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Abstract  
Seatbelt usage is essential for minimizing injury risk during vehicular 
accidents. The monitoring seatbelt system in modern vehicles can be 
easily tricked into not displaying the warning alert. Car seatbelt 
detection, utilising real-time object detection, is employed to monitor 
seatbelt usage. However, the accuracy of such systems needs to be 
further evaluated under low-light and bright-light conditions. This 
study aims to develop a car seatbelt monitoring system using a real-
time object detection algorithm, which will be tested in low-light and 
bright-light scenarios. The system integrates a trained YOLOv5 
model into embedded hardware, which interfaces directly with the 
vehicle’s ignition system, enabling or disabling engine start based on 
seatbelt usage. Notifications are also delivered through LEDs, a 
buzzer, and Telegram messages. This system has an accuracy of 
95.75%, precision of 99.1%, recall of 96.2%, and an F1-score of 
97.2%. The results show that the system can generate a better 
confidence score under bright-light conditions than under low-light 
conditions. This work offers tangible proof of the efficacy of applying 
intelligent object detection models for real-time driver monitoring, 
particularly in enhancing compliance through physical intervention 
and IoT-based alerts. 
 

This is an open-access article under the CC BY-SA license. 

 

Keywords:  
Internet of Things;  
Monitoring;  
Seatbelt;  
You Only Look Once;  
 
Article History: 
Received: December 5, 2024 
Revised: April 22, 2025 
Accepted: April 30, 2025 
Published: September 3, 2025  
 
Corresponding Author: 
Agus Suryanto 
Electrical Engineering 
Department, Universitas Negeri 
Semarang, Indonesia 
Email: 
agusku2@mail.unnes.ac.id  
 

INTRODUCTION 
Safety in driving is an essential aspect of 

using transportation, as road traffic accidents 
remain a significant public health concern. In [1] 
have shown that accident-prone road segments 
are often associated with poor road conditions, 
inadequate signage, and environmental factors 
that increase collision rates. However, many 
drivers still neglect it, including the use of 
seatbelts. The use of seatbelts in motor vehicles 
is useful in minimizing the risk of injury or death in 
the event of a traffic accident. An ideal driver is 
said to always use a seatbelt when driving. 
However, many drivers of four-wheeled vehicles 
are unwilling to use seatbelts. They merely fasten 
it to the buckle to silence the warning buzzer 
without actually wearing it on their bodies. Using a 
combination of lap and shoulder seatbelts is an 

efficient way to minimize the seriousness and 
mortality rate of injuries caused by vehicle 
collisions [2]. 

The absence of seatbelt use among new 
drivers, particularly those aged 15 to 17, 
significantly increases the risk of morbidity and 
mortality in motor vehicle accidents, with studies 
showing over 20% greater odds of mortality and 
nearly two-thirds of pediatric spinal fractures 
occurring without seatbelts [3]. In 2020, only 49% 
of vehicle passengers were using seatbelts during 
accidents [4]. Therefore, a driver monitoring 
system is needed to ensure the proper use of 
seatbelts. 

An object detected by a camera requires an 
algorithm to process it. Algorithms such as Faster 
R-CNN use two stages in object detection, which 
results in longer processing times but higher 
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accuracy [5][6]. Additionally, object detection 
algorithms like YOLO and SSD tend to excel in 
speed, while R-CNN and its variants perform 
better in terms of accuracy [7]. The RetinaNet 
algorithm has a slower speed due to its more 
complex architecture, which results in higher 
accuracy for detecting small objects [8]. For object 
detection systems that require speed, the use of 
the YOLO algorithm is a suitable choice. YOLO 
can detect objects quickly while maintaining 
accuracy because it uses a simpler architecture, 
requiring only a single pass of the image through 
the network [9]. 

The ETLE (Electronic Traffic Law 
Enforcement) system, which can monitor driver 
behavior, has been implemented. The penalties 
issued are diverse, including violations of seatbelt 
usage while driving [10]. However, this method is 
still not effective, as the monitoring cameras are 
not installed in all locations and are only present 
at certain points [11]. The YOLO algorithm has 
been applied in various fields, including ETLE 
systems. The YOLO algorithm in ETLE systems 
can detect riders who are not wearing helmets 
[12]. 

