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Abstract

Diabetes can lead to complications like Diabetic Peripheral
Neuropathy (DPN), which impacts muscle and nerve function.
Electromyography (EMG) is a standard diagnostic tool for detecting
DPN, but its complex signals make analysis time-consuming,
delaying detection and treatment. This study aims to develop and
compare machine learning models for classifying healthy and
diabetic individuals using EMG data collected during dorsiflexion
movement. The Muscle Sensor V3 recorded EMG signals, which
were then transformed into time-domain features—Root Mean
Square (RMS), Mean Absolute Value (MAV), Standard Deviation
(SD), and Variance (VAR)—for classification purposes. Machine
learning models, including K-Nearest Neighbour (KNN), Support
Vector Machine (SVM), and Atrtificial Neural Network (ANN), were
optimized using Particle Swarm Optimization (PSO). The analysis
revealed that healthy individuals exhibited higher EMG amplitudes
than those with diabetes. Among the models, ANN achieved the
highest classification accuracy (94.44%) compared to SVM (88.89%)
and KNN (77.78%). These results demonstrate the effectiveness of
ANN as a reliable classifier for distinguishing between healthy and
diabetic individuals, offering a more efficient and accurate approach
to EMG data analysis for potential clinical applications.
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INTRODUCTION

Diabetes is one of the most chronic
diseases, and its prevalence grows yearly [1]. It
leads to serious problems, such as Diabetic
Peripheral Neuropathy (DPN), which affects as
many as half of those who have diabetes [2]. DPN
can damage nerves and blood vessels in the lower
legs, resulting in plantar foot ulcers [3]. These
ulcers, if infected, can progress and potentially
spread to the bone or surrounding tissues, leading

to severe complications. Furthermore, DPN can
disrupt the essential dorsiflexion movement, which
involves lifting the foot upward at the ankle joint
during walking. This can lead to gait abnormalities
and significantly increase the risk of falls and
injuries [4]. Therefore, the early detection of DPN
is crucial for individuals with diabetes to maintain
a high quality of life. This can be achieved by
adopting a healthy lifestyle, which includes eating
a healthy diet and exercising regularly [5].
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Electromyography (EMG) has emerged as
the industry standard for detecting nerve damage
in muscles [6]. By measuring and recording the
electrical activity of skeletal muscles, EMG
provides valuable insights into muscle conditions,
including strength and weakness [7]. However,
analysis of EMG data can be complex and time-
consuming, especially when dealing with large
and intricate datasets [8]. These factors cause
delays in detecting and treating peripheral
neuropathy. Therefore, more advanced methods
are needed to improve the efficiency and accuracy
of EMG data analysis [9].

Following this challenge, machine learning
classification techniques are one of the
appropriate alternatives [10]. Machine learning, a
subfield of Artificial Intelligence (Al), focuses on
developing algorithms and statistical models that
enable systems to learn, predict, classify, and
make decisions [11][12]. This approach has
rapidly advanced machine learning-based
classification techniques within the health science
industry, enhancing disease detection capabilities
[13]. By leveraging these models, healthcare
professionals can obtain more detailed and
accurate information about muscle function, which
can help in the detection and treatment of DPN.

This study contributes to the development
and comparison of machine learning models for
classifying healthy individuals and those with
diabetes, utilizing time-domain features extracted
from EMG data recorded during dorsiflexion
movements. Since the choice of machine learning
models depends on several factors, such as the
complexity and size of the data, three commonly
used machine learning models [14], namely K-
Nearest Neighbours (KNN), Artificial Neural
Network (ANN), and Support Vector Machine
(SVM) were employed and compared to
determine their suitability for the EMG data and
the study method.

RELATED WORKS

EMG is a technique that records the
electrical activity in muscles and generates
complex signals influenced by various factors,
such as muscle size, location, and activity level
[18]. For example, variations in muscle
characteristics, such as size and location, can
affect the amplitude and morphology of the signals
[16]. Additionally, the level of muscle activity,
which includes factors such as intensity and
coordination, also affects the characteristics of the
signals [17]. These factors collectively contribute
to the complexity of the recorded signals, making
their analysis a challenging task.

The complexity of EMG signals can make
accurate analysis difficult, especially in settings
where specialized knowledge and expertise are
not readily available [18]. Traditional methods of
analyzing EMG data often involve manual
processing, which can be time-consuming and
can lead to errors. For example, some methods
involve visual inspection of EMG signals to identify
abnormal patterns, which can be subjective and
prone to error [19]. Other methods include
calculating parameters from EMG signals, such as
amplitude, frequency, and duration, which are
time-consuming and require  specialized
knowledge in signal processing and analysis [20].
These obstacles create a barrier to obtaining the
most accurate and efficient detection of muscle
and nerve disorders, which is crucial for the most
effective treatment. Thus, there is a need for more
efficient and precise methods to analyze EMG
data.

