model) demonstrated fairly 
good performance despite having fewer 
parameters than AlexNet (Model A). Additionally, 
the performance of LeNet (Model B) was close to 
that of Model C during the training process using 
the RSUP Dr. Rivai Abdullah data. 
 
Training Using the Combined Dataset 

The results of the training process and the 
comparison among the three models conducted 
on the combined dataset are shown in Figure 7. 
This image shows graphs of the training and 
validation processes of the three models. From 
the graphs, it can be observed that all three 
models experienced significant accuracy 
increases and loss decreases; Model A had the 
highest accuracy increase and the lowest loss 
reduction among the three, indicating that Model 
A was the best-performing model in this training 
scenario. This result was followed by the results 
of Models C and B, which had similar graphs. 
These results indicate that Model C (the modified 
model) performed well despite having fewer 
parameters than AlexNet (Model A). In contrast, 
LeNet (Model B) exhibited lower performance 
than the modified model. 

The comparisons among the training and 
validation accuracy values produced by the three 
models on each dataset are shown in Table 4. 
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Table 5 displays the training and validation loss 
values yielded by the three models on each 
dataset. 

Based on the data in Table 4 and Table 5, 
the final accuracy and loss values produced for 
both the training and validation data indicate that, 
overall, Model A performed best among the three 
models on the Kaggle data, the RSUP Dr. Rivai 
Abdullah data, and the combined data. Model A 
yielded high accuracy values and low loss values 
in each training process when using the three 
different datasets. The accuracies achieved by 
Model A were 97.52% on the training data and 
95.50% on the validation data, with a training loss 
of 8.23% and a validation loss of 12.82% for the 
Kaggle dataset. On the RSUP Dr. Rivai Abdullah 
dataset, Model A achieved a training accuracy of 
64.45% and a validation accuracy of 64.06%, 
with a training loss of 83.32% and a validation 
loss of 88.88%. On the combined dataset, Model 
A achieved a training accuracy of 92.43% and a 
validation accuracy of 89.48%, with a training 
loss of 19.18% and a validation loss of 26.44%. 
On the other hand, Model C, which is a modified 
and self-developed model, achieved better 
performance than Model B in terms of the 
accuracy values produced during each training 
process using the three datasets. Regarding the 
loss, Model B performed slightly better when 
training with the RSUP Dr. Rivai Abdullah 
dataset, but its results were not significantly 
different from those of Model C. Thus, this shows 
that LeNet, which has fewer layers, is not 
sufficient for obtaining a good model for the chest 
X-ray dataset. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Comparison graphs produced by the 
three models on the combined dataset, showing 

their (a) training accuracies, (b) validation 
accuracies, (c) training losses, and (d) validation 

losses 

Table 4. Training and Validation Accuracies of 
the Three Models (%) 

Model 
Kaggle RSUP Combined 

TA VA TA VA TA VA 

A 97.5 95.5 64.4 64.1 92.4 89.5 

B 88.7 82.9 46.9 52.3 83.4 83.1 

C 91.9 89.9 47.6 49.2 83.4 83.8 

Note: TA = Training Accuracy, VA = Validation Accuracy 

 
Table 5. Training and Validation Losses of the 

Three Models (%) 

Model 
Kaggle RSUP Combined 

TL VL TL VL TL VL 

A 8.23 12.8 83.3 88.9 19.2 26.4 

B 32.1 41.1 103 101 43.3 43.1 

C 25.7 29.9 103. 102 42.5 44.4 

Note: TA = Training Accuracy, VA = Validation Accuracy 

 
CNN Model Testing Results 
Testing the Trained Models with the Kaggle 
Dataset 

The testing procedure was conducted 
using previously prepared testing data to 
evaluate the performance of each model. 

Table 6 and Table 7 show that all three 
models trained using the Kaggle dataset 
performed well in identifying testing data from 
Kaggle. However, the models performed poorly 
when used to identify testing data from the RSUP 
Dr. Rivai Abdullah dataset. These results may 
have occurred because the training was 
conducted. Using only Kaggle data, which has 
different characteristics compared to those of the 
RSUP Dr. Rivai Abdullah data.  