Several studies have explored seatbelt 
detection using different algorithmic approaches 
and environmental conditions. The work in [13]  
applied YOLOv5 to identify seatbelt usage from 
frontal images of drivers, while the author in [14] 
developed a model resilient to weather-related 
lighting variations using the S-AlexNet 
architecture. Other approaches incorporated 
hybrid feature modeling, such as local-global 
predictors and shape modeling processes [15], or 
emphasized detection performance under varying 
light conditions, particularly in the context of 
autonomous vehicles [16]. Detection frameworks 
have also evolved to support multi-class 
classification of seatbelt states, such as properly 
worn, worn incorrectly, or absent, enabling more 
granular analysis for occupant monitoring systems 
(OMS) and driver monitoring systems (DMS) [17] 
[18]. However, these implementations remain 
constrained to laboratory environments or image-
level validations, with limited integration into 
physical vehicular systems or evaluation under 
diverse real-world lighting conditions. 

This study develops a comprehensive car 
seatbelt monitoring system that integrates the 
YOLOv5 object detection algorithm into 
embedded hardware for real-time deployment. In 
addition to recognizing seatbelt usage under 
varying lighting conditions, the system is directly 
linked to the vehicle’s ignition circuit, thereby 
enabling automated enforcement of seatbelt 
compliance. It also incorporates a dual-alert 
mechanism through visual/auditory signals and 

remote Telegram messaging. By validating the 
system under actual driving conditions, this work 
demonstrates a practical advancement over 
previous approaches that were limited to 
algorithmic evaluation or simulation-based 
implementation. 

METHOD 
This study employs the YOLO (You Only 

Look Once) algorithm, which uses a Convolutional 
Neural Network (CNN) to perform real-time object 
detection by dividing an image into an S×S grid, 
with each cell predicting bounding boxes and 
confidence scores, resulting in an output tensor of 
S×S×(B×5+C) [19]. The system was developed 
using hardware, including a Lenovo Ideapad Slim 
i5 laptop, Raspberry Pi 4, relay, buzzer, LED, 
LM2596 step-down module, cables, smartphone, 
HD 1080DPI webcam, and 64 GB micro SD card. 
Software tools such as Google Colab, Raspberry 
Pi Imager, VNC Viewer, Roboflow, and Telegram 
supported the process. A dataset of 1,617 images 
featuring seatbelts and face objects was used, 
sourced from Roboflow and a manual collection of 
simulated drivers with and without seatbelts, 
accessible at:  
https://universe.roboflow.com/face-
seatbelt/seatbelt-
monitoring/browse?queryText=&pageSize=50&st
artingIndex=0&browseQuery=true  
 

Research Workflow 
Based on Figure 1, the research workflow 

starts with dataset collection, labeling, and 
splitting into training, validation, and testing sets, 
followed by pre-processing and model training. If 
object detection testing fails, it loops back to data 
collection. Once successful, device components 
are assembled and tested in a car environment. 

 

 
Figure 1. Car Seatbelt Detection Research 

Workflow 

https://universe.roboflow.com/face-seatbelt/seatbelt-monitoring/browse?queryText=&pageSize=50&startingIndex=0&browseQuery=true
https://universe.roboflow.com/face-seatbelt/seatbelt-monitoring/browse?queryText=&pageSize=50&startingIndex=0&browseQuery=true
https://universe.roboflow.com/face-seatbelt/seatbelt-monitoring/browse?queryText=&pageSize=50&startingIndex=0&browseQuery=true
https://universe.roboflow.com/face-seatbelt/seatbelt-monitoring/browse?queryText=&pageSize=50&startingIndex=0&browseQuery=true
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Dataset Collection 
This research used a raw dataset of 1,617 

images from Roboflow and manual collection, 
showing individuals with and without seatbelts. 
Images were manually annotated and labeled in 
Roboflow with bounding boxes and two classes: 
"seatbelt" and "face." The dataset was then split 
into training (70%), validation (20%), and testing 
(10%) sets. 