Machine learning, a subset of Artificial
Intelligence (Al), enables computers to make more
accurate predictions and classifications [21].
Moreover, machine learning models can operate
independently  without human intervention,
continuously learning and accumulating
knowledge to understand the complexity of
situations and adapt accordingly [22]. By
processing input data with labeled targets,
machine learning models have become a powerful
tool for model fitting and data processing in the era
of big data. In the healthcare industry, where
massive amounts of data are generated, machine
learning has demonstrated its effectiveness in
generating predictions and facilitating informed
decision-making [23].

Machine learning is broadly classified into
two categories: supervised and unsupervised
learning. The primary difference between these
categories lies in the presence or absence of
labeled data within the dataset. Unsupervised
learning is typically used for unlabelled data,
tackling pattern recognition problems by
identifying and grouping data based on standard
features [24]. Dimensionality reduction techniques
such as Principal Component Analysis (PCA) and
clustering models like K-means are commonly
used in unsupervised learning [25]. However, the
number of categories or clusters and their
significance are not predetermined. Instead, these
factors need to be determined by analyzing the
data itself, often through exploratory data analysis
and visualizations [26]. The goal is to gain insights
into the underlying structure of the data without
requiring predefined labels or categories.

Supervised learning requires labeled
training datasets with input and output values, as
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it learns the mapping between input and target
values to predict or classify the target value for
new input data [27]. These techniques utilize
labeled training data to learn patterns and
relationships, enabling accurate predictions and
classification of new, unseen data. Using
supervised learning, various methods have been
developed for data classification, such as K-
Nearest Neighbors (KNN), Artificial Neural
Networks (ANN), and Support Vector Machines
(SVM) [28, 29, 30].

In the context of this study, supervised
learning is the most suitable approach for
achieving accurate classification. By using
relevant medical measurements as input features
and assigning class labels such as "healthy" and
"diabetic" as the target categories, the supervised
learning model can learn and generalize from the
labeled data to accurately classify individuals. This
approach not only ensures precise classification
results but also holds the potential to revolutionize
Diabetes Peripheral Neuropathy (DPN) detection
and treatment strategies. Applying supervised
learning in this context can enhance patient
outcomes and drive significant advancements in
healthcare [31].

MATERIAL AND METHOD

The research procedure begins with the
development of necessary hardware and software
to record and analyze muscle activity signals. The
experiments of this research were conducted to
ensure that the sensors function correctly. Since
the sensors were working, the experimental
protocol was then executed to obtain ethical
approval. Before seeking ethical approval, it was
essential to establish the necessary hardware and
experiment protocol for data collection in order to
present the proposal to the ethics committee. This
action involved setting up the required sensors,
data acquisition devices, and other equipment and
developing a detailed experimental protocol that
outlined the study design, procedures, and data
collection methods. Ethical approval is crucial to
ensure that research and data collection are
conducted safely and ethically, with appropriate
measures taken to protect the rights and welfare
of research subjects.

After obtaining ethical approval, a search
was conducted to identify suitable subjects who
met the inclusion and exclusion criteria to
participate in the study. This process resulted in
the recruitment of 40 subjects who met the criteria,
and all of them willingly participated in the study.
Regrettably, this limited number of data samples
is insufficient for the subsequent classification

process. To address this challenge, a solution was
implemented by leveraging synthetic data
generation from actual data. This innovative
approach involved two cycles of generating
synthetic data, resulting in a total of 120 samples
for classification. Then, the data underwent a
feature extraction phase using four features:
Variance (VAR), Mean Absolute Value (MAV),
Standard Deviation (SD), and Root Mean Square
(RMS), to facilitate the classification process.

Classification uses three machine learning
models: KNN, ANN, and SVM. The classification
process begins by loading the input-output EMG
data into the MATLAB workspace. Each output
target sample is labeled as '1' for a healthy sample
or '0' for a diabetic sample. To avoid potential bias
in classification analysis, the input-output data
were defined and then randomly arranged. Then,
the data is split randomly, with 70.00% allocated
to the training set and 15.00% to both the
validation and testing sets. The training set was
used to train the classification models, the
validation set was employed for fine-tuning and
model validation during the training process, and
the testing set was utilized to evaluate the models'
performance.

The hyperparameters of each parameter
algorithm are set before training the models. PSO
is used to efficiently optimize the hyperparameters
and find the optimal values for the hyperparameter
set. Once the hyperparameters have been
optimized, the classification models (KNN, ANN,
and SVM) are trained using the training set,
incorporating the optimized hyperparameters.
Then, a validation set is used to evaluate the
model's performance after the hyperparameters
have been tuned. The model with the best
performance on the validation set is then selected
for the final evaluation on the test set. To evaluate
the performance of the models, accuracy,
sensitivity, and specificity metrics were utilized.
Accuracy is a measure of how often the model
correctly classifies the data. Sensitivity is a
measure of how well the model identifies positive
(healthy) instances, and specificity is a measure of
how often the model correctly identifies negative
(diabetes) instances. The discussion and
conclusion sections interpreted the results and
concluded the model's performance.

Experimental Protocol

The experimental protocol is outlined in
Figure 1. As observed in Figure 1, the subject
criteria for inclusion and exclusion are based on
specific criteria that must be met for individuals to
be considered eligible for participation.
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Figure 1. Block diagram of experiment protocol

Electrodes were then attached to the
correct locations, following the guidelines provided
to ensure accurate data collection and to prevent
any side effects on the subjects. Before recording
the signal, the sensor was calibrated to ensure
that the contractions being recorded accurately
reflected the subject's muscle activity. This step
helped to ensure that the data collected was
reliable and valid. Once the sensor had been
calibrated, data were recorded according to the
established procedure.

Before the day of data collection, the
subjects were informed about the purpose of this
study during an initial meeting or through a phone
call. If the subject agreed to participate, they would
then select a date, with their home serving as the
data collection site.

Before participating in this study, the
subjects were screened to determine if they met
the inclusion and exclusion criteria. Subjects in
this study were either healthy (without diabetes) or
had diabetes, and were male or female, between
the ages of 18 and 65. The selection of gender and
age range was based on a previous study, which
indicated no correlation between gender and adult
age with the level of muscle activity in terms of
dorsiflexion [32]. This decision was made to
ensure that gender and age did not significantly
impact classification accuracy and were not
confounding factors in accurately assessing the
effects of diabetes neuropathy.

The exclusion criteria of this study were
defined to ensure that the study accurately
focused on assessing the effects of diabetes.
Subjects with a history of peripheral nervous
system disorders, Parkinson's disease, stroke,
significant muscle atrophy in their lower limbs, or
ulcers or gout were excluded [33]. By excluding
individuals with these conditions, the study
minimized potential confounding factors and
isolated the specific impact of diabetes on the
recorded EMG activity [34].

When subjects met the criteria, they were
briefed about the experiment procedure and
received a leaflet with study information as written.
The leaflet provides additional information about
the study, including risks and other relevant
details, to help subjects make an informed
decision about their participation. Once the
subjects signed the consent form, it indicated that
the subjects had read and understood the
information provided and voluntarily gave their
consent to participate in the study.

Contraction Calibration

Electrode pads are typically attached to the
skin over the muscle of interest. The skin surface
was cleaned to reduce resistance before placing
the electrodes. The tibialis anterior (TA) muscle
has been the focus of most research in this area
[35]. This study is suitable because diabetic
neuropathy often affects the lower leg, and the TA
muscle is the primary dorsiflexor of the leg [35].
Dorsiflexion is important in gait because it allows
the leg to clear the ground during the swing phase.
Additionally, the TA muscle relies heavily on a
well-functioning nerve supply for optimal
performance, making it more susceptible to nerve
damage associated with particular body
conditions.

As shown in Figure 2, when the subject is
seated on a chair, the green electrode is placed a
third of the way between the end of the fibula and
the end of the medial malleolus to capture EMG
signals, and the red electrode is placed on the
muscle near the ankle joint to act as ground. The
yellow electrode is placed on the bony part of the
ankle, which is an inactive section of the body, to
serve as a reference. For this study, the yellow
electrode was placed on the ankle, following
SENIAM guidelines.

When using an EMG sensor to collect
muscle signals, contraction calibration is carried
out to ensure that the signals recorded by the
EMG sensor are accurate and reliable.

EMG Signal

Electrode Ground

b= Reference

”
o -

Figure 2. Electrode location on the TA muscle
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In EMG, the amplitude is relative and must be
related to a reference contraction or calibration
contraction [36]. The amplitude of the EMG signal
represents the intensity of physiological activities
in the motor unit during muscular contraction.
Therefore, the calibration procedure must be
carefully designed to ensure accuracy, strictly
adhering to established protocols and equipment
calibration as elaborated in [37].

After placing the electrode pad on the
muscle, the subject was asked to perform free
movement for 30 seconds to observe the
response of the signal with muscle contraction.
Figure 3 illustrates the muscle signal during
contraction calibration, and Table 1 shows the
muscle condition at different time points during a
30-second contraction calibration process. When
the muscle is in a resting condition at time 0
seconds, the signal has a lower amplitude. At 3
seconds, the muscle contracts, resulting in a
higher amplitude signal, which aligns with the
predicted results [38]. These patterns of muscle
contraction and signal response persist
throughout the entire 30-second duration, as
shown in both Table 1 and Figure 3. Suppose the
signal does not respond during muscle
contraction. In that case, it is essential to
troubleshoot the system to identify the cause of
the problem, including examining hardware
malfunctions and inspecting for loose
connections.
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Figure 3. Signal of the muscle during contraction

Recording Data

After finishing the contraction calibration,
the subject was given a five-minute break. The
subject was instructed to slowly lift the forefoot and
toes towards the shin and press the heel into the
ground (dorsiflexion). As shown in Figure 4.

The toes are lifted as high as possible for
one minute (hold), then lowered gradually back to
the floor. The recorded signal from this experiment
was saved before being uploaded to facilitate the
extraction and classification process.

Recruitment Subjects

A total of 40 volunteer subjects were
enrolled in the research study, consisting of twenty
healthy individuals aged 51.9 + 6.5 years and
twenty subjects with diabetes, aged 54.1 + 8.3
years, who had been living with diabetes for a
duration of 17.1 + 12.1 years. The subject data are
shown in Table 2.