Model A achieved an accuracy of up to 
90% on the testing data using the Kaggle 
dataset. According to the confusion matrix, Model 
A correctly identified ten chest X-ray images of 
TB, which is the primary focus of this research. 

 
Table 6. Confusion Matrices Produced by Testing 

the CNN Models Trained on the Kaggle Dataset 
 Kaggle Dataset RSUP Dataset 

Model A 
(AlexNet) 

  

Model B 
(LeNet) 

  

Model C 
(Modified) 
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Table 7. Performance Metrics Yielded by the 
Three CNN Models Trained Using the Kaggle 

Dataset 

 
Model 

A 
Model 

B 
Model 

C 

K
a
g
g
le

 D
a
ta

s
e

t 

Accuracy 0.9 0.66 0.73 

S
e
n
s
it
iv

it
y
 

COVID-19 0.9 0.7 0.7 

Normal 0.8 0.5 0.5 

TB 1.0 0.8 1.0 

S
p
e
c
if
ic

it
y
 

COVID-19 0.9 0.7 0.85 

Normal 0.95 0.95 0.95 

Tuberculosis 1.0 0.85 0.8 

P
re

c
is

io

n
 

COVID-19 0.82 0.54 0.7 

Normal 0.89 0.83 0.83 

Tuberculosis 1.0 0.73 0.71 

F
1
 

S
c
o
re

 COVID-19 0.86 0.61 0.7 

Normal 0.84 0.62 0.62 

Tuberculosis 1.0 0.76 0.83 

R
S

U
P

 D
a
ta

s
e
t 

Accuracy 0.57 0.53 0.63 

S
e
n
s
it
iv

it
y
 

COVID-19 0.6 0.6 0.9 

Normal 0.3 0.1 0.2 

Tuberculosis 0.8 0.9 0.8 

S
p
e
c
if
ic

it
y
 

COVID-19 0.9 0.9 0.95 

Normal 0.85 1.0 0.9 

Tuberculosis 0.6 0.4 0.6 

P
re

c
is

io

n
 

COVID-19 0.75 0.75 0.9 

Normal 0.5 1.0 0.5 

Tuberculosis 0.5 0.43 0.5 

F
1
 

S
c
o
re

 COVID-19 0.67 0.67 0.9 

Normal 0.37 0.18 0.28 

Tuberculosis 0.61 0.58 0.61 

 
Meanwhile, for testing using the RSUP Dr. 

Rivai Abdullah dataset, Model C performed 
better, with an accuracy rate of 63%. However, 
based on the confusion matrix, Model B could 
better identify ten chest X-ray images of TB 
correctly. 
 
Testing the Trained Models with the RSUP 
Dataset 

Table 8 and Table 9 show that the three 
models trained using the RSUP dr. Rivai 
Abdullah dataset could only identify images in the 
testing data originating from this dataset. All three 
models exhibited poor performance, with 
accuracies below 50%. This result indicates that 
all three models suffer from underfitting due to 
the limited amount of available data. Regarding 
the performance of the three models, Model A 
performed best during testing on both the Kaggle 
dataset and the RSUP dataset, achieving 
accuracy rates of 30% on the Kaggle testing data 
and 43% on the RSUP Dr. Rivai Abdullah testing 
data. Model C, on the other hand, achieved 
accuracy rates of 26% on the Kaggle testing data 
and 40% on the RSUP Ddr. Rivai Abdullah 
testing data, while Model B performed worst, with 
accuracy rates of 23% on the Kaggle testing data 
and 36% on the RSUP Dr. Rivai Abdullah testing 
data 

 

Table 8. Confusion Matrices Produced by Testing 
the CNN Models Trained on the RSUP Dataset 

 Kaggle Dataset RSUP Dataset 

Model A 
(AlexNet) 

  

Model B 
(LeNet) 

  

Model C 
(Modified) 

  

 
Table 9. Performance Metrics Yielded by the 
Three CNN Models Trained Using the RSUP 

