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Abstract  
Diabetes can lead to complications like Diabetic Peripheral 
Neuropathy (DPN), which impacts muscle and nerve function. 
Electromyography (EMG) is a standard diagnostic tool for detecting 

DPN, but its complex signals make analysis time-consuming, 
delaying detection and treatment. This study aims to develop and 
compare machine learning models for classifying healthy and 
diabetic individuals using EMG data collected during dorsiflexion 
movement. The Muscle Sensor V3 recorded EMG signals, which 

were then transformed into time-domain features—Root Mean 
Square (RMS), Mean Absolute Value (MAV), Standard Deviation 

(SD), and Variance (VAR)—for classification purposes. Machine 
learning models, including K-Nearest Neighbour (KNN), Support 

Vector Machine (SVM), and Artificial Neural Network (ANN), were 
optimized using Particle Swarm Optimization (PSO). The analysis 
revealed that healthy individuals exhibited higher EMG amplitudes 
than those with diabetes. Among the models, ANN achieved the 

highest classification accuracy (94.44%) compared to SVM (88.89%) 
and KNN (77.78%). These results demonstrate the effectiveness of 
ANN as a reliable classifier for distinguishing between healthy and 
diabetic individuals, offering a more efficient and accurate approach 
to EMG data analysis for potential clinical applications. 
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INTRODUCTION 
Diabetes is one of the most chronic 

diseases, and its prevalence grows yearly [1]. It 

leads to serious problems, such as Diabetic 
Peripheral Neuropathy (DPN), which affects as 
many as half of those who have diabetes [2]. DPN 
can damage nerves and blood vessels in the lower 

legs, resulting in plantar foot ulcers [3]. These 
ulcers, if infected, can progress and potentially 
spread to the bone or surrounding tissues, leading 

to severe complications. Furthermore, DPN can 
disrupt the essential dorsiflexion movement, which 
involves lifting the foot upward at the ankle joint 

during walking. This can lead to gait abnormalities 
and significantly increase the risk of falls and 
injuries [4]. Therefore, the early detection of DPN 
is crucial for individuals with diabetes to maintain 

a high quality of life. This can be achieved by 
adopting a healthy lifestyle, which includes eating 
a healthy diet and exercising regularly [5].  
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Electromyography (EMG) has emerged as 
the industry standard for detecting nerve damage 
in muscles [6]. By measuring and recording the 
electrical activity of skeletal muscles, EMG 

provides valuable insights into muscle conditions, 
including strength and weakness [7]. However, 
analysis of EMG data can be complex and time-
consuming, especially when dealing with large 

and intricate datasets [8]. These factors cause 
delays in detecting and treating peripheral 
neuropathy. Therefore, more advanced methods 
are needed to improve the efficiency and accuracy 
of EMG data analysis [9]. 

Following this challenge, machine learning 
classification techniques are one of the 
appropriate alternatives [10]. Machine learning, a 
subfield of Artificial Intelligence (AI), focuses on 

developing algorithms and statistical models that 
enable systems to learn, predict, classify, and 
make decisions [11][12]. This approach has 
rapidly advanced machine learning-based 
classification techniques within the health science 

industry, enhancing disease detection capabilities 
[13]. By leveraging these models, healthcare 
professionals can obtain more detailed and 
accurate information about muscle function, which 

can help in the detection and treatment of DPN. 
This study contributes to the development 

and comparison of machine learning models for 
classifying healthy individuals and those with 

diabetes, utilizing time-domain features extracted 
from EMG data recorded during dorsiflexion 
movements. Since the choice of machine learning 
models depends on several factors, such as the 
complexity and size of the data, three commonly 

used machine learning models [14], namely K-
Nearest Neighbours (KNN), Artificial Neural 
Network (ANN), and Support Vector Machine 
(SVM) were employed and compared to 

determine their suitability for the EMG data and 
the study method. 
 

RELATED WORKS 
EMG is a technique that records the 

electrical activity in muscles and generates 
complex signals influenced by various factors, 
such as muscle size, location, and activity level 
[15]. For example, variations in muscle 

characteristics, such as size and location, can 
affect the amplitude and morphology of the signals 
[16]. Additionally, the level of muscle activity, 
which includes factors such as intensity and 
coordination, also affects the characteristics of the 

signals [17]. These factors collectively contribute 
to the complexity of the recorded signals, making 
their analysis a challenging task.  

The complexity of EMG signals can make 
accurate analysis difficult, especially in settings 
where specialized knowledge and expertise are 
not readily available [18]. Traditional methods of 

analyzing EMG data often involve manual 
processing, which can be time-consuming and 
can lead to errors. For example, some methods 
involve visual inspection of EMG signals to identify 

abnormal patterns, which can be subjective and 
prone to error [19]. Other methods include 
calculating parameters from EMG signals, such as 
amplitude, frequency, and duration, which are 
time-consuming and require specialized 

knowledge in signal processing and analysis [20]. 
These obstacles create a barrier to obtaining the 
most accurate and efficient detection of muscle 
and nerve disorders, which is crucial for the most 

effective treatment. Thus, there is a need for more 
efficient and precise methods to analyze EMG 
data. 