The Muscle Sensor V3 was used to record
muscle activity, as it can detect the presence of
muscle damage. The TA muscle was chosen as
the reference for the signal because it plays a
crucial role in dorsiflexion during gait movement.
The study collected EMG signals from healthy
individuals and those with diabetes, as diabetes
can cause nerve damage that affects muscle
function. A total of 40 subjects were recruited from
the Kemaman district, comprising 20 healthy
individuals and 20 individuals with diabetes. Each
subject generated a sample, resulting in a total of
40 samples.

(a) (b) (c) (d)
Figure 4. (a) Setup of the equipment using Muscle
Sensor V3. (b) The green electrode is placed over
the Tibialis Anterior (TA) muscle on the dominant
leg. (c) The subject does dorsiflexion for one
minute. (d) The subject lowers the foot to rest.

calibration Table 2. Demographic data for the subjects
" . . Health Diabetics
Table 1. Muscle condition during contraction y
calibration in 30 seconds Male/Female 155 1307

T T s = 10 12 5 17 20 2 = Age (Years) 51.9+6.5 54.1+8.3

IsmtzriS) BMI (kg /m?) 23255  28.916.2
condition c R ¢ R C R C€C R C R Duration of diabetes (Years) - 17.1+£121

HbA1c (%) - 9.7 6.9
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The Generation of Synthetic Data

Although 40 samples were collected from
40 subjects, this sample size was not sufficient to
carry out accurate classification, mainly when it
was divided into three stages: training, testing,
and validation, as noted by previous studies [39],
[40]. A synthetic method was employed to address
this limitation, which involved generating
additional samples using a combination of existing
data and computer simulation. This approach
increases the dataset size and reduces the impact
of the limited sample size, ensuring greater
accuracy and generalizability of the results. The
synthetic data in this study was generated from the
actual data using Random White Gaussian Noise
(RWGN). Figure 5 shows the 1-D signal of a
diabetes subject for the corresponding data.

The above image represents a 1D signal
with amplitude (in mV) plotted over time (in
seconds), likely corresponding to physiological or
biomedical data. This could be, for example,
electrical activity or time-series data recorded from
a sensor.

RWGN is often characterized using the
concept of Signal-to-Noise Ratio (SNR), as SNR
measures how well a signal can be distinguished
from background noise. A high SNR indicates that
the signal is strong relative to the noise, while a
low SNR indicates that the noise is strong relative
to the signal. Therefore, selecting an appropriate
SNR ratio is crucial for accurately reflecting the
original signal. To address this issue, the study
carefully selected an SNR of 30 dB, considering
the importance of accurately reflecting the original
signal and the need to minimize noise impact, as
suggested by [41].

The process of creating synthetic data
began by loading the collected data into the

MATLAB workspace for synthetic data
processing.
Diabetes
300 T
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Figure 5. 1-D Signal of a diabetes subject

In each case of the synthetic process, the
sample of actual EMG data obtained was
repeated for two cycles, resulting in two synthetic
samples of data for each sample. As a result, 40
sample subjects generated 80 synthetic datasets,
each comprising 120 samples, to support the
classification procedure. The result of this process
was then stored in a mat file to be used for
subsequent processing (feature extraction).

The models were evaluated using training,
validation, and testing splits within the same
dataset, rather than being tested on an entirely
separate external dataset. This can lead to over-
optimistic performance metrics since the synthetic
data shares statistical properties with the training
data. Without validation on external datasets, the
study's conclusions about model accuracy,
sensitivity, and specificity may not generalize well
to different populations or settings.

Feature Extraction

Several studies have demonstrated that the
time-domain technique can be utilized to detect
muscular effort and fatigue [42]. This is because
the time-domain parameters of EMG signals are
easily measurable, and no changes to the signal
are required. While each feature of the signal has
a unique character, using multiple features as
input to the classifier can improve the accuracy of
recognizing the EMG patterns [43]. Besides, a
combination of features could capture more
information about the EMG signal and provide
more accurate classifications of the underlying
pattern. This approach is a common practice in
EMG signal processing, as it enables a more
comprehensive representation of the signal and
can enhance the performance of the classification
system [44].

The most used features for the time domain
are Mean Absolute Value (MAV), Root Mean
Square (RMS), Variance (VAR), and Standard
Deviation (SD), which were employed in these
studies [44], [45]. MAV is the average of the
absolute values of a set of numbers. Root Mean
Square (RMS) is the square root of the average of
the squares of a set of numbers. c) Variance
(VAR): Measures the spread of a set of numbers,
and SD is the square root of the variance. It is
another measure to investigate the spread of a set
of numbers, but it is expressed in the same units
as the original data that is being calculated.

Previous studies predominantly focus on
time-domain or frequency-domain features. The
potential of hybrid feature sets or advanced
feature extraction techniques, such as wavelet
transforms or deep feature learning, remains
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underexplored for enhanced classification

accuracy.