 
Pre-processing 

The dataset underwent pre-processing in 
Roboflow, including resizing to 640x640 pixels, 
auto-orienting, and augmentation (vertical flip, 
15% grayscale, and ±25% saturation). This 
enhanced data quality and increased the dataset 
to 2,749 images: 2,264 for training, 323 for 
validation, and 162 for testing. 
 
Training Model 

This research uses the YOLOv5s model, a 
lightweight yet effective variation suitable for low-
capability devices [20], offering a good balance 
between complexity and model size [21]. Training 
parameters include a 640x640 image size, batch 
size of 64, and 100 epochs, where larger image 
sizes improve accuracy but demand more 
resources, and more epochs allow deeper 
learning. The training took 1.294 hours, producing 
a model to detect face and seatbelt objects. The 
YOLOv5s training process produced strong 
performance metrics: precision of 0.962 (96.2%), 
recall of 0.97 (97%), and a mean Average 
Precision (mAP) of 0.985 (98.5%). A performance 
graph, shown in Figure 2, further illustrates the 
model's effectiveness. 

 

 
Figure 2. YOLOv5s Training Model Results 

 

Device Assembly 
The monitoring design, as shown in Figure 

3, is powered by the car battery via the ignition 
switch and uses a Raspberry Pi 4 for object 
detection. A connected webcam detects the 
presence of a face and a seatbelt. If a seatbelt is 
detected, the LED and buzzer remain off, and the 
relay stays closed, allowing engine start. If not, the 
LED and buzzer activate, the relay opens, and the 
engine is blocked. Additionally, Telegram alerts 
are sent to the driver every 5 minutes if the 
seatbelt is not detected, ensuring reminders 
without excessive disturbance. 
 
Testing and Evaluation 

System testing includes detection, 
monitoring, device, and Telegram notification 
tests. Detection testing evaluates accuracy, 
precision, recall, and F1-score using test data and 
a confusion matrix (1). The matrix shows TP (true 
positive), FP (false positive), FN (false negative), 
and TN (true negative), with evaluation calculated 
using (1) – (4) [22]. Table 1 shows the confusion 
matrix used to assess model performance. 

Accuracy =
TP+TN

TP+FP+FN+TN
  (1) 

Precision =
TP

TP+FP
  (2) 

Recall =
TP

TP+FN
  (3) 

F1-Score =2 x (Precision x Recall

Precision+Recall
)  (4) 

 
 

 
Figure 3. Monitoring Device Design 

 
Table1. Confusion Matrix 

  Actual 
  Positive Negative 

Predicted 
True TP FP 

False FN TN 
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Accuracy, precision, recall, and F1-score 
are used to evaluate prediction performance, with 
error percentage calculated using (5). 

%𝐸𝑟𝑟𝑜𝑟 = (1 − Accuracy) x 100%  (5) 

For monitoring, device, and Telegram testing, the 
system is directly connected to the car's ignition to 
assess its ability to respond to seatbelt usage and 
light intensity inside the vehicle. 
 
RESULTS AND DISCUSSION 
Detection System Testing 

The detection system was tested on 162 
images containing seatbelt and face objects using 
a confidence threshold of 0.5 and an IoU threshold 
of 0.45 to balance precision and recall [23]. As 
shown in Figures 4 and 5, the images were resized 
to 640×640 pixels, and object detection results 
were displayed with bounding boxes, class labels, 
and confidence scores. An error is observed in 
Figure 5(b), where the system failed to detect a 
worn seatbelt, highlighting a limitation in model 
performance. Evaluation was conducted using 
confusion matrix values (TP, FP, FN, TN), as 
shown in Table 2. The accuracy, precision, recall, 
and F1-score derived from these counts are 
summarized in Table 3. 
 