Machine learning, a subset of Artificial 
Intelligence (AI), enables computers to make more 

accurate predictions and classifications [21]. 
Moreover, machine learning models can operate 
independently without human intervention, 
continuously learning and accumulating 

knowledge to understand the complexity of 
situations and adapt accordingly [22]. By 
processing input data with labeled targets, 
machine learning models have become a powerful 

tool for model fitting and data processing in the era 
of big data. In the healthcare industry, where 
massive amounts of data are generated, machine 
learning has demonstrated its effectiveness in 
generating predictions and facilitating informed 

decision-making [23]. 
Machine learning is broadly classified into 

two categories: supervised and unsupervised 
learning. The primary difference between these 

categories lies in the presence or absence of 
labeled data within the dataset. Unsupervised 
learning is typically used for unlabelled data, 
tackling pattern recognition problems by 
identifying and grouping data based on standard 

features [24]. Dimensionality reduction techniques 
such as Principal Component Analysis (PCA) and 
clustering models like K-means are commonly 
used in unsupervised learning [25]. However, the 

number of categories or clusters and their 
significance are not predetermined. Instead, these 
factors need to be determined by analyzing the 
data itself, often through exploratory data analysis 
and visualizations [26]. The goal is to gain insights 

into the underlying structure of the data without 
requiring predefined labels or categories. 

Supervised learning requires labeled 
training datasets with input and output values, as 
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it learns the mapping between input and target 
values to predict or classify the target value for 
new input data [27]. These techniques utilize 

labeled training data to learn patterns and 
relationships, enabling accurate predictions and 
classification of new, unseen data. Using 
supervised learning, various methods have been 
developed for data classification, such as K-

Nearest Neighbors (KNN), Artificial Neural 
Networks (ANN), and Support Vector Machines 
(SVM) [28, 29, 30].  

In the context of this study, supervised 

learning is the most suitable approach for 
achieving accurate classification. By using 
relevant medical measurements as input features 
and assigning class labels such as "healthy" and 

"diabetic" as the target categories, the supervised 
learning model can learn and generalize from the 
labeled data to accurately classify individuals. This 
approach not only ensures precise classification 
results but also holds the potential to revolutionize 

Diabetes Peripheral Neuropathy (DPN) detection 
and treatment strategies. Applying supervised 
learning in this context can enhance patient 
outcomes and drive significant advancements in 

healthcare [31]. 
 

MATERIAL AND METHOD 
The research procedure begins with the 

development of necessary hardware and software 

to record and analyze muscle activity signals. The 
experiments of this research were conducted to 
ensure that the sensors function correctly. Since 
the sensors were working, the experimental 

protocol was then executed to obtain ethical 
approval. Before seeking ethical approval, it was 
essential to establish the necessary hardware and 
experiment protocol for data collection in order to 
present the proposal to the ethics committee. This 

action involved setting up the required sensors, 
data acquisition devices, and other equipment and 
developing a detailed experimental protocol that 
outlined the study design, procedures, and data 

collection methods. Ethical approval is crucial to 
ensure that research and data collection are 
conducted safely and ethically, with appropriate 
measures taken to protect the rights and welfare 
of research subjects.  

After obtaining ethical approval, a search 
was conducted to identify suitable subjects who 
met the inclusion and exclusion criteria to 
participate in the study. This process resulted in 

the recruitment of 40 subjects who met the criteria, 
and all of them willingly participated in the study. 
Regrettably, this limited number of data samples 
is insufficient for the subsequent classification 

process. To address this challenge, a solution was 
implemented by leveraging synthetic data 
generation from actual data. This innovative 

approach involved two cycles of generating 
synthetic data, resulting in a total of 120 samples 
for classification. Then, the data underwent a 
feature extraction phase using four features: 
Variance (VAR), Mean Absolute Value (MAV), 

Standard Deviation (SD), and Root Mean Square 
(RMS), to facilitate the classification process. 

Classification uses three machine learning 
models: KNN, ANN, and SVM. The classification 

process begins by loading the input-output EMG 
data into the MATLAB workspace. Each output 
target sample is labeled as '1' for a healthy sample 
or '0' for a diabetic sample. To avoid potential bias 

in classification analysis, the input-output data 
were defined and then randomly arranged. Then, 
the data is split randomly, with 70.00% allocated 
to the training set and 15.00% to both the 
validation and testing sets. The training set was 

used to train the classification models, the 
validation set was employed for fine-tuning and 
model validation during the training process, and 
the testing set was utilized to evaluate the models' 

performance. 
The hyperparameters of each parameter 

algorithm are set before training the models. PSO 
is used to efficiently optimize the hyperparameters 
and find the optimal values for the hyperparameter 

set. Once the hyperparameters have been 
optimized, the classification models (KNN, ANN, 
and SVM) are trained using the training set, 
incorporating the optimized hyperparameters. 

Then, a validation set is used to evaluate the 
model's performance after the hyperparameters 
have been tuned. The model with the best 
performance on the validation set is then selected 
for the final evaluation on the test set. To evaluate 

the performance of the models, accuracy, 
sensitivity, and specificity metrics were utilized. 
Accuracy is a measure of how often the model 
correctly classifies the data. Sensitivity is a 

measure of how well the model identifies positive 
(healthy) instances, and specificity is a measure of 
how often the model correctly identifies negative 
(diabetes) instances. The discussion and 
conclusion sections interpreted the results and 

concluded the model's performance.  
 