Machine Learning Classification

The classification flow process for KNN,
ANN, and SVM s illustrated in Figure 6. The
classification begins by loading the extracted
input-output EMG data into the MATLAB
workspace. The input layer consists of four
features (MAV, RMS, VAR, and SD), and the
output target is binary, with '1' representing the
healthy label and '0' representing the diabetes
label.

To avoid potential bias in classification
analysis, the input-output data were first defined,
and the arrangement was then randomly
generated. To evaluate the performance of the
machine learning model accurately on new,
unseen data, it was necessary to split the collected
data into three subsets: training, validation, and
testing. The training set was used to train the
model and learn its parameters. The validation set
was used to fine-tune the model's parameters and
prevent overfitting. The testing set was used to
evaluate the model's performance on data that it
had not seen before. A commonly employed split
ratio in practice is 70.00%, 15.00%, and 15.00%
for training, testing, and validation, respectively
[46].

The hyperparameters of each classification
model are first set and optimized using PSO. Once
the hyperparameters had been optimized, the
classification models (KNN, ANN, and SVM) were
trained to incorporate the optimized
hyperparameters. The accuracy, sensitivity, and
specificity were employed to assess the
performance of the models.

Architectures of the Machine Learning Models
(KNN, ANN, SVM)

The capacity of a machine learning model
to analyse data, identify patterns, and provide
precise classifications is determined by its
architecture. When it comes to utilizing EMG
signals to categorize healthy and diabetic people,
the architecture is essential in determining the

model's generalisability, interpretability, and
performance.
Figure 7 illustrates the classification

process for two classes, specifically for the cases
when K = 1 and K = 3. Figure 7 (a) displays the
closest known (-) sample to the sample X utilised
for categorizing sample X. It means that the
category of sample X is assigned based on the
class of the closest neighbour (-).

Load data in MATLAB
workspace for classification
(KNN, ANN, and SVM)

v

Randomises and split
for training, testing and validation set
(70%,15%, and 15% respectively)

)

Set the hyperparameter

v

PSO optimises the
hyperparameter

v

Train the model

v

Display results of accuracy,
sensitivity and specificity

End
Figure 6. Flowchart of the classification process.

In Figure 7 (b), there are two nearest (+) samples
and one (-) sample considered for categorizing
sample X. The majority class among these three
neighbours (+) is used to classify sample X. This
approach employs a majority voting mechanism to
ensure accurate classification based on the
consensus of its closest neighbours.

The architecture of an ANN typically
consists of an input layer, a hidden layer, and an
output layer, as shown in Figure 8. The input layer
receives data from external sources, then
transmits it to the hidden layer. The hidden layer
processes the data and sends it to the output
layer, using weights assigned to each node.

(a) (b)
Figure 7. The KNN illustration in classifying
different numbers of K
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The classification model constructs
hyperplanes in high-dimensional space to
effectively separate cases with different class
labels, as shown in Figure 9. The classification of
Class A and Class B demonstrates the
construction of hyperplanes by SVM to separate
instances according to their classes effectively.
This visual representation offers insight into the
process of maximizing the margin or distance
between the two classes. By maximizing the
margin, SVM aims to minimize the risk of
misclassification and enhance the classifier's
ability to classify unseen data [47] accurately.

KNN Hyperparameter Optimization

The set of hyperparameters for KNN is
shown in Table 3, which is incorporated into the
KNN classification MATLAB script. The
hyperparameters used for optimization in KNN
were the distance metric and the number of
neighbors (K). The distance metric is a function
that measures the distance between two data
points in the feature space. The most common
distance metrics used in this study were Euclidean
distance, Manhattan distance, and Minkowski
distance [48].

The number of K is a hyperparameter that
determines the number of nearest neighbours to
consider when making a classification for a new
data point. The optimal value of K depends on the
characteristics of the data and the problem being
solved.

5, B ©
Bz, * O ®)
B,
6/%‘
G/b/ \\
e . .
AR
[:l . Maximum
. ¢ margin
[ N

Figure 9. Hyperplane in 2-dimensional space

Table 3. Hyperparameters for KNN optimization
Type and value of

Hyperparameter hyperparameter
. Euclidean, Manhattan, and
Distance : :
Minkowski.
Number of neighbours 1t0 10

(K)

However, as a general guideline, the value
of K can range from 1 to the square root of the
number of samples in the training dataset [49]. For
this study, the dataset comprised 120 samples,
with a training set size of 70.00%. The training set
consisted of 84 samples. Since the square root of
84 is approximately 9.1652, a reasonable range
for the value of K employed in this case would be
between 1 and 10.

ANN Hyperparameter Optimization

In this study, a feedforward neural network
was selected due to its suitability in addressing a
binary classification problem involving two output
classes ('1' for healthy and '0' for diabetes) [48].
By leveraging its architecture, a feedforward
neural network was able to discern these two
classes by acquiring an understanding of the
underlying patterns present in the data.
Additionally, to address the unique challenges
posed by scenarios involving relatively small
datasets and the need for fast convergence and
improved accuracy, the Levenberg-Marquardt
backpropagation algorithm was employed,
providing further optimization capabilities to the
network [50]. This combined approach ensured
robust and accurate classification results in the
study.