Dataset 

 
Model 
A 

Model 
B 

Model 
C 

K
a
g
g
le

 D
a
ta

s
e

t 

Accuracy 0.3 0.23 0.26 

S
e
n
s
it
iv

it
y
 

COVID-19 0.5 0.4 0.2 

Normal 0.4 0.2 0.5 

Tuberculosis 0.0 0.1 0.1 

S
p
e
c
if
ic

it
y
 

COVID-19 0.4 0.4 0.7 

Normal 0.75 0.8 0.65 

Tuberculosis 0.8 0.65 0.55 

P
re

c
is

io

n
 

COVID-19 0.29 0.25 0.25 

Normal 0.44 0.33 0.42 

Tuberculosis 0.0 0.12 0.1 

F
1
 

S
c
o
re

 COVID-19 0.37 0.31 0.22 

Normal 0.42 0.25 0.45 

Tuberculosis 0.0 0.11 0.1 

R
S

U
P

 D
a
ta

s
e
t 

Accuracy 0.43 0.36 0.4 

S
e
n
s
it
iv

it
y
 

COVID-19 0.4 0.5 0.3 

Normal 0.5 0.3 0.5 

Tuberculosis 0.4 0.3 0.4 

S
p
e
c
if
ic

it
y
 

COVID-19 0.85 0.75 0.85 

Normal 0.45 0.5 0.45 

Tuberculosis 0.85 0.8 0.8 

P
re

c
is

io

n
 

COVID-19 0.57 0.5 0.5 

Normal 0.31 0.23 0.31 

Tuberculosis 0.57 0.43 0.5 

F
1
 

S
c
o
re

 COVID-19 0.47 0.5 0.37 

Normal 0.38 0.26 0.38 

Tuberculosis 0.47 0.35 0.44 

 
Testing the Trained Models with the 
Combined Dataset 

Table 10 and Table 11 show that Model A 
trained with the combined dataset achieved a 
high level of testing accuracy using both the 
Kaggle and RSUP Dr. Rivai Abdullah datasets. 
With the RSUP Dr. Rivai Abdullah dataset, Model 
A achieved an accuracy of 88% and could 
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correctly detect 7 out of 10 X-ray images in the 
COVID-19 class, 10 out of 10 images in the 
normal class, and 7 out of 10 images in the TB 
class. Model B achieved an accuracy of 53%, 
correctly detecting 3 out of 10 images in the 
COVID-19 class, 7 out of 10 images in the 
normal class, and 6 out of 10 images in the TB 
class. Model C also achieved an accuracy rate of 
53%, correctly detecting 6 out of 10 images in the 
COVID-19 class, 3 out of 10 images in the 
normal class, and 7 out of 10 images in the TB 
class. 

From the testing performed using the three 
different trained models—Model A, Model B 
(LeNet), and Model C (modified architecture)—as 
shown in Table 7, Table 9, and Table 11, it can 
be observed that Model A, which is AlexNet, was 
more accurate than Model B and Model C. This 
indicates that the AlexNet model is suitable for 
deployment to TB using chest X-rays at the local 
hospital, RSUP Dr. Rivai Abdullah. The increased 
number of layers and parameters may influence 
the model's learning capability. However, Model 
C, the modified architecture, also has the 
potential to be used instead of LeNet, despite 
having fewer parameters. 

 
Steps to Deploy the Model to a UI 

At the end of the CNN model training 
process, the model is saved in H5 (HDF5) file 
format, as shown in Figure 8, to facilitate easier 
model deployment using the Python 
programming language. H5-formatted models 
can store large amounts of numeric data that can 
be easily manipulated using NumPy. H5-
formatted models are widely used because they 
have the ability to store thousands of datasets in 
a single file. 

After the CNN model is created, the 
selected model is uploaded to the UI environment 
within the Hugging Face platform, which is an 
online platform for website hosting. All the files 
within the environment are shown in Figure 9. 

 

  
Figure 8. Process of Saving the CNN Model to an 

HDF5 File 
 

 
Figure 9. Files in the Hugging Face Environment. 