  

     (a)                     (b) 

Figure 4. (a) Before being Detected (b) After 
being Detected 

  

     (a)                     (b) 

Figure 5. (a) Before being Detected (b) After 
being Detected 

 
Table 2. Confusion Matrix 

No Object TP FN FP TN 

1 Face 219 0 4 11 
2 Seatbelt 171 14 0 21 

 
Table 3. Evaluation Matrix 

No Object Accuracy Precision Recall F1-Score 

1 Face 0.983 0.982 1 0.984 
2 Seatbelt 0.932 1 0.924 0.96 

Average 0.9575 0.991 0.962 0.972 

 

Car Seatbelt Monitoring Device Testing 
The monitoring system is tested by 

observing the detection performance of the 
seatbelt and face based on the light intensity 
inside the car in real-time. The tests are conducted 
under two conditions, with each condition being 
tested ten times. In the first condition, which is 
bright-light, the performance results are displayed 
in Table 4. The installation of the car seatbelt 
monitoring device on the car dashboard is shown 
in Figure 6. 

Based on Table 4, during bright-light testing 
at 11:19 AM, the system achieved an average 
confidence of 90.3% for face detection and 85.5% 
for seatbelt detection, with an average light 
intensity of 4334.2 lux and a detection speed of 
1513.81 ms. The results are shown in Figure 7. 
Under low-light conditions (Table 5), tested at 5:59 
PM, face and seatbelt detection confidences were 
87.7% and 83.6%, respectively, with 2295.8 lux 
light intensity and 1512.29 ms detection speed, as 
shown in Figure 8. 

 

 
Figure 6. Placement of The Monitoring Device 

 

 
Figure 7. Bright-light Test Sample 

 
Table 4. Bright-light Test Results 

Conf. 
Seatbelt 

Conf. 
Face 

Light 
Intensity 

Detection 
Speed 

Test Time 
(s) 

94 89 5081 1495.6 11.19 
95 80 4645 1518.3 11.19 
94 82 4305 1528.4 11.19 
95 90 4879 1506.6 11.19 
96 92 4550 1520.6 11.19 
78 94 3926 1500.8 11.19 
71 96 3735 1524.6 11.19 
65 94 3617 1522.0 11.19 
88 94 4341 1518.6 11.19 
79 92 4263 1502.6 11.19 
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Table 5. Low-light Test Results 
Conf. 

Seatbelt 
(%) 

Conf. 
Face 

Light 
Intensity 

Detection 
Speed 

Test Time 
(s) 

83 89 2552 1418.8 17.59 
79 90 2592 1457.9 17.59 
80 87 2146 1461.3 17.59 
78 83 2354 1439.9 17.59 
85 93 2103 1441.1 17.59 
88 89 2313 1592.8 17.59 
90 94 2480 1488.2 17.59 
85 79 2260 1568.5 17.59 
83 94 1975 1788.4 17.59 
85 79 2183 1466.0 17.59 

 

 
Figure 8. Low-light Test Sample 
 
 A test is performed to assess the car 

seatbelt monitoring response, which includes the 
relay, buzzer, LED, and Telegram notifications, 
based on the driver's detection status. Table 6 
shows system response when the system detects 
the seatbelt and face, the LED and buzzer 
notification components are off, the relay condition 
that was initially open becomes closed, and the 
driver’s smartphone does not receive a Telegram 
notification. During testing in the car, the driver can 
start the engine by activating the starter motor via 
the ignition switch. The average confidence value 
for seatbelt detection is 81.4%, while the average 
confidence value for face detection is 94.4%. All 
these tests were conducted with an average light 
intensity of 4124.6 lux, performed during the 
daytime at 13:25. The results of the test, when the 
driver is using the seatbelt, are shown in Figure 9. 

 
Table 6. Test Result with Seatbelt 

Conf. 
Seatbelt 

Conf. 
Face 

Light 
Intensity 

Notificati
on 

LED & 
Buzzer 

Relay 
Time 

(s) 

89 94 3758 Not Sent Off Close 13.25 
80 95 3843 Not Sent Off Close 13.25 
82 94 3925 Not Sent Off Close 13.25 
90 95 4436 Not Sent Off Close 13.25 
92 96 4606 Not Sent Off Close 13.25 
78 94 4246 Not Sent Off Close 13.25 
71 96 3827 Not Sent Off Close 13.25 
65 94 3789 Not Sent Off Close 13.25 
88 94 4631 Not Sent Off Close 13.25 
79 92 4185 Not Sent Off Close 13.25 