Table 4 presents the set of
hyperparameters for the ANN, which are
integrated into the ANN classification MATLAB
script featured in  Appendix K. The
hyperparameters used for optimization in this
research were the number of hidden layers and
neurons, as well as the learning rate in
backpropagation. The number of hidden layers
and neurons is a crucial hyperparameter of an
ANN, as it significantly affects the model's ability
to learn complex patterns in the data. For optimal
performance, this study chose 1 to 2 hidden
layers, considering the relatively small size of the
dataset [51].

Table 4. Hyperparameters for ANN optimization
Type and value of

Hyperparameter

hyperparameter
Number of hidden
1to2
layers
Number of neurons 1to 10

Number of learning

0.1, 0.01, 0.001, and 0.0001
rates
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This choice was made to avoid overfitting and
ensure efficient utilization of available data.

Besides, the number of neurons in each
hidden layer was carefully determined to range
from 1 to 10 [52][53]. This selection was based on
the understanding that a moderate number of
neurons is generally suitable for addressing
simple problems or datasets with limited
complexity. This action allowed the neural network
to balance capturing meaningful patterns while
preventing unnecessary complexity by avoiding
excessive neuron count [54].

Additionally, the learning rate is another
crucial hyperparameter that significantly impacts
the performance of the ANN during training. The
learning rate governs the magnitude of weight
updates made during the training process. For the
fixed learning rate, a common practice starts with
a value that is not too small, such as 0.1, and then
exponentially lowers it to obtain smaller constant
values, 0.01, 0.001, and 0.0001 [55]. This gradual
reduction in the learning rate enables more refined
adjustments to the network's weights, promoting
convergence and enhancing the training process.

SVM Hyperparameter Optimization

The set of hyperparameters for the Support
Vector Machine (SVM) is shown in Table 5. This
hyperparameter is included in the MATLAB script
for SVM classification. Several hyperparameters
must be considered, including the type of kernel
function, the regularization parameter (C), and the
kernel parameter (gamma) for the Radial Basis
Function (RBF). An important aspect of optimizing
in SVM is the choice of the kernel function, which
determines how input data is mapped into a
higher-dimensional feature space for
classification. The commonly used kernel
functions in SVM are linear, polynomial, and RBF
[56].

The regularization parameter is crucial in
balancing model complexity and generalization
ability. The optimal value of C typically falls within
the range of 0.01 to 100. However, it may be
necessary to experiment with different values to
find the best value for a specific dataset. A
previous study suggested that the following values
of C are good starting points for experimentation:
0.01, 0.1, 1, 10, and 100 [57].

The gamma parameter controls the width of
the RBF kernel. Typically, the optimal range for
gamma is between 0.0001 and 10. However, the
optimal values of these hyperparameters may
vary depending on the specific problem being
addressed and may require experimentation to
determine. Some suggested values are 0.0001,
0.001, 0.01, 0.1, 1, and 10 [58, 59, 60, 61, 62].

Performance Measurement

Training, testing, and validation are stages
in machine learning, while accuracy, sensitivity,
and specificity are metrics used to evaluate a
model's performance at various stages. Accuracy,
sensitivity, and specificity are commonly used to
evaluate the performance of models, as they are
particularly relevant in the medical profession.
These metrics are used to evaluate the quality of
a classification and are often used to compare the
performance of different models in performing the
same task.

The calculation of accuracy, sensitivity, and
specificity requires a confusion matrix. Using the
MATLAB software, the confusion matrix can be
calculated automatically. Table 6 shows the
design of the confusion matrix.

In this study, the positive class of EMG data,
obtained from healthy individuals without
diabetes, was compared to the negative class of
EMG data, collected from individuals with
diabetes. According to the confusion matrix,
accuracy, sensitivity, and specificity are calculated
as follows:

Accuracy:  Accuracy measures the
frequency with which the model correctly classifies
the outcome. It is defined as the ratio of the
number of correct classifications to the total
number of classifications made. The equation is
stated in (1).

Accuracy=(TN+TP)/(TN+TP+FN+FP) x100% (1)

Specificity: Specificity measures the
proportion of actual negative cases (diabetes) that
the model correctly identifies. It is defined as the
ratio of true negative cases to the total number of
actual negative cases, as shown in (2).

Specificity=TN/(TN+FP) x100% (2)

Table 6. Confusion matrix design

Table 5. Hyperparameters for SVM optimization Prediction Prediction

Hyperparameter Type and value of the Positive Negative

hyperparameter Actual Positive TP (True FP (False

Linear, Polynomial, and Radial Positive) Positive)

Type of Kernel Basis Function Actual FN (False TN (True

c 0.01, 0.1, 1, 10, and 100 Negative Negative) Negative)

Gamma 0.0001, 0.001, 0.01, 0.1, 1, and 10
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Sensitivity:  Sensitivity measures  the
proportion of actual positive cases (healthy) that
the model correctly identifies. It is defined as the
ratio of true positive cases to the total number of
actual positive cases, as stated in (3).

Sensitivity=TP/(TP+FN) x100% 3)

To understand the performance of machine
learning models, it is essential to evaluate their
ability to generalize from the training data to
unseen data. In machine learning, overfitting
occurs when a model learns the training data too
well, resulting in high accuracy on the training
dataset but low accuracy on the testing dataset.
On the other hand, underfitting occurs when a
model fails to learn the training data sufficiently,
resulting in low accuracy on both the training and
testing datasets.

RESULTS AND DISCUSSION

During the dorsiflexion movement, EMG
signal recordings were obtained from the lower
part of the TA muscle using the Muscle Sensor V3
device for a duration of one minute. The muscle
activity signals for both classes, the healthy
individuals and the diabetes group, are separately
averaged as depicted in Figure 10. As seen in
Figure 10, the maximum amplitude values for the
healthy and diabetic signals are 278 mV and 149
mV, respectively. This vast difference in amplitude
is because patients with diabetes usually display
consistently lower and more variable motor unit
discharge frequency than healthy individuals,
indicating the presence of neuromuscular disease
and potential peripheral neuropathy associated
with diabetes.

Based on the analysis of the EMG signal, it
is evident that healthy individuals exhibit higher
amplitudes than those with diabetes. This
observation aligns with the understanding that
individuals with diabetes may experience nerve
damage, which can significantly impact the
amplitude of the EMG signals. The variations in
muscle activation patterns and the presence of
nerve damage contribute to the observed lower
amplitudes in the EMG signals from individuals
with diabetes compared to those from healthy
individuals.

This is supported by the findings of other
relevant EMG studies, which also show higher
amplitude in healthy subjects than in those with
neuropathy. The collective evidence from this
study strongly supports the validity and accuracy
of Muscle Sensor V3 in effectively measuring
muscle electrical activity.

Healthy

250

200 |

Amplitude(mV)

0 10 20 30 40 50 60
Time(s)

Diabetes
300 T

250

200

Amplitude(mV)
g

100 1

50

0

0 10 20 30 40 50 60
Time(s)

Figure 10. Comparison between healthy and
diabetic signals.

In this study, three machine learning
models were employed for classifying EMG data
extracted using four features: MAV, RMS, VAR,
and SD. Their performance was evaluated by
testing their accuracy levels. By evaluating the
performance of the models using the testing
dataset, the study was able to obtain a more
accurate estimate of how well the models can
perform in real-world scenarios. Furthermore,
accuracy is used for comparing different machine
learning models because it provides an
assessment of how well the model is performing
across all classes. Table 7 presents a comparison
of the sensitivity, specificity, and accuracy for
KNN, ANN, and SVM in the testing set.

Table 7. Comparison of the performance of KNN,
ANN, and SVM in the testing set

Sensitivity Specificity Accuracy
Model (%) (%) (%)
KNN 75.00 80.04 77.78
ANN 98.88 88.89 94.44
SVM 90.91 85.71 88.89
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The results highlight the  superior
performance of the ANN model, which
outperforms both the KNN and SVM models in
terms of sensitivity, specificity, and overall
accuracy. lts ability to accurately identify healthy
and diabetic samples, combined with its high
accuracy rate, has solidified its suitability for the
given classification task.

There could be several reasons why ANN
performed better than KNN and SVM in this study.
Firstly, the choice of features favored ANN over
KNN and SVM. These techniques produce a large
number of features, which could have been a
challenge for KNN and SVM. ANN is known to
perform well with high-dimensional feature
spaces, which aligns with the use of RMS, MAV,
SD, and VAR as feature extraction techniques.
KNN, on the other hand, may encounter difficulties
with high-dimensional features when dealing with
a large number of features. SVM performance
heavily depends on the selection and tuning of the
kernel function and its parameters, especially in
complex datasets with high-dimensional features.

Secondly, an ANN is a machine learning
model capable of modeling complex relationships
between input and output variables. It can learn
from data and make accurate classifications by
adjusting the weights and biases of its neurons
during the training process. ANN is beneficial for
handling large datasets and dealing with noisy or
incomplete data. It is the most complex model
when compared with KNN and SVM, which are
relatively more straightforward models than ANN.
On the other hand, KNN is a non-parametric
model that classifies data points based on the
majority class of its nearest neighbours in the
feature space. SVM constructs a hyperplane or a
set of hyperplanes in a high-dimensional space to
separate the classes.

For KNN, the best hyperparameters
identified in the research were Euclidean distance
and K = 1. However, the relatively low accuracy
observed in the testing compared to the training
set is probably due to the number of K=1. In the
KNN algorithm, when K=1, the model classifies
each data point solely based on its closest
neighbor without considering the other neighbors'
points. This can result in overfitting, where the
model becomes overly reliant on the training data
and fails to generalize effectively to new data.

The results of the ANN indicate that it was
able to effectively classify diabetes and healthy
samples with hyperparameters of 1 hidden layer,
nine neurons, and a learning rate of 0.001. The
model achieved high levels of accuracy,
specificity, and sensitivity in all three stages

(training, testing, and validation), indicating that it
was able to generalize well to new, unseen data.

In the case of SVM, the model performance
was optimised by identifying the best
hyperparameters, which were found to be a linear
kernel function and a C value of 0.1. The results
demonstrated that the SVM model also achieved
high levels of accuracy, specificity, and sensitivity,
showcasing its effectiveness in accurately
classifying the data. However, the ANN model
achieved even better performance, with slightly
higher levels of accuracy, specificity, and
sensitivity.

Lastly, it is essential to acknowledge that
the hyperparameters and training process for
each model may have varied based on the study
dataset, potentially influencing their respective
performance. ANN, KNN, and SVM have
hyperparameters that need to be carefully tuned
to achieve optimal performance before any
measurements are made. In this study, PSO was
used to optimize the hyperparameters for each
model. PSO found a combination of
hyperparameters that was better suited to the task
at hand, which could have contributed to ANN's
superior performance. The primary objective of
this study is to utilize machine learning techniques
to automatically classify individuals into two
categories: healthy and diabetic, based on a
predefined set of features, which include Mean
Absolute Value (MAV), Root Mean Square (RMS),
Variance (VAR), and Standard Deviation (SD).
The study assessed the effectiveness of these
three models - ANN, SVM, and KNN - in
classifying individuals with diabetes and healthy
individuals based on EMG data using four different
feature extraction techniques (MAV, VAR, RMS,
and SD). The results showed that the ANN model
outperformed the other two models, achieving a
testing accuracy of 94.44%, which indicates its
ability to differentiate between the two groups
accurately. The SVM model achieved an accuracy
of 88.89%, while the KNN model had the lowest
accuracy of 77.78%, indicating its difficulty in
accurately classifying the data. These results are
consistent with previous findings in the literature,
where ANN models have often demonstrated
higher performance in biomedical signal
classification tasks. For example, Sadeghi et al. [1]
reported that ANN outperformed traditional
classifiers in real-world problem settings, while
Sarker [2] emphasized the robustness of neural
networks in complex pattern recognition tasks.
Similarly, a study by Burns et al. [3] found that
ANN-based classifiers demonstrated superior
classification accuracy in upper limb EMG signal
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analysis compared to probabilistic and

conventional machine learning models.

CONCLUSION

In conclusion, this study developed and
evaluated several machine learning models for
classifying  Electromyography (EMG) data
obtained from healthy individuals and those with
diabetes. Muscle Sensor V3 was used to record
the tibialis anterior (TA) muscle EMG during
dorsiflexion movement. In the study, healthy EMG
signals exhibited higher maximum amplitudes
(278 mV) compared to diabetic signals (149 mV).
This striking discrepancy demonstrates the
existence of neuropathy-induced muscle
dysfunction in people with diabetes. These results
are confirmed by previous research and validate
that the Muscle Sensor V3 is a valuable
technology for NP-induced muscle dysfunctions,
as well as its clinical application in monitoring
diabetic patients.

EMG data acquisition was converted into
numerical features through the feature extraction
process, with a specific emphasis on time-domain
features, i.e., Root Mean Square (RMS), Mean
Absolute Value (MAV), Standard Deviation (SD),
and Variance (VAR). This fundamental step
enables the application of relevant information to
the signal while preserving the signal information,
which produces valid data structures for
classification. In addition, by transforming the
input variables as follows, the accuracy and
performance of the classification models may be
significantly enhanced, as demonstrated in this
work. Therefore, the selection and validation of
feature extraction techniques are of great
significance in ensuring that the extracted features
sufficiently reflect the relevant information for the
classification task.

The time-domain feature set extracted by
this study may be used as the basis of the ML
models to distinguish between normal subjects
and diabetes patients. Certainly, hyperparameter
optimization for a machine learning model is one
of the most critical stages for achieving good
performance. In  this context, optimal
hyperparameter identification is crucial, as the
hyperparameter set can significantly impact the
model's ability to distinguish between normal
subjects and patients with diabetes accurately.
Particle Swarm Optimisation (PSO) was used in
this work, mainly because of its ability to
automatically search a large space of
hyperparameters, thus contributing to the
reduction of time and the attempt to find the best-
performing combination. PSO was applied to
effectively parameterize the hyperparameters of

machine learning models, thereby improving their
performance and the accuracy of classifying
people with and without diabetes.

At last, the experiment compares the
performance of the machine learning models K-
Nearest Neighbour (KNN), Artificial Neural
Network (ANN), and Support Vector Machine
(SVM) in classifying EMG data between healthy
individuals and individuals with diabetes. In
accordance with research, accuracy in
classification using the ANN model to EMG data
was highest amongst the models (94.44%
between normal subjects and diabetes patients,
followed by the KNN and SVM models, which
achieved an accuracy of 77.78% and 88.89%,
respectively, based on EMG data, and in the
approach in this study. The impact of this finding
is that ANN-based classifiers may be utilized in
clinical settings to aid clinicians in accurately and
timely diagnosing and monitoring neuropathy in
the diabetic population. By providing early
detection and continuous monitoring, these
classifiers can contribute to timely interventions
and personalized treatment plans, ultimately
improving patient outcomes and quality of life.
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