Table 10. Confusion Matrix Produced by Testing 
the CNN Models Trained on the Combined 

Dataset 

 Dataset Kaggle Dataset RSUP 

Model A 
(AlexN) 

  

Model B 
(LeNet) 

  

Model C 
(Modified) 

  
 

Table 11. Performance Evaluation Results 
Yielded by the Three CNN Models Trained Using 

the Combined Dataset 

 
Model 

A 
Model 

B 
Model 

C 

K
a
g
g
le

 D
a
ta

s
e

t 

Accuracy 0.67 0.7 0.63 

S
e
n
s
it
iv

it
y
 

COVID-19 0.8 0.8 0.6 

Normal 0.4 0.4 0.4 

Tuberculosis 0.8 0.9 0.9 

S
p
e
c
if
ic

it
y
 

COVID-19 0.9 0.95 0.95 

Normal 0.95 0.9 0.95 

Tuberculosis 0.65 0.7 0.55 

P
re

c
is

io

n
 

COVID-19 0.8 0.89 0.86 

Normal 0.8 0.67 0.8 

Tuberculosis 0.53 0.6 0.5 

F
1
 

S
c
o
re

 COVID-19 0.8 0.84 0.71 

Normal 0.53 0.5 0.53 

Tuberculosis 0.64 0.72 0.64 

R
S

U
P

 D
a
ta

s
e
t 

Accuracy 0.88 0.53 0.53 

S
e
n
s
it
iv

it
y
 

COVID-19 0.7 0.3 0.6 

Normal 1.0 0.7 0.3 

Tuberculosis 0.7 0.6 0.7 

S
p
e
c
if
ic

it
y
 

COVID-19 0.95 0.95 0.55 

Normal 0.75 0.6 1.0 

Tuberculosis 1.0 0.75 0.75 

P
re

c
is

io

n
 

COVID-19 0.87 0.75 0.4 

Normal 0.67 0.47 1.0 

Tuberculosis 1.0 0.54 0.58 

F
1
 

S
c
o
re

 COVID-19 0.78 0.43 0.48 

Normal 0.8 0.56 0.46 

Tuberculosis 0.82 0.57 0.63 

 
The following components are found in the 

environment: the "Images" folder, which contains 
several chest X-ray images used as samples in 
the UI; the "Model" folder, which contains the 
selected CNN model file in the H5 format; the 
"gitattributes" file, which is a special attribute file 
for the GIT-distributed version control system or a 
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path giver for each component; the 
"README.md" file, which contains metadata 
about the components used in the environment; 
the "requirements.txt" file, which includes the 
libraries used in the model deployment process 
(TensorFlow, Keras, and Gradio); and the 
"app.py" file, which is a Python file containing the 
Python code for deploying the CNN model. 

 
Graphic UI 

The final appearance of the UI is shown in 
Figure 10. This UI can be accessed through the 
following URL: "https://reganagam-tb-
project.hf.space". The UI includes a title 
indicating its purpose, which is "Tuberculosis 
(TB) Detection Using Chest X-Rays", an input 
column for images, an output column for the 
produced detection results, some sample images 
that can be used, a “submit” button, and a “clear” 
button for removing the output if one wishes to 
perform further image detection tasks.  

The disease detection process with the 
created UI begins by accessing the provided 
website page. Then, the input, which is a chest 
X-ray image in the jpg/png format, can be added 
to the UI by either dragging the image from one's 
local computer to the UI input section (dropping) 
or clicking on the UI input section directly. 
Selecting the image for detection from the local 
computer. The image input process is shown in 
Figure 11. 

After the desired image is added to the UI, 
the next step is to press the "submit" button to 
initiate the image detection process or press the 
"clear" button to remove the image if the wrong 
image is added. The input image can be of any 
size because the program in the UI can directly 
resize the image to 150 × 150 pixels, as specified 
by the input size set during the CNN model 
training procedure. Some samples in the UI can 
also be used for testing the UI by clicking on one 
of the images. Then, the detection result 
produced for the input image appears 
immediately in the output column.  

 

 
Figure 10. Final Display of the UI. 

 

 
Figure 11. Chest X-ray Image Inputting Process 

of the UI. 
 

The output displayed in Figure 12 shows the 
condition of the chest X-ray image (COVID-19, 
TB, or normal), with the lower part indicating the 
UI's confidence (as a percentage) in the 
prediction result.  