Experimental Protocol 
The experimental protocol is outlined in 

Figure 1. As observed in Figure 1, the subject 
criteria for inclusion and exclusion are based on 
specific criteria that must be met for individuals to 
be considered eligible for participation.  
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Figure 1. Block diagram of experiment protocol 

 
Electrodes were then attached to the 

correct locations, following the guidelines provided 
to ensure accurate data collection and to prevent 

any side effects on the subjects. Before recording 
the signal, the sensor was calibrated to ensure 
that the contractions being recorded accurately 
reflected the subject's muscle activity. This step 
helped to ensure that the data collected was 

reliable and valid. Once the sensor had been 
calibrated, data were recorded according to the 
established procedure. 

Before the day of data collection, the 

subjects were informed about the purpose of this 
study during an initial meeting or through a phone 
call. If the subject agreed to participate, they would 
then select a date, with their home serving as the 

data collection site. 
Before participating in this study, the 

subjects were screened to determine if they met 
the inclusion and exclusion criteria. Subjects in 
this study were either healthy (without diabetes) or 

had diabetes, and were male or female, between 
the ages of 18 and 65. The selection of gender and 
age range was based on a previous study, which 
indicated no correlation between gender and adult 

age with the level of muscle activity in terms of 
dorsiflexion [32]. This decision was made to 
ensure that gender and age did not significantly 
impact classification accuracy and were not 
confounding factors in accurately assessing the 

effects of diabetes neuropathy.  
The exclusion criteria of this study were 

defined to ensure that the study accurately 
focused on assessing the effects of diabetes. 

Subjects with a history of peripheral nervous 
system disorders, Parkinson's disease, stroke, 
significant muscle atrophy in their lower limbs, or 
ulcers or gout were excluded [33]. By excluding 
individuals with these conditions, the study 

minimized potential confounding factors and 
isolated the specific impact of diabetes on the 
recorded EMG activity [34].   

When subjects met the criteria, they were 
briefed about the experiment procedure and 
received a leaflet with study information as written. 
The leaflet provides additional information about 

the study, including risks and other relevant 
details, to help subjects make an informed 
decision about their participation. Once the 
subjects signed the consent form, it indicated that 

the subjects had read and understood the 
information provided and voluntarily gave their 
consent to participate in the study. 
 

Contraction Calibration 
Electrode pads are typically attached to the 

skin over the muscle of interest. The skin surface 
was cleaned to reduce resistance before placing 
the electrodes. The tibialis anterior (TA) muscle 

has been the focus of most research in this area 
[35]. This study is suitable because diabetic 
neuropathy often affects the lower leg, and the TA 
muscle is the primary dorsiflexor of the leg [35]. 
Dorsiflexion is important in gait because it allows 

the leg to clear the ground during the swing phase. 
Additionally, the TA muscle relies heavily on a 
well-functioning nerve supply for optimal 
performance, making it more susceptible to nerve 

damage associated with particular body 
conditions. 

As shown in Figure 2, when the subject is 
seated on a chair, the green electrode is placed a 

third of the way between the end of the fibula and 
the end of the medial malleolus to capture EMG 
signals, and the red electrode is placed on the 
muscle near the ankle joint to act as ground. The 
yellow electrode is placed on the bony part of the 

ankle, which is an inactive section of the body, to 
serve as a reference. For this study, the yellow 
electrode was placed on the ankle, following 
SENIAM guidelines.  

When using an EMG sensor to collect 
muscle signals, contraction calibration is carried 
out to ensure that the signals recorded by the 
EMG sensor are accurate and reliable.  

 

 

 Figure 2. Electrode location on the TA muscle 
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In EMG, the amplitude is relative and must be 
related to a reference contraction or calibration 
contraction [36]. The amplitude of the EMG signal 

represents the intensity of physiological activities 
in the motor unit during muscular contraction. 
Therefore, the calibration procedure must be 
carefully designed to ensure accuracy, strictly 
adhering to established protocols and equipment 

calibration as elaborated in [37]. 
After placing the electrode pad on the 

muscle, the subject was asked to perform free 
movement for 30 seconds to observe the 

response of the signal with muscle contraction. 
Figure 3 illustrates the muscle signal during 
contraction calibration, and Table 1 shows the 
muscle condition at different time points during a 

30-second contraction calibration process. When 
the muscle is in a resting condition at time 0 
seconds, the signal has a lower amplitude. At 3 
seconds, the muscle contracts, resulting in a 
higher amplitude signal, which aligns with the 

predicted results [38]. These patterns of muscle 
contraction and signal response persist 
throughout the entire 30-second duration, as 
shown in both Table 1 and Figure 3. Suppose the 

signal does not respond during muscle 
contraction. In that case, it is essential to 
troubleshoot the system to identify the cause of 
the problem, including examining hardware 
malfunctions and inspecting for loose 

connections. 
 

 

Figure 3. Signal of the muscle during contraction 
calibration 

 
Table 1. Muscle condition during contraction 

calibration in 30 seconds 
Time (s) 0 3 5 10 12 15 17 20 22 25 27 

Start 

condition 
R C R C R C R C R C R 

 
 

Recording Data 
After finishing the contraction calibration, 

the subject was given a five-minute break. The 

subject was instructed to slowly lift the forefoot and 
toes towards the shin and press the heel into the 
ground (dorsiflexion). As shown in Figure 4. 

The toes are lifted as high as possible for 
one minute (hold), then lowered gradually back to 

the floor. The recorded signal from this experiment 
was saved before being uploaded to facilitate the 
extraction and classification process. 