 
Figure 9. Result of Test Using Seatbelt 

 
Table 7. Not Use Seatbelt 

Conf. 
Seatbelt 

Conf. 
Face 

Light 
Intensity 

Notificati
on 

LED & 
Buzzer 

Relay 
Time 

(s) 

- 94 3974 Sent On Open 13.30 
- 89 3914 Not Sent On Open 13.31 
- 95 3735 Not Sent On Open 13.32 
- 94 3891 Not Sent On Open 13.33 
- 95 4341 Sent On Open 13.35 
- 96 4263 Not Sent On Open 13.36 
- 95 4550 Not Sent On Open 13.37 
- 93 4645 Not Sent On Open 13.38 
- 95 4305 Not Sent On Open 13.39 
- 94 4167 Not Sent On Open 13.40 

 

 
Figure 10. Result of Test Without Seatbelt 

 
Table 7 shows the test results when the 

driver is not wearing a seatbelt. In 10 trials, the 
system consistently detected the face (with an 
average confidence of 94%) without errors, under 
an average light intensity of 4178.5 lux. When the 
seatbelt was not detected, the LED and buzzer 
activated, the relay remained open, Telegram sent 
alerts every 5 minutes, and the car's engine could 
not be started via the ignition. A sample result is 
shown in Figure 10.  

Telegram Notification Testing 
Telegram notifications are sent when the 

driver is detected not wearing their seatbelt. The 
system automatically sends notifications to the 
driver's smartphone via the Telegram application. 
Notifications are sent every 5 minutes while the 
driver is not detected wearing the seatbelt. The 
format of the Telegram notification received on the 
smartphone is shown in Figure 11. 
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Figure 11. Telegram Notification 

 
Result Analysis 

Based on Table 3, from 162 test images, the 
system achieved 95.75% accuracy, 99.1% 
precision, 96.2% recall, and a 97.2% F1-score. 
Detection performance was higher for faces than 
for seatbelts. Face detection reached 98.3% 
accuracy, 98.2% precision, 100% recall, and 
98.4% F1-score, with a 1.7% error rate. Seatbelt 
detection scored 93.2% accuracy, 100% 
precision, 92.4% recall, and 96% F1-score, with a 
6.8% error rate. 

Face detection outperforms seatbelt 
detection in accuracy, recall, F1-score, and error 
rate, but lags in precision. Seatbelt detection only 
excels in precision. This discrepancy may stem 
from dataset imbalance—1237 seatbelt objects 
vs. 2539 face objects—making seatbelt detection 
more challenging under varying conditions. 
Seatbelt objects are larger and include more 
background noise, while face objects are smaller 
and consistently captured due to camera 
placement. Although data augmentation was 
applied, further techniques like SMOTE, GANs, 
color space transformation, or noise injection [24] 
are needed to improve balance and detection 
performance. 

 

 
Figure 12. Confidence Score Comparison 

 
Figure 13. Comparison of Detection Speeds 
 
The average intensity of light entering the 

car in the evening is lower (low-light) at 1512.29 
lux compared to during the day (bright-light), which 
is 4334.2 lux. This can be a factor for the lower 
confidence scores produced in the low-light 
conditions compared to during the bright-light 
conditions, as the reduced light entering the car 
affects the object detection results [25]. 

Based on the monitoring tests under bright-
light and low-light conditions, the confidence 
values for object detection fluctuate due to factors 
like the driver’s movement and the seatbelt being 
blocked by the driver’s hand [26]. As shown in 
Figure 12, the system detects face objects more 
confidently than seatbelt objects. In bright-light 
conditions, the average confidence is 90.3% for 
faces and 85.5% for seatbelts; in low-light 
conditions, it is 87.7% for faces and 83.6% for 
seatbelts. This may occur because face objects 
are smaller and less obstructed, while seatbelt 
objects are more often blocked or partially visible 
during driving. 

As shown in Figure 13, object detection 
speed remains consistent across 10 tests, with 
only a 1.72 ms difference between bright-light 
(1513.81 ms) and low-light (1512.29 ms) 
conditions. This stability is due to the use of the 
same model and image size, which influences 
Raspberry Pi's processing efficiency. When the 
driver wears a seatbelt, the system detects both 
face and seatbelt, resulting in the relay closing, no 
activation of the LED/buzzer, and no Telegram 
alert, allowing the engine to start normally.  
 
Discussion 

This study shows that YOLOv5 detects 
faces better than seatbelts due to dataset 
imbalance. A larger number of face annotations 
leads to higher performance. As supported by [27] 
and [28], dataset balance and representativeness 
are crucial for achieving accurate object detection 
results. In [13], an achieved 89% precision and 
81% recall using YOLOv5 under bright light. In 
contrast, the proposed system performs better 
with 99.1% precision, simpler implementation, and 
includes hardware-based alerts and Telegram 
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integration. Therefore, the proposed monitoring 
system demonstrates improved results compared 
to the referenced study. In [29], implemented 
YOLOv7 for seatbelt detection using Jetson Nano, 
buzzer, and display, achieving a 98% F1-score 
and high precision, though not integrated with the 
vehicle's electrical system. Meanwhile, the 
proposed system achieves slightly lower F1-score 
(97.2%) but uses more datasets (1617 compared 
to 1240), integrates with car electronics, includes 
Telegram alerts, and reaches 100% seatbelt 
precision, indicating enhanced functionality. The 
monitoring system in this study demonstrates 
better performance under bright-light conditions 
than in low-light environments. This aligns with the 
findings of [30], which observed a decline in 
detection accuracy under low-light settings. The 
system in this study was tested without applying 
advanced preprocessing techniques (such as low-
light enhancement or adaptive histogram 
equalization) in order to reflect the original image 
conditions from the camera. However, the use of 
these techniques is believed to improve detection 
performance under various lighting conditions. 
Therefore, future research is recommended to 
integrate these methods and compare the 
detection results to evaluate their impact on 
system performance. 

CONCLUSION 
This study developed a car seatbelt 

monitoring system using the YOLOv5 algorithm to 
detect seatbelts and face objects. The system is 
tested under low-light and bright-light conditions. 
The system achieved 95.75% accuracy, 99.1% 
precision, 96.2% recall, and a 97.2% F1-score. 
Average confidence scores were 90.3% (face) 
and 85.5% (seatbelt) in bright-light (4334.2 lux), 
and 87.7% (face) and 83.6% (seatbelt) in low-light 
(1512.29 lux), with detection speeds of 1513.81 
ms and 1512.29 ms, respectively. The device 
connects to the car’s ignition and sends Telegram 
alerts every 5 minutes. Future work should expand 
the dataset, optimize for speed and accuracy, 
integrate law enforcement notifications, and test 
across diverse vehicles and conditions. 

 
REFERENCES 
[1] M. Isradi et al., “Identification of hazardous 

road sites: a comparison of blackspot 
methodology of Narogong Road Bekasi and 
Johor Federal Roads,” Sinergi (Indonesia), 
vol. 28, no. 2, pp. 347–354, 2024, doi: 
10.22441/sinergi.2024.2.014. 

[2] A. Takeda, A. Kuwahara, M. Takaso, M. 
Nakamura, Y. Miyata, and M. Hitosugi, 
“Correct Use of a Conventional Lap-and-
Shoulder Seatbelt Is Safest for Pregnant 

Rear-Seat Passengers: Proposal for 
Additional Safety Measures,” Applied 
Sciences, vol. 12, no. 17, 2022, doi: 
10.3390/app12178776. 

[3] V. Sarwahi et al., “Seatbelts Save Lives, and 
Spines, in Motor Vehicle Accidents,” Spine 
(Phila. Pa. 1976)., vol. 46, no. 23, pp. 1637–
1644, Dec. 2021, doi: 
10.1097/BRS.0000000000004072. 

[4] V. A. Adewopo, N. Elsayed, Z. ElSayed, M. 
Ozer, A. Abdelgawad, and M. Bayoumi, “A 
review on action recognition for accident 
detection in smart city transportation 
systems,” Journal of Electrical Systems and 
Information Technology, vol. 10, no. 1, 2023, 
doi: 10.1186/s43067-023-00124-y. 

[5] Z. Wang et al., “An improved Faster R-CNN 
model for multi-object tomato maturity 
detection in complex scenarios,” Ecological 
Informa, vol. 72, p. 101886, 2022, doi: 
10.1016/j.ecoinf.2022.101886. 

[6] A. Purwanto et al., “Image Segmentation in 
Aerial Imagery: A Review,” Sinergi 
(Indonesia), vol. 27, no. 3, pp. 343–360, 
2023, doi: 10.22441/sinergi.2023.3.006. 

[7] R. Kaur and S. Singh, “A comprehensive 
review of object detection with deep 
learning,” Digital Signal Processing, vol. 132, 
p. 103812, 2023, doi: 
10.1016/j.dsp.2022.103812. 

[8] L. Tan, T. Huangfu, L. Wu, and W. Chen, 
“Comparison of RetinaNet, SSD, and YOLO 
v3 for real-time pill identification,” BMC 
Medical Informatics and Decision Making, 
vol. 21, no. 1, p. 324, 2021, doi: 
10.1186/s12911-021-01691-8. 

[9] M. Flores-Calero et al., “Traffic Sign 
Detection and Recognition Using YOLO 
Object Detection Algorithm: A Systematic 
Review,” Mathematics, vol. 12, no. 2, p. 297, 
Jan. 2024, doi: 10.3390/math12020297. 

[10] Y. Indarsih, “Application of Electronic Traffic 
Law Enforcement (E-TLE) Ticketing System 
Management at Polda West Java,” 
Enrichment: Journal of Management, vol. 11, 
no. 2, pp. 402–406, 2021, doi: 
10.35335/enrichment.v11i2.112. 

[11] Y. Yuliantoro and A. Sulchan, “The 
Effectiveness against Traffic Violations with 
Electronic Traffic Law Enforcement (ETLE),” 
Law Development Journal, vol. 3, no. 4, p. 
736, 2021, doi: 10.30659/ldj.3.4.736-742. 

[12] S. Deepa, V. K. C. N. S, V. Duraivelu, B. 
Easwaran, R. S., and H. A., “Enhancing Road 
Safety with Real-Time Helmet Detection and 
E-Challan Issuance using YOLO and OCR,” 
in 2024 International Conference on 
Cognitive Robotics and Intelligent Systems 



SINERGI Vol. 29, No. 3, October 2025: 771-778  

 

 

778 A. Suryanto et al., Car seatbelt monitoring system using a real-time object detection …  

 

(ICC - ROBINS), 2024, pp. 644–649. doi: 
10.1109/ICC-
ROBINS60238.2024.10533911. 

[13] K. Rohman and T. B. Sasongko, “Fast 
Detection Of Seatbelt Driver Based On Image 
Capturing,” JURTEKSI (Jurnal Teknologi dan 
Sistem Informasi), vol. 9, no. 3, pp. 473–480, 
Jun. 2023, doi: 10.33330/jurteksi.v9i3.2276. 

[14] O. Hosameldeen, “Deep learning-based car 
seatbelt classifier resilient to weather 
conditions,” International Journal of 
Engineering & Technology, vol. 9, no. 1, pp. 
229–237, Feb. 2020, doi: 
10.14419/ijet.v9i1.30050. 

[15] H. Lin et al., “A Study on Data Selection for 
Object Detection in Various Lighting 
Conditions for Autonomous Vehicles,” 
Journal of Imaging, vol. 10, no. 7, 2024, doi: 
10.3390/jimaging10070153. 

[16] K. H. Divya Prasad, M. S. Jincy, and S. 
Ganapathy, “Detection and performance 
analysis of vulnerable road users in low light 
conditions using YOLO,” Proc. 2024 10th 
International Conference Communication 
Signal Process, ICCSP, 2024, pp. 862–867, 
2024, doi: 10.1109/ICCSP60870.2024. 
10544095. 

[17] L. H. Backar, M. A. Khalifa, and M. A.-M. 
Salem, “In-Vehicle Monitoring for 
Passengers’ Safety,” in 2022 IEEE 12th 
International Conference on Consumer 
Electronics (ICCE-Berlin), 2022, pp. 1–6. doi: 
10.1109/ICCE-Berlin56473.2022.9937111. 

[18] A. Kashevnik, A. Ali, I. Lashkov, and N. 
Shilov, “Seat Belt Fastness Detection Based 
on Image Analysis from Vehicle In-abin 
Camera,” in 2020 26th Conference of Open 
Innovations Association (FRUCT), 2020, pp. 
143–150. doi: 10.23919/FRUCT48808.2020. 
9087474. 

[19] J. Terven, D.-M. Córdova-Esparza, and J.-A. 
Romero-González, “A Comprehensive 
Review of YOLO Architectures in Computer 
Vision: From YOLOv1 to YOLOv8 and 
YOLO-NAS,” Machine Learning and 
Knowledge Extraction, vol. 5, no. 4, pp. 
1680–1716, 2023, doi: 
10.3390/make5040083. 

[20] Z. Zhou, “Detection and Counting Method of 
Pigs Based on YOLOV5_Plus: A 
Combination of YOLOV5 and Attention 
Mechanism,” Mathematical Problems in 
Engineering, vol. 2022, no. 1, p. 7078670, 
Jan. 2022, doi: 10.1155/2022/7078670. 

[21] C. Wang et al., “A Low-Altitude Remote 
Sensing Inspection Method on Rural Living 
Environments Based on a Modified 
YOLOv5s-ViT,” Remote Sensing, vol. 14, no. 
19. 2022. doi: 10.3390/rs14194784. 

[22] S. Orozco-Arias, J. S. Piña, R. Tabares-Soto, 
L. F. Castillo-Ossa, R. Guyot, and G. Isaza, 
“Measuring Performance Metrics of Machine 
Learning Algorithms for Detecting and 
Classifying Transposable Elements,” 
Processes, vol. 8, no. 6. 2020. doi: 
10.3390/pr8060638. 

[23] R. S. Wijaya, S. Santonius, A. Wibisana, E. 
R. Jamzuri, and M. A. B. Nugroho, 
“Comparative Study of YOLOv5, YOLOv7 
and YOLOv8 for Robust Outdoor Detection,” 
Journal of Applied Electrical Engineering, vol. 
8, no. 1, pp. 37–43, 2024, doi: 
10.30871/jaee.v8i1.7207. 

[24] C. Shorten and T. M. Khoshgoftaar, “A survey 
on Image Data Augmentation for Deep 
Learning,” Journal of Big Data, vol. 6, no. 1, 
2019, doi: 10.1186/s40537-019-0197-0. 

[25] J. A. Rodríguez-Rodríguez, E. López-Rubio, 
J. A. Ángel-Ruiz, and M. A. Molina-Cabello, 
“The Impact of Noise and Brightness on 
Object Detection Methods,” Sensors, vol. 24, 
no. 3. 2024. doi: 10.3390/s24030821. 

[26] J. Zhu, Z. Wang, S. Wang, and S. Chen, 
“Moving Object Detection Based on 
Background Compensation and Deep 
Learning,” Symmetry, vol. 12, no. 12. 2020. 
doi: 10.3390/sym12121965. 

[27] H. Lee and S. Ahn, “Improving the 
Performance of Object Detection by 
Preserving Balanced Class Distribution,” 
Mathematics, vol. 11, no. 21, p. 4460, Oct. 
2023, doi: 10.3390/math11214460. 

[28] A. Althnian et al., “Impact of Dataset Size on 
Classification Performance: An Empirical 
Evaluation in the Medical Domain,” Applied 
Sciences, vol. 11, no. 2, p. 796, Jan. 2021, 
doi: 10.3390/app11020796. 

[29] L. Nkuzo, M. Sibiya, and E. D. Markus, “A 
Comprehensive Analysis of Real-Time Car 
Safety Belt Detection Using the YOLOv7 
Algorithm,” Algorithms, vol. 16, no. 9, p. 400, 
Aug. 2023, doi: 10.3390/a16090400. 

[30] H. Guo, T. Lu, and Y. Wu, “Dynamic Low-
Light Image Enhancement for Object 
Detection via End-to-End Training,” in 2020 
25th International Conference on Pattern 
Recognition (ICPR), Jan. 2021, pp. 5611–
5618. doi: 10.1109/ICPR48806.2021. 
9412802. 

 