 
Usability Testing with a Healthcare 
Professional 

This research aimed to develop a UI that 
can be used to assist professionals in identifying 
TB, making usability testing with healthcare 
professionals crucial. In the usability testing 
stage, a healthcare professional, specifically a 
radiologist from RSUP, Dr. Rivai Abdullah, who is 
an expert in diagnosing diseases through medical 
images, was involved. The radiologist was asked 
to use the UI that had been built. 

The testing was also conducted using 10 
new samples prepared by RSUP Dr. Rivai 
Abdullah. Based on the testing results shown in 
Table 12, the UI built using the AlexNet model 
could correctly detect 7 out of the 10 test images, 
achieving a success rate of 70%. During testing, 
the average speed of the UI when detecting all 
ten images did not exceed 15 seconds. 
Therefore, the developed UI is user-friendly. The 
testing results revealed that the detection speed 
of the UI depends on the input image size.  

After the radiology specialist conducted 
direct tests on the created UIs, they were also 
asked to complete a questionnaire.  

 

 
Figure 12. Output of the UI. 
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This questionnaire aimed to gather experts’ 
perspectives regarding the use of the developed 
website for TB identification purposes. Overall, 
the questionnaire results indicated that the UI is 
easy to use, has a pleasing appearance, and is 
helpful for healthcare professionals when 
performing initial screenings or diagnoses 
However, doctors still need to make a final 
disease diagnosis. 

During the process of collecting data for 
the questionnaire, the doctor was also 
interviewed to provide explanations regarding the 
TB classes for severity level classification, and 
further development should be pursued in the 
future. Based on the interviews with the radiology 

specialist, it was stated that, in general, TB has 
two severity levels: nonsevere and severe. 
However, obtaining chest X-ray data for 
nonsevere patients is very difficult because 
patients only undergo chest X-ray imaging when 
the disease reaches a severe stage. 

Patients with nonsevere TB do not exhibit 
any symptoms before progressing to a severe 
stage. Furthermore, many people are infected 
with TB, which can become severe if their 
immune system is weakened. TB is still a highly 
contagious and uncontrolled epidemic, even on a 
global scale. 

 

 
Table 12. UI testing using the new dataset 

Testing Data Detection Actual (Medical Reading) Prediction (UI) 

 
 

COVID-19 COVID-19 

 
 

COVID-19 COVID-19 

 
 

COVID-19 COVID-19 

 
 

COVID-19 COVID-19 

 
 

COVID-19 COVID-19 

 
 

Normal COVID-19 

 
 

Pneumonia/ 
COVID-19 

Tuberculosis 

 
 

Pneumonia/ 
COVID-19 

COVID-19 

 
 

Tuberculosis Tuberculosis 

 
 

Tuberculosis COVID-19 
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CONCLUSION 
Based on the conducted research, CNNs 

can be implemented to interpret X-ray images for 
detecting tuberculosis (TB). AlexNet (Model A) 
outperformed LeNet (Model B) and the custom-
developed model (Model C). This result was 
observed from the model accuracy values 
produced during training and testing. Model A 
achieved training and validation accuracy of 
97.52% and 95.50%, respectively, with training 
and validation losses of 8.23% and 12.82%, 
when trained on the Kaggle dataset. When 
trained on the RSUP Dr. Rivai Abdullah dataset, 
Model A achieved a training accuracy of 64.45%, 
a validation accuracy of 64.06%, a training loss of 
83.32%, and a validation loss of 88.88%. On the 
combined dataset, this model achieved training 
and validation accuracies of 92.43% and 89.48%, 
respectively, with training and validation losses of 
19.18% and 26.44%. However, the training 
process of Model A is significantly longer, and its 
size is much larger than those of Models B and C 
due to the significantly greater number of layers 
used. The model trained with the AlexNet 
architecture (Model A) was subsequently used in 
the deployment of a UI for detecting TB across 
three classes. The web-based UI utilizing the 
Gradio library demonstrated good performance, 
achieving a detection accuracy of 70% for new 
data from RSUP Dr. Rivai Abdullah. This UI can 
be used for the early-stage diagnosis (screening) 
of TB patients. 
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