 

Recruitment Subjects 
A total of 40 volunteer subjects were 

enrolled in the research study, consisting of twenty 
healthy individuals aged 51.9 ± 6.5 years and 

twenty subjects with diabetes, aged 54.1 ± 8.3 
years, who had been living with diabetes for a 
duration of 17.1 ± 12.1 years. The subject data are 
shown in Table 2. 

The Muscle Sensor V3 was used to record 

muscle activity, as it can detect the presence of 
muscle damage. The TA muscle was chosen as 
the reference for the signal because it plays a 
crucial role in dorsiflexion during gait movement. 

The study collected EMG signals from healthy 
individuals and those with diabetes, as diabetes 
can cause nerve damage that affects muscle 
function. A total of 40 subjects were recruited from 
the Kemaman district, comprising 20 healthy 

individuals and 20 individuals with diabetes. Each 
subject generated a sample, resulting in a total of 
40 samples. 

    

(a) (b) (c) (d) 

 Figure 4. (a) Setup of the equipment using Muscle 

Sensor V3. (b) The green electrode is placed over 
the Tibialis Anterior (TA) muscle on the dominant 
leg. (c) The subject does dorsiflexion for one 
minute. (d) The subject lowers the foot to rest. 

 
Table 2. Demographic data for the subjects 

 Healthy Diabetics 

Male/Female 15/5 13/7 

Age (Years) 51.9 ± 6.5 54.1 ± 8.3 

BMI (𝑘𝑔/𝑚2) 23.2 ±5.5 28.9 ±6.2 

Duration of diabetes (Years) - 17.1 ± 12.1 

HbA1c (%) - 9.7 ±6.9 
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The Generation of Synthetic Data 
Although 40 samples were collected from 

40 subjects, this sample size was not sufficient to 
carry out accurate classification, mainly when it 

was divided into three stages: training, testing, 
and validation, as noted by previous studies [39], 
[40]. A synthetic method was employed to address 
this limitation, which involved generating 

additional samples using a combination of existing 
data and computer simulation. This approach 
increases the dataset size and reduces the impact 
of the limited sample size, ensuring greater 
accuracy and generalizability of the results. The 

synthetic data in this study was generated from the 
actual data using Random White Gaussian Noise 
(RWGN). Figure 5 shows the 1-D signal of a 
diabetes subject for the corresponding data. 

The above image represents a 1D signal 
with amplitude (in mV) plotted over time (in 
seconds), likely corresponding to physiological or 
biomedical data. This could be, for example, 
electrical activity or time-series data recorded from 

a sensor. 
RWGN is often characterized using the 

concept of Signal-to-Noise Ratio (SNR), as SNR 
measures how well a signal can be distinguished 

from background noise. A high SNR indicates that 
the signal is strong relative to the noise, while a 
low SNR indicates that the noise is strong relative 
to the signal. Therefore, selecting an appropriate 

SNR ratio is crucial for accurately reflecting the 
original signal. To address this issue, the study 
carefully selected an SNR of 30 dB, considering 
the importance of accurately reflecting the original 
signal and the need to minimize noise impact, as 

suggested by [41]. 
The process of creating synthetic data 

began by loading the collected data into the 
MATLAB workspace for synthetic data 

processing. 
 

 

Figure 5. 1-D Signal of a diabetes subject 
 

In each case of the synthetic process, the 
sample of actual EMG data obtained was 
repeated for two cycles, resulting in two synthetic 
samples of data for each sample. As a result, 40 

sample subjects generated 80 synthetic datasets, 
each comprising 120 samples, to support the 
classification procedure. The result of this process 
was then stored in a mat file to be used for 

subsequent processing (feature extraction).  
The models were evaluated using training, 

validation, and testing splits within the same 
dataset, rather than being tested on an entirely 
separate external dataset. This can lead to over-

optimistic performance metrics since the synthetic 
data shares statistical properties with the training 
data. Without validation on external datasets, the 
study's conclusions about model accuracy, 

sensitivity, and specificity may not generalize well 
to different populations or settings. 

 

Feature Extraction 
Several studies have demonstrated that the 

time-domain technique can be utilized to detect 
muscular effort and fatigue [42]. This is because 
the time-domain parameters of EMG signals are 
easily measurable, and no changes to the signal 

are required. While each feature of the signal has 
a unique character, using multiple features as 
input to the classifier can improve the accuracy of 
recognizing the EMG patterns [43]. Besides, a 

combination of features could capture more 
information about the EMG signal and provide 
more accurate classifications of the underlying 
pattern. This approach is a common practice in 
EMG signal processing, as it enables a more 

comprehensive representation of the signal and 
can enhance the performance of the classification 
system [44]. 

The most used features for the time domain 

are Mean Absolute Value (MAV), Root Mean 
Square (RMS), Variance (VAR), and Standard 
Deviation (SD), which were employed in these 
studies [44], [45]. MAV is the average of the 
absolute values of a set of numbers. Root Mean 

Square (RMS) is the square root of the average of 
the squares of a set of numbers. c) Variance 
(VAR): Measures the spread of a set of numbers, 
and SD is the square root of the variance. It is 

another measure to investigate the spread of a set 
of numbers, but it is expressed in the same units 
as the original data that is being calculated.  

Previous studies predominantly focus on 
time-domain or frequency-domain features. The 

potential of hybrid feature sets or advanced 
feature extraction techniques, such as wavelet 
transforms or deep feature learning, remains 
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underexplored for enhanced classification 
accuracy. 

 

Machine Learning Classification  
The classification flow process for KNN, 

ANN, and SVM is illustrated in Figure 6. The 
classification begins by loading the extracted 
input-output EMG data into the MATLAB 

workspace. The input layer consists of four 
features (MAV, RMS, VAR, and SD), and the 
output target is binary, with '1' representing the 
healthy label and '0' representing the diabetes 

label. 
To avoid potential bias in classification 

analysis, the input-output data were first defined, 
and the arrangement was then randomly 

generated. To evaluate the performance of the 
machine learning model accurately on new, 
unseen data, it was necessary to split the collected 
data into three subsets: training, validation, and 
testing. The training set was used to train the 

model and learn its parameters. The validation set 
was used to fine-tune the model's parameters and 
prevent overfitting. The testing set was used to 
evaluate the model's performance on data that it 

had not seen before. A commonly employed split 
ratio in practice is 70.00%, 15.00%, and 15.00% 
for training, testing, and validation, respectively 
[46]. 

The hyperparameters of each classification 

model are first set and optimized using PSO. Once 
the hyperparameters had been optimized, the 
classification models (KNN, ANN, and SVM) were 
trained to incorporate the optimized 

hyperparameters. The accuracy, sensitivity, and 
specificity were employed to assess the 
performance of the models.  

 

Architectures of the Machine Learning Models 

(KNN, ANN, SVM)   
The capacity of a machine learning model 

to analyse data, identify patterns, and provide 
precise classifications is determined by its 

architecture. When it comes to utilizing EMG 
signals to categorize healthy and diabetic people, 
the architecture is essential in determining the 
model's generalisability, interpretability, and 
performance. 

Figure 7 illustrates the classification 
process for two classes, specifically for the cases 
when K = 1 and K = 3. Figure 7 (a) displays the 
closest known (-) sample to the sample X utilised 

for categorizing sample X. It means that the 
category of sample X is assigned based on the 
class of the closest neighbour (-).  
 

 

Figure 6. Flowchart of the classification process. 

 
In Figure 7 (b), there are two nearest (+) samples 
and one (-) sample considered for categorizing 
sample X. The majority class among these three 

neighbours (+) is used to classify sample X. This 
approach employs a majority voting mechanism to 
ensure accurate classification based on the 
consensus of its closest neighbours. 

The architecture of an ANN typically 

consists of an input layer, a hidden layer, and an 
output layer, as shown in Figure 8. The input layer 
receives data from external sources, then 
transmits it to the hidden layer. The hidden layer 

processes the data and sends it to the output 
layer, using weights assigned to each node. 

 
 

                  (a)                                     (b) 
Figure 7. The KNN illustration in classifying 

different numbers of K  
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Figure 8. Structure of ANN  

 
The classification model constructs 

hyperplanes in high-dimensional space to 
effectively separate cases with different class 
labels, as shown in Figure 9. The classification of 
Class A and Class B demonstrates the 

construction of hyperplanes by SVM to separate 
instances according to their classes effectively. 
This visual representation offers insight into the 
process of maximizing the margin or distance 

between the two classes. By maximizing the 
margin, SVM aims to minimize the risk of 
misclassification and enhance the classifier's 
ability to classify unseen data [47] accurately.  
 
KNN Hyperparameter Optimization 

The set of hyperparameters for KNN is 
shown in Table 3, which is incorporated into the 
KNN classification MATLAB script. The 

hyperparameters used for optimization in KNN 
were the distance metric and the number of 
neighbors (K). The distance metric is a function 
that measures the distance between two data 

points in the feature space. The most common 
distance metrics used in this study were Euclidean 
distance, Manhattan distance, and Minkowski 
distance [48].  

The number of K is a hyperparameter that 

determines the number of nearest neighbours to 
consider when making a classification for a new 
data point. The optimal value of K depends on the 
characteristics of the data and the problem being 

solved.  
 

 

Figure 9. Hyperplane in 2-dimensional space  

Table 3. Hyperparameters for KNN optimization 

Hyperparameter 
Type and value of 
hyperparameter 

Distance 
Euclidean, Manhattan, and 

Minkowski. 
Number of neighbours 

(K) 
1 to 10 

 
However, as a general guideline, the value 

of K can range from 1 to the square root of the 
number of samples in the training dataset [49]. For 
this study, the dataset comprised 120 samples, 
with a training set size of 70.00%. The training set 

consisted of 84 samples. Since the square root of 
84 is approximately 9.1652, a reasonable range 
for the value of K employed in this case would be 
between 1 and 10. 

 

ANN Hyperparameter Optimization 
In this study, a feedforward neural network 

was selected due to its suitability in addressing a 
binary classification problem involving two output 

classes ('1' for healthy and '0' for diabetes) [48]. 
By leveraging its architecture, a feedforward 
neural network was able to discern these two 
classes by acquiring an understanding of the 
underlying patterns present in the data. 

Additionally, to address the unique challenges 
posed by scenarios involving relatively small 
datasets and the need for fast convergence and 
improved accuracy, the Levenberg-Marquardt 

backpropagation algorithm was employed, 
providing further optimization capabilities to the 
network [50]. This combined approach ensured 
robust and accurate classification results in the 
study. 

Table 4 presents the set of 
hyperparameters for the ANN, which are 
integrated into the ANN classification MATLAB 
script featured in Appendix K. The 

hyperparameters used for optimization in this 
research were the number of hidden layers and 
neurons, as well as the learning rate in 
backpropagation. The number of hidden layers 
and neurons is a crucial hyperparameter of an 

ANN, as it significantly affects the model's ability 
to learn complex patterns in the data. For optimal 
performance, this study chose 1 to 2 hidden 
layers, considering the relatively small size of the 

dataset [51].  
 

Table 4. Hyperparameters for ANN optimization 

Hyperparameter 
Type and value of 

hyperparameter 

Number of hidden 

layers 
1 to 2 

Number of neurons 1 to 10 
Number of learning 

rates 
0.1, 0.01, 0.001, and 0.0001 
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This choice was made to avoid overfitting and 
ensure efficient utilization of available data.  

Besides, the number of neurons in each 

hidden layer was carefully determined to range 
from 1 to 10 [52][53]. This selection was based on 
the understanding that a moderate number of 
neurons is generally suitable for addressing 
simple problems or datasets with limited 

complexity. This action allowed the neural network 
to balance capturing meaningful patterns while 
preventing unnecessary complexity by avoiding 
excessive neuron count [54]. 

Additionally, the learning rate is another 
crucial hyperparameter that significantly impacts 
the performance of the ANN during training. The 
learning rate governs the magnitude of weight 

updates made during the training process. For the 
fixed learning rate, a common practice starts with 
a value that is not too small, such as 0.1, and then 
exponentially lowers it to obtain smaller constant 
values, 0.01, 0.001, and 0.0001 [55]. This gradual 

reduction in the learning rate enables more refined 
adjustments to the network's weights, promoting 
convergence and enhancing the training process. 
 

SVM Hyperparameter Optimization 
The set of hyperparameters for the Support 

Vector Machine (SVM) is shown in Table 5. This 
hyperparameter is included in the MATLAB script 
for SVM classification. Several hyperparameters 

must be considered, including the type of kernel 
function, the regularization parameter (C), and the 
kernel parameter (gamma) for the Radial Basis 
Function (RBF). An important aspect of optimizing 

in SVM is the choice of the kernel function, which 
determines how input data is mapped into a 
higher-dimensional feature space for 
classification. The commonly used kernel 
functions in SVM are linear, polynomial, and RBF 

[56].  
The regularization parameter is crucial in 

balancing model complexity and generalization 
ability. The optimal value of C typically falls within 

the range of 0.01 to 100. However, it may be 
necessary to experiment with different values to 
find the best value for a specific dataset. A 
previous study suggested that the following values 
of C are good starting points for experimentation: 

0.01, 0.1, 1, 10, and 100 [57]. 
 
Table 5. Hyperparameters for SVM optimization 

Hyperparameter 
Type and value of the 

hyperparameter 

Type of Kernel 
Linear, Polynomial, and Radial 

Basis Function 

C 0.01, 0.1, 1, 10, and 100 
Gamma 0.0001, 0.001, 0.01, 0.1, 1, and 10 

The gamma parameter controls the width of 
the RBF kernel. Typically, the optimal range for 
gamma is between 0.0001 and 10. However, the 

optimal values of these hyperparameters may 
vary depending on the specific problem being 
addressed and may require experimentation to 
determine. Some suggested values are 0.0001, 
0.001, 0.01, 0.1, 1, and 10 [58, 59, 60, 61, 62]. 

 
Performance Measurement 

Training, testing, and validation are stages 
in machine learning, while accuracy, sensitivity, 

and specificity are metrics used to evaluate a 
model's performance at various stages. Accuracy, 
sensitivity, and specificity are commonly used to 
evaluate the performance of models, as they are 

particularly relevant in the medical profession. 
These metrics are used to evaluate the quality of 
a classification and are often used to compare the 
performance of different models in performing the 
same task.  

The calculation of accuracy, sensitivity, and 
specificity requires a confusion matrix. Using the 
MATLAB software, the confusion matrix can be 
calculated automatically. Table 6 shows the 

design of the confusion matrix. 
In this study, the positive class of EMG data, 

obtained from healthy individuals without 
diabetes, was compared to the negative class of 
EMG data, collected from individuals with 

diabetes. According to the confusion matrix, 
accuracy, sensitivity, and specificity are calculated 
as follows: 

Accuracy: Accuracy measures the 

frequency with which the model correctly classifies 
the outcome. It is defined as the ratio of the 
number of correct classifications to the total 
number of classifications made. The equation is 
stated in (1). 

Accuracy=(TN+TP)/(TN+TP+FN+FP) x100%   (1) 

Specificity: Specificity measures the 
proportion of actual negative cases (diabetes) that 
the model correctly identifies. It is defined as the 

ratio of true negative cases to the total number of 
actual negative cases, as shown in (2). 

Specificity=TN/(TN+FP) x100%                        (2) 

 
Table 6. Confusion matrix design 

 
Prediction 

Positive 

Prediction 

Negative 

Actual Positive 
TP (True 
Positive) 

FP (False 
Positive) 

Actual 

Negative 

FN (False 

Negative) 

TN (True 

Negative) 
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Sensitivity: Sensitivity measures the 

proportion of actual positive cases (healthy) that 
the model correctly identifies. It is defined as the 

ratio of true positive cases to the total number of 
actual positive cases, as stated in (3). 

Sensitivity=TP/(TP+FN) x100%                        (3) 

To understand the performance of machine 

learning models, it is essential to evaluate their 
ability to generalize from the training data to 
unseen data. In machine learning, overfitting 
occurs when a model learns the training data too 
well, resulting in high accuracy on the training 

dataset but low accuracy on the testing dataset. 
On the other hand, underfitting occurs when a 
model fails to learn the training data sufficiently, 
resulting in low accuracy on both the training and 

testing datasets.  
 

RESULTS AND DISCUSSION 
During the dorsiflexion movement, EMG 

signal recordings were obtained from the lower 

part of the TA muscle using the Muscle Sensor V3 
device for a duration of one minute. The muscle 
activity signals for both classes, the healthy 
individuals and the diabetes group, are separately 

averaged as depicted in Figure 10. As seen in 
Figure 10, the maximum amplitude values for the 
healthy and diabetic signals are 278 mV and 149 
mV, respectively. This vast difference in amplitude 

is because patients with diabetes usually display 
consistently lower and more variable motor unit 
discharge frequency than healthy individuals, 
indicating the presence of neuromuscular disease 
and potential peripheral neuropathy associated 

with diabetes. 
Based on the analysis of the EMG signal, it 

is evident that healthy individuals exhibit higher 
amplitudes than those with diabetes. This 

observation aligns with the understanding that 
individuals with diabetes may experience nerve 
damage, which can significantly impact the 
amplitude of the EMG signals. The variations in 
muscle activation patterns and the presence of 

nerve damage contribute to the observed lower 
amplitudes in the EMG signals from individuals 
with diabetes compared to those from healthy 
individuals.  

This is supported by the findings of other 
relevant EMG studies, which also show higher 
amplitude in healthy subjects than in those with 
neuropathy. The collective evidence from this 
study strongly supports the validity and accuracy 

of Muscle Sensor V3 in effectively measuring 
muscle electrical activity. 

 

 

 

 

Figure 10. Comparison between healthy and 

diabetic signals. 
 

In this study, three machine learning 
models were employed for classifying EMG data 

extracted using four features: MAV, RMS, VAR, 
and SD. Their performance was evaluated by 
testing their accuracy levels. By evaluating the 
performance of the models using the testing 

dataset, the study was able to obtain a more 
accurate estimate of how well the models can 
perform in real-world scenarios. Furthermore, 
accuracy is used for comparing different machine 
learning models because it provides an 

assessment of how well the model is performing 
across all classes. Table 7 presents a comparison 
of the sensitivity, specificity, and accuracy for 
KNN, ANN, and SVM in the testing set.  

 
Table 7. Comparison of the performance of KNN, 

ANN, and SVM in the testing set 

Model 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

KNN 75.00 80.04 77.78 

ANN 98.88 88.89 94.44 

SVM 90.91 85.71 88.89 
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The results highlight the superior 
performance of the ANN model, which 
outperforms both the KNN and SVM models in 

terms of sensitivity, specificity, and overall 
accuracy. Its ability to accurately identify healthy 
and diabetic samples, combined with its high 
accuracy rate, has solidified its suitability for the 
given classification task. 

There could be several reasons why ANN 
performed better than KNN and SVM in this study. 
Firstly, the choice of features favored ANN over 
KNN and SVM. These techniques produce a large 

number of features, which could have been a 
challenge for KNN and SVM. ANN is known to 
perform well with high-dimensional feature 
spaces, which aligns with the use of RMS, MAV, 

SD, and VAR as feature extraction techniques. 
KNN, on the other hand, may encounter difficulties 
with high-dimensional features when dealing with 
a large number of features. SVM performance 
heavily depends on the selection and tuning of the 

kernel function and its parameters, especially in 
complex datasets with high-dimensional features. 

Secondly, an ANN is a machine learning 
model capable of modeling complex relationships 

between input and output variables. It can learn 
from data and make accurate classifications by 
adjusting the weights and biases of its neurons 
during the training process. ANN is beneficial for 
handling large datasets and dealing with noisy or 

incomplete data. It is the most complex model 
when compared with KNN and SVM, which are 
relatively more straightforward models than ANN. 
On the other hand, KNN is a non-parametric 

model that classifies data points based on the 
majority class of its nearest neighbours in the 
feature space. SVM constructs a hyperplane or a 
set of hyperplanes in a high-dimensional space to 
separate the classes.  

For KNN, the best hyperparameters 
identified in the research were Euclidean distance 
and K = 1. However, the relatively low accuracy 
observed in the testing compared to the training 

set is probably due to the number of K=1. In the 
KNN algorithm, when K=1, the model classifies 
each data point solely based on its closest 
neighbor without considering the other neighbors' 
points. This can result in overfitting, where the 

model becomes overly reliant on the training data 
and fails to generalize effectively to new data. 

The results of the ANN indicate that it was 
able to effectively classify diabetes and healthy 

samples with hyperparameters of 1 hidden layer, 
nine neurons, and a learning rate of 0.001. The 
model achieved high levels of accuracy, 
specificity, and sensitivity in all three stages 

(training, testing, and validation), indicating that it 
was able to generalize well to new, unseen data.  

In the case of SVM, the model performance 

was optimised by identifying the best 
hyperparameters, which were found to be a linear 
kernel function and a C value of 0.1. The results 
demonstrated that the SVM model also achieved 
high levels of accuracy, specificity, and sensitivity, 

showcasing its effectiveness in accurately 
classifying the data. However, the ANN model 
achieved even better performance, with slightly 
higher levels of accuracy, specificity, and 

sensitivity. 
Lastly, it is essential to acknowledge that 

the hyperparameters and training process for 
each model may have varied based on the study 

dataset, potentially influencing their respective 
performance. ANN, KNN, and SVM have 
hyperparameters that need to be carefully tuned 
to achieve optimal performance before any 
measurements are made. In this study, PSO was 

used to optimize the hyperparameters for each 
model. PSO found a combination of 
hyperparameters that was better suited to the task 
at hand, which could have contributed to ANN's 

superior performance. The primary objective of 
this study is to utilize machine learning techniques 
to automatically classify individuals into two 
categories: healthy and diabetic, based on a 
predefined set of features, which include Mean 

Absolute Value (MAV), Root Mean Square (RMS), 
Variance (VAR), and Standard Deviation (SD). 
The study assessed the effectiveness of these 
three models - ANN, SVM, and KNN - in 

classifying individuals with diabetes and healthy 
individuals based on EMG data using four different 
feature extraction techniques (MAV, VAR, RMS, 
and SD). The results showed that the ANN model 
outperformed the other two models, achieving a 

testing accuracy of 94.44%, which indicates its 
ability to differentiate between the two groups 
accurately. The SVM model achieved an accuracy 
of 88.89%, while the KNN model had the lowest 

accuracy of 77.78%, indicating its difficulty in 
accurately classifying the data. These results are 
consistent with previous findings in the literature, 
where ANN models have often demonstrated 
higher performance in biomedical signal 

classification tasks. For example, Sadeghi et al. [1] 
reported that ANN outperformed traditional 
classifiers in real-world problem settings, while 
Sarker [2] emphasized the robustness of neural 

networks in complex pattern recognition tasks. 
Similarly, a study by Burns et al. [3] found that 
ANN-based classifiers demonstrated superior 
classification accuracy in upper limb EMG signal 
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analysis compared to probabilistic and 
conventional machine learning models. 
 

CONCLUSION 
In conclusion, this study developed and 

evaluated several machine learning models for 
classifying Electromyography (EMG) data 
obtained from healthy individuals and those with 

diabetes. Muscle Sensor V3 was used to record 
the tibialis anterior (TA) muscle EMG during 
dorsiflexion movement. In the study, healthy EMG 
signals exhibited higher maximum amplitudes 
(278 mV) compared to diabetic signals (149 mV). 

This striking discrepancy demonstrates the 
existence of neuropathy-induced muscle 
dysfunction in people with diabetes. These results 
are confirmed by previous research and validate 

that the Muscle Sensor V3 is a valuable 
technology for NP-induced muscle dysfunctions, 
as well as its clinical application in monitoring 
diabetic patients. 

EMG data acquisition was converted into 

numerical features through the feature extraction 
process, with a specific emphasis on time-domain 
features, i.e., Root Mean Square (RMS), Mean 
Absolute Value (MAV), Standard Deviation (SD), 

and Variance (VAR). This fundamental step 
enables the application of relevant information to 
the signal while preserving the signal information, 
which produces valid data structures for 

classification. In addition, by transforming the 
input variables as follows, the accuracy and 
performance of the classification models may be 
significantly enhanced, as demonstrated in this 
work. Therefore, the selection and validation of 

feature extraction techniques are of great 
significance in ensuring that the extracted features 
sufficiently reflect the relevant information for the 
classification task. 

The time-domain feature set extracted by 
this study may be used as the basis of the ML 
models to distinguish between normal subjects 
and diabetes patients. Certainly, hyperparameter 
optimization for a machine learning model is one 

of the most critical stages for achieving good 
performance. In this context, optimal 
hyperparameter identification is crucial, as the 
hyperparameter set can significantly impact the 

model's ability to distinguish between normal 
subjects and patients with diabetes accurately. 
Particle Swarm Optimisation (PSO) was used in 
this work, mainly because of its ability to 
automatically search a large space of 

hyperparameters, thus contributing to the 
reduction of time and the attempt to find the best-
performing combination. PSO was applied to 
effectively parameterize the hyperparameters of 

machine learning models, thereby improving their 
performance and the accuracy of classifying 
people with and without diabetes. 

At last, the experiment compares the 

performance of the machine learning models K-
Nearest Neighbour (KNN), Artificial Neural 
Network (ANN), and Support Vector Machine 
(SVM) in classifying EMG data between healthy 

individuals and individuals with diabetes. In 
accordance with research, accuracy in 
classification using the ANN model to EMG data 
was highest amongst the models (94.44% 
between normal subjects and diabetes patients, 

followed by the KNN and SVM models, which 
achieved an accuracy of 77.78% and 88.89%, 
respectively, based on EMG data, and in the 
approach in this study. The impact of this finding 

is that ANN-based classifiers may be utilized in 
clinical settings to aid clinicians in accurately and 
timely diagnosing and monitoring neuropathy in 
the diabetic population. By providing early 
detection and continuous monitoring, these 

classifiers can contribute to timely interventions 
and personalized treatment plans, ultimately 
improving patient outcomes and quality of life. 
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