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Abstract  
The rapid growth of IoT devices has brought significant security 
challenges, particularly in detecting various types of attacks within 
heterogeneous network environments. This study explores the 
effectiveness of data balancing techniques, including Random 
Under Sampling (RUS), Cost-Sensitive Learning (CSL), Synthetic 
Minority Oversampling Technique (SMOTE), and Randomized 
Combination Sampling (RCS). Feature selection methods, namely 
correlation (threshold 0.8) and mutual information (top 15 features), 
were employed to optimize feature sets. The Decision Tree (DT) 
and Linear Discriminant Analysis (LDA) classifiers were used to 
evaluate the performance of balanced datasets. The evaluation 
metrics included accuracy, precision, recall, F1-score, G-mean, and 
ROC curves. The results revealed that SMOTE and RCS 
outperformed other balancing methods, with SMOTE achieving the 
highest accuracy (98.7%) and RCS demonstrating robust G-mean 
values across both feature selection techniques. DT consistently 
showed better performance compared to LDA across all metrics, 
while feature selection significantly improved the classification 
results, particularly under mutual information criteria. However, the 
analysis highlighted limitations of LDA in handling imbalanced 
datasets and high-dimensional features. This study concludes that 
a combination of advanced data balancing and effective feature 
selection significantly enhances the accuracy of intrusion detection 
in IoT networks. Future work will focus on integrating real-time 
detection systems and exploring hybrid models to further improve 
the detection of complex attacks in dynamic IoT environments.  
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INTRODUCTION 

The development of Internet of Things 
(IoT) technology has brought great benefits to 
various aspects of life, including in the industrial 
sector [1], smart homes [2], and transportation 
[3]. However, the increasing use of IoT devices 
also expands the potential for cybersecurity 
attacks [4]. Attacks on IoT devices are 
increasing, so a reliable intrusion detection 
system (IDS) is needed to protect IoT networks 
[5][6]. To overcome this problem, the Intrusion 
Detection System (IDS) based on Machine 

Learning (ML) is increasingly being used in IoT 
network security [7]. ML-based IDS requires 
proper dataset management, especially in 
dealing with dataset imbalance, which is an 
unbalanced data distribution between the normal 
class and the attack class [8][9]. All of this often 
arises due to the dynamic nature of data 
collection in IoT networks and data distribution in 
the real world. Datasets such as IoT-23 [7] and 
IoTID20 [10] are examples of unbalanced IoT 
datasets, where the attack class is less than the 
normal class. This alignment can lead to bias in 
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ML models, which tend to favor majority class 
predictions, thus neglecting the detection of less 
frequent attacks. In addition, the data generated 
by IoT devices is dynamic and continuous, which 
further increases the complexity of anomaly 
detection [11]. 

Several previous studies have identified 
that imbalanced datasets in IoT networks pose a 
major challenge to the effectiveness of ML-based 
IDS. Approaches such as the Synthetic Minority 
Oversampling Technique (SMOTE) [12], 
Adaptive Synthetic Sampling (ADASYN) [13], 
Random Under Sampling (RUS) [14], Ensemble 
and ML methods have been proposed to address 
this issue. Researchers [7] showed that the 
combination of SMOTE and under sampling  
techniques successfully improved the accuracy to 
96.81% on the IoT-23 dataset. Researchers [10] 
reported excellent results using a combination of 
deep learning and data balancing techniques on 
IoTID20, with an AUC reaching 99.93%. 

However, the implementation of these 
techniques also has drawbacks, such as the risk 
of overfitting on synthetic data or removing 
important features in under sampling  [15]. In 
addition, research [11] emphasizes the 
importance of handling the dynamic nature of IoT 
data to improve detection accuracy. 

Managing IoT data integration requires 
solutions that are not only able to improve model 
accuracy but also consider computational 
efficiency and resilience to real-time data 
changes. This research aims to address these 
challenges by exploring various data balancing 
techniques, such as RUS, SMOTE, and Cost 
Sensitive Learning (CSL) [16], and Random 
Combination Sampling (RCS). This balancing is 
expected to reduce bias towards the majority 
class, improve accuracy on the minority class, 
and produce a more reliable IDS for IoT 
networks. This research will also provide an in-
depth evaluation using metrics such as accuracy, 
precision, recall, F1 Score, and G-Men to ensure 
model performance on the highly imbalanced RT-
IOT22 dataset [17]. 

This research contributes in several 
significant aspects to improve IoT network 
security through processing imbalanced datasets: 
1. Data Balancing Strategy Development by 

implementing and comparing various 
techniques such as RUS, SMOTE, CSL, and 
RCS. 

2. Optimization of Machine Learning Model for 
IoT by using Mutual information-based feature 
selection (MIFS), Correlation-based feature 
selection (CFS) and performing classification 
with Decision Tree (DT) [18] and Linear 
Discriminant Analysis (LDA) [19]. 

3. Evaluation with Metrics such as accuracy, 
precision, recall, F1 Score, and G-Men, this 
study ensures that the evaluation of model 
performance is more representative of the 
needs of attack detection on imbalanced IoT 
data.  

This research proposes an optimized 
intrusion detection framework for IoT networks by 
integrating feature selection methods with hybrid 
sampling techniques and lightweight classifiers, 
evaluated on protocol-specific datasets to 
address data imbalance and computational 
constraints in real-world scenarios. 

 
RELATED WORK 

Recent studies have significantly 
addressed challenges in intrusion detection 
systems (IDS) for IoT networks and data 
imbalance in machine learning. This section 
reviews key works, focusing on their methods, 
contributions, and implications for IDS and other 
ML applications. 

Researchers [20] proposed an automated 
myocardial infarction detection system using 
CNN and a hybrid CNN-LSTM with SMOTE-
Tomek Link approach to handle imbalanced 
datasets. Their study showed that data balancing 
significantly improved the model accuracy up to 
99.89%, which is relevant for clinical applications. 
This underscores the importance of data 
balancing techniques in healthcare and other 
domains facing class imbalance issues. 

Researchers [21] proposed an IoT-specific 
IDS using ensemble methods like RF, Extreme 
Gradient Boosting (XGBoost), and Light Gradient 
Boosting Machine (LGBM) on the imbalanced 
DS2OS dataset. Their LGB-IDS model achieved 
99.92% accuracy, excelling in speed and threat 
detection, showing strