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Abstract

Seatbelt usage is essential for minimizing injury risk during vehicular
accidents. The monitoring seatbelt system in modern vehicles can be
easily tricked into not displaying the warning alert. Car seatbelt
detection, utilising real-time object detection, is employed to monitor
seatbelt usage. However, the accuracy of such systems needs to be
further evaluated under low-light and bright-light conditions. This
study aims to develop a car seatbelt monitoring system using a real-
time object detection algorithm, which will be tested in low-light and
bright-light scenarios. The system integrates a trained YOLOvS
model into embedded hardware, which interfaces directly with the
vehicle’s ignition system, enabling or disabling engine start based on
seatbelt usage. Notifications are also delivered through LEDs, a
buzzer, and Telegram messages. This system has an accuracy of
95.75%, precision of 99.1%, recall of 96.2%, and an F1-score of
97.2%. The results show that the system can generate a better
confidence score under bright-light conditions than under low-light
conditions. This work offers tangible proof of the efficacy of applying
intelligent object detection models for real-time driver monitoring,
particularly in enhancing compliance through physical intervention
and loT-based alerts.
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INTRODUCTION

Safety in driving is an essential aspect of
using transportation, as road traffic accidents
remain a significant public health concern. In [1]
have shown that accident-prone road segments
are often associated with poor road conditions,
inadequate signage, and environmental factors
that increase collision rates. However, many
drivers still neglect it, including the use of
seatbelts. The use of seatbelts in motor vehicles
is useful in minimizing the risk of injury or death in
the event of a traffic accident. An ideal driver is
said to always use a seatbelt when driving.
However, many drivers of four-wheeled vehicles
are unwilling to use seatbelts. They merely fasten
it to the buckle to silence the warning buzzer
without actually wearing it on their bodies. Using a
combination of lap and shoulder seatbelts is an

efficient way to minimize the seriousness and
mortality rate of injuries caused by vehicle
collisions [2].

The absence of seatbelt use among new
drivers, particularly those aged 15 to 17,
significantly increases the risk of morbidity and
mortality in motor vehicle accidents, with studies
showing over 20% greater odds of mortality and
nearly two-thirds of pediatric spinal fractures
occurring without seatbelts [3]. In 2020, only 49%
of vehicle passengers were using seatbelts during
accidents [4]. Therefore, a driver monitoring
system is needed to ensure the proper use of
seatbelts.

An object detected by a camera requires an
algorithm to process it. Algorithms such as Faster
R-CNN use two stages in object detection, which
results in longer processing times but higher
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accuracy [5][6]. Additionally, object detection
algorithms like YOLO and SSD tend to excel in
speed, while R-CNN and its variants perform
better in terms of accuracy [7]. The RetinaNet
algorithm has a slower speed due to its more
complex architecture, which results in higher
accuracy for detecting small objects [8]. For object
detection systems that require speed, the use of
the YOLO algorithm is a suitable choice. YOLO
can detect objects quickly while maintaining
accuracy because it uses a simpler architecture,
requiring only a single pass of the image through
the network [9].

The ETLE (Electronic Traffic Law
Enforcement) system, which can monitor driver
behavior, has been implemented. The penalties
issued are diverse, including violations of seatbelt
usage while driving [10]. However, this method is
still not effective, as the monitoring cameras are
not installed in all locations and are only present
at certain points [11]. The YOLO algorithm has
been applied in various fields, including ETLE
systems. The YOLO algorithm in ETLE systems
can detect riders who are not wearing helmets
[12].

Several studies have explored seatbelt
detection using different algorithmic approaches
and environmental conditions. The work in [13]
applied YOLOV5 to identify seatbelt usage from
frontal images of drivers, while the author in [14]
developed a model resilient to weather-related
lighting variations using the  S-AlexNet
architecture. Other approaches incorporated
hybrid feature modeling, such as local-global
predictors and shape modeling processes [15], or
emphasized detection performance under varying
light conditions, particularly in the context of
autonomous vehicles [16]. Detection frameworks
have also evolved to support multi-class
classification of seatbelt states, such as properly
worn, worn incorrectly, or absent, enabling more
granular analysis for occupant monitoring systems
(OMS) and driver monitoring systems (DMS) [17]
[18]. However, these implementations remain
constrained to laboratory environments or image-
level validations, with limited integration into
physical vehicular systems or evaluation under
diverse real-world lighting conditions.

This study develops a comprehensive car
seatbelt monitoring system that integrates the
YOLOv5 object detection algorithm into
embedded hardware for real-time deployment. In
addition to recognizing seatbelt usage under
varying lighting conditions, the system is directly
linked to the vehicle’s ignition circuit, thereby
enabling automated enforcement of seatbelt
compliance. It also incorporates a dual-alert
mechanism through visual/auditory signals and

remote Telegram messaging. By validating the
system under actual driving conditions, this work
demonstrates a practical advancement over
previous approaches that were limited to

algorithmic  evaluation or simulation-based
implementation.
METHOD

This study employs the YOLO (You Only
Look Once) algorithm, which uses a Convolutional
Neural Network (CNN) to perform real-time object
detection by dividing an image into an SxS grid,
with each cell predicting bounding boxes and
confidence scores, resulting in an output tensor of
SxSx(Bx5+C) [19]. The system was developed
using hardware, including a Lenovo ldeapad Slim
i5 laptop, Raspberry Pi 4, relay, buzzer, LED,
LM2596 step-down module, cables, smartphone,
HD 1080DPI webcam, and 64 GB micro SD card.
Software tools such as Google Colab, Raspberry
Pi Imager, VNC Viewer, Roboflow, and Telegram
supported the process. A dataset of 1,617 images
featuring seatbelts and face objects was used,
sourced from Roboflow and a manual collection of
simulated drivers with and without seatbelts,
accessible at:
https://universe.roboflow.com/face-
seatbelt/seatbelt-
monitoring/browse?queryText=&pageSize=50&st
artinglndex=0&browseQuery=true

Research Workflow

Based on Figure 1, the research workflow
starts with dataset collection, labeling, and
splitting into training, validation, and testing sets,
followed by pre-processing and model training. If
object detection testing fails, it loops back to data
collection. Once successful, device components
are assembled and tested in a car environment.

Image Dataset Collection
Pre-processing and
Training Model
Testing System Detection

Device Assembly
Device Testing

Object Detected?

Figure 1. Car Seatbelt Detection Research
Workflow
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Dataset Collection

This research used a raw dataset of 1,617
images from Roboflow and manual collection,
showing individuals with and without seatbelts.
Images were manually annotated and labeled in
Roboflow with bounding boxes and two classes:
"seatbelt" and "face." The dataset was then split
into training (70%), validation (20%), and testing
(10%) sets.

Pre-processing

The dataset underwent pre-processing in
Roboflow, including resizing to 640x640 pixels,
auto-orienting, and augmentation (vertical flip,
15% grayscale, and +25% saturation). This
enhanced data quality and increased the dataset
to 2,749 images: 2,264 for training, 323 for
validation, and 162 for testing.

Training Model

This research uses the YOLOv5s model, a
lightweight yet effective variation suitable for low-
capability devices [20], offering a good balance
between complexity and model size [21]. Training
parameters include a 640x640 image size, batch
size of 64, and 100 epochs, where larger image
sizes improve accuracy but demand more
resources, and more epochs allow deeper
learning. The training took 1.294 hours, producing
a model to detect face and seatbelt objects. The
YOLOv5s training process produced strong
performance metrics: precision of 0.962 (96.2%),
recall of 0.97 (97%), and a mean Average
Precision (mMAP) of 0.985 (98.5%). A performance
graph, shown in Figure 2, further illustrates the
model's effectiveness.
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Figure 2. YOLOv5s Training Model Results

Device Assembly

The monitoring design, as shown in Figure
3, is powered by the car battery via the ignition
switch and uses a Raspberry Pi 4 for object
detection. A connected webcam detects the
presence of a face and a seatbelt. If a seatbelt is
detected, the LED and buzzer remain off, and the
relay stays closed, allowing engine start. If not, the
LED and buzzer activate, the relay opens, and the
engine is blocked. Additionally, Telegram alerts
are sent to the driver every 5 minutes if the
seatbelt is not detected, ensuring reminders
without excessive disturbance.

Testing and Evaluation

System  testing includes  detection,
monitoring, device, and Telegram notification
tests. Detection testing evaluates accuracy,
precision, recall, and F1-score using test data and
a confusion matrix (1). The matrix shows TP (true
positive), FP (false positive), FN (false negative),
and TN (true negative), with evaluation calculated
using (1) — (4) [22]. Table 1 shows the confusion
matrix used to assess model performance.

TP+TN (1)
Accuracy =—————
TP+FP+FN+TN
Precision = )
TP+FP
TP
Recall = 3)
TP+FN
F1-Score =2X/MQ (4)
Precision+Recall
Object
) Webcam O Telegram
E | Notification
Motor |
Relay

Cloud Server

Raspberry Pi 4
P y Telegram

LED
Buzzer )-7

I

Ignition Key

Figure 3. Monitoring Device Design

Table1. Confusion Matrix

Actual
Positive Negative
. True TP FP
Predicted —oise FN ™
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Accuracy, precision, recall, and F1-score
are used to evaluate prediction performance, with
error percentage calculated using (5).

%Error = (1 — Accuracy) x 100% (5)

For monitoring, device, and Telegram testing, the
system is directly connected to the car's ignition to
assess its ability to respond to seatbelt usage and
light intensity inside the vehicle.

RESULTS AND DISCUSSION
Detection System Testing

The detection system was tested on 162
images containing seatbelt and face objects using
a confidence threshold of 0.5 and an loU threshold
of 0.45 to balance precision and recall [23]. As
shown in Figures 4 and 5, the images were resized
to 640%640 pixels, and object detection results
were displayed with bounding boxes, class labels,
and confidence scores. An error is observed in
Figure 5(b), where the system failed to detect a
worn seatbelt, highlighting a limitation in model
performance. Evaluation was conducted using
confusion matrix values (TP, FP, FN, TN), as
shown in Table 2. The accuracy, precision, recall,
and F1-score derived from these counts are
summarized in Table 3.

Figure 4. (a) Before being Detected (b) After
being Detected

Figure 5. (a) Before being Detected (b) After
being Detected

Car Seatbelt Monitoring Device Testing

The monitoring system is tested by
observing the detection performance of the
seatbelt and face based on the light intensity
inside the car in real-time. The tests are conducted
under two conditions, with each condition being
tested ten times. In the first condition, which is
bright-light, the performance results are displayed
in Table 4. The installation of the car seatbelt
monitoring device on the car dashboard is shown
in Figure 6.

Based on Table 4, during bright-light testing
at 11:19 AM, the system achieved an average
confidence of 90.3% for face detection and 85.5%
for seatbelt detection, with an average light
intensity of 4334.2 lux and a detection speed of
1513.81 ms. The results are shown in Figure 7.
Under low-light conditions (Table 5), tested at 5:59
PM, face and seatbelt detection confidences were
87.7% and 83.6%, respectively, with 2295.8 lux
light intensity and 1512.29 ms detection speed, as
shown in Figure 8.

4

Figure 7. Bright-light Test Sample

Table 4. Bright-light Test Results

Conf. Conf. Light Detection Test Time

Table 2. Confusion Matrix Seatbelt Face Intensity Speed (s)
No Object TP FN FP TN 94 89 5081 1495.6 11.19
1 Face 219 0 4 11 95 80 4645 1518.3 11.19
2 Seatbelt 171 14 0 21 94 82 4305 1528.4 11.19
95 90 4879 1506.6 11.19
Table 3. Evaluation Matrix ?g 8421 gggg ]ggg'g }Hg
No Object Accuracy Precision Recall F1-Score 71 96 3735 1524:6 11:19
1 Face 0.983 0.982 1 0.984 65 94 3617 1522.0 11.19
2 Seatbelt 0.932 1 0.924 0.96 88 94 4341 1518.6 11.19
Average 0.9575 0.991 0.962 0.972 79 92 4263 1502.6 11.19
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Table 5. Low-light Test Results

S;“’t';g" Conf. Light Detection Test Time

(%) Face Intensity Speed (s)

83 89 2552 1418.8 17.59
79 90 2592 1457.9 17.59
80 87 2146 1461.3 17.59
78 83 2354 1439.9 17.59
85 93 2103 14411 17.59
88 89 2313 1592.8 17.59
90 94 2480 1488.2 17.59
85 79 2260 1568.5 17.59
83 94 1975 1788.4 17.59
85 79 2183 1466.0 17.59

Figure 8. Low-light Test Sample

A test is performed to assess the car
seatbelt monitoring response, which includes the
relay, buzzer, LED, and Telegram notifications,
based on the driver's detection status. Table 6
shows system response when the system detects
the seatbelt and face, the LED and buzzer
notification components are off, the relay condition
that was initially open becomes closed, and the
driver’s smartphone does not receive a Telegram
notification. During testing in the car, the driver can
start the engine by activating the starter motor via
the ignition switch. The average confidence value
for seatbelt detection is 81.4%, while the average
confidence value for face detection is 94.4%. All
these tests were conducted with an average light
intensity of 4124.6 lux, performed during the
daytime at 13:25. The results of the test, when the
driver is using the seatbelt, are shown in Figure 9.

Table 6. Test Result with Seatbelt

Figure 9. Result of Test Using Seatbelt

Table 7. Not Use Seatbelt

Conf. Conf. Light Notificati LED & Rela Time
Seatbelt Face Intensity on Buzzer y (s)
- 94 3974 Sent On Open 13.30
- 89 3914 NotSent On Open 13.31
- 95 3735 NotSent On Open 13.32
- 94 3891 NotSent On Open 13.33
- 95 4341 Sent On Open 13.35
- 96 4263 NotSent On Open 13.36
- 95 4550 NotSent On Open 13.37
- 93 4645 NotSent On Open 13.38
- 95 4305 NotSent On Open 13.39
- 94 4167 NotSent On Open 13.40

Conf. Conf. Light Notificati LED & Rela Time
Seatbelt Face Intensity on Buzzer y (s)
89 94 3758 Not Sent  Off Close 13.25
80 95 3843 NotSent Off Close 13.25
82 94 3925 NotSent Off Close 13.25
90 95 4436 Not Sent  Off Close 13.25
92 96 4606 Not Sent  Off Close 13.25
78 94 4246  Not Sent  Off Close 13.25
71 96 3827 Not Sent  Off Close 13.25
65 94 3789 Not Sent  Off Close 13.25
88 94 4631 NotSent Off Close 13.25
79 92 4185 Not Sent  Off Close 13.25

_ A
Figure 10. Result of Test Without Seatbelt

Table 7 shows the test results when the
driver is not wearing a seatbelt. In 10 trials, the
system consistently detected the face (with an
average confidence of 94%) without errors, under
an average light intensity of 4178.5 lux. When the
seatbelt was not detected, the LED and buzzer
activated, the relay remained open, Telegram sent
alerts every 5 minutes, and the car's engine could
not be started via the ignition. A sample result is
shown in Figure 10.

Telegram Notification Testing

Telegram notifications are sent when the
driver is detected not wearing their seatbelt. The
system automatically sends notifications to the
driver's smartphone via the Telegram application.
Notifications are sent every 5 minutes while the
driver is not detected wearing the seatbelt. The
format of the Telegram notification received on the
smartphone is shown in Figure 11.
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Seatbelt .

Alert: Immediately use your seatbelt!
Alert: Immediately use your seatbelt!

Alert: Immediately use your seatbelt!

o]

Figure 11. Telegram Notification

Result Analysis

Based on Table 3, from 162 testimages, the
system achieved 95.75% accuracy, 99.1%
precision, 96.2% recall, and a 97.2% F1-score.
Detection performance was higher for faces than
for seatbelts. Face detection reached 98.3%
accuracy, 98.2% precision, 100% recall, and
98.4% F1-score, with a 1.7% error rate. Seatbelt
detection scored 93.2% accuracy, 100%
precision, 92.4% recall, and 96% F1-score, with a
6.8% error rate.

Face detection outperforms seatbelt
detection in accuracy, recall, F1-score, and error
rate, but lags in precision. Seatbelt detection only
excels in precision. This discrepancy may stem
from dataset imbalance—1237 seatbelt objects
vs. 2539 face objects—making seatbelt detection
more challenging under varying conditions.
Seatbelt objects are larger and include more
background noise, while face objects are smaller
and consistently captured due to camera
placement. Although data augmentation was
applied, further techniques like SMOTE, GANs,
color space transformation, or noise injection [24]
are needed to improve balance and detection
performance.

Confidence Score

92.0%
90.3%

90.0%

87.7%
88.0%

85.5%

I 83.6%

Bright-light

86.0% W Face

84.0% M Seatbelt
82.0%

80.0%
Low-light

Figure 12. Confidence Score Comparison

Detection Speed

1513.81
1514
1512.29
1512 M Bright-light
Low-light
1510
Bright-light Low-light

Figure 13. Comparison of Detection Speeds

The average intensity of light entering the
car in the evening is lower (low-light) at 1512.29
lux compared to during the day (bright-light), which
is 4334.2 lux. This can be a factor for the lower
confidence scores produced in the low-light
conditions compared to during the bright-light
conditions, as the reduced light entering the car
affects the object detection results [25].

Based on the monitoring tests under bright-
light and low-light conditions, the confidence
values for object detection fluctuate due to factors
like the driver's movement and the seatbelt being
blocked by the driver's hand [26]. As shown in
Figure 12, the system detects face objects more
confidently than seatbelt objects. In bright-light
conditions, the average confidence is 90.3% for
faces and 85.5% for seatbelts; in low-light
conditions, it is 87.7% for faces and 83.6% for
seatbelts. This may occur because face objects
are smaller and less obstructed, while seatbelt
objects are more often blocked or partially visible
during driving.

As shown in Figure 13, object detection
speed remains consistent across 10 tests, with
only a 1.72 ms difference between bright-light
(1513.81 ms) and low-light (1512.29 ms)
conditions. This stability is due to the use of the
same model and image size, which influences
Raspberry Pi's processing efficiency. When the
driver wears a seatbelt, the system detects both
face and seatbelt, resulting in the relay closing, no
activation of the LED/buzzer, and no Telegram
alert, allowing the engine to start normally.

Discussion

This study shows that YOLOv5 detects
faces better than seatbelts due to dataset
imbalance. A larger number of face annotations
leads to higher performance. As supported by [27]
and [28], dataset balance and representativeness
are crucial for achieving accurate object detection
results. In [13], an achieved 89% precision and
81% recall using YOLOv5 under bright light. In
contrast, the proposed system performs better
with 99.1% precision, simpler implementation, and
includes hardware-based alerts and Telegram
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integration. Therefore, the proposed monitoring
system demonstrates improved results compared
to the referenced study. In [29], implemented
YOLOV7 for seatbelt detection using Jetson Nano,
buzzer, and display, achieving a 98% F1-score
and high precision, though not integrated with the
vehicle's electrical system. Meanwhile, the
proposed system achieves slightly lower F1-score
(97.2%) but uses more datasets (1617 compared
to 1240), integrates with car electronics, includes
Telegram alerts, and reaches 100% seatbelt
precision, indicating enhanced functionality. The
monitoring system in this study demonstrates
better performance under bright-light conditions
than in low-light environments. This aligns with the
findings of [30], which observed a decline in
detection accuracy under low-light settings. The
system in this study was tested without applying
advanced preprocessing techniques (such as low-
light enhancement or adaptive histogram
equalization) in order to reflect the original image
conditions from the camera. However, the use of
these techniques is believed to improve detection
performance under various lighting conditions.
Therefore, future research is recommended to
integrate these methods and compare the
detection results to evaluate their impact on
system performance.

CONCLUSION

This study developed a car seatbelt
monitoring system using the YOLOV5 algorithm to
detect seatbelts and face objects. The system is
tested under low-light and bright-light conditions.
The system achieved 95.75% accuracy, 99.1%
precision, 96.2% recall, and a 97.2% F1-score.
Average confidence scores were 90.3% (face)
and 85.5% (seatbelt) in bright-light (4334.2 lux),
and 87.7% (face) and 83.6% (seatbelt) in low-light
(1512.29 lux), with detection speeds of 1513.81
ms and 1512.29 ms, respectively. The device
connects to the car’s ignition and sends Telegram
alerts every 5 minutes. Future work should expand
the dataset, optimize for speed and accuracy,
integrate law enforcement notifications, and test
across diverse vehicles and conditions.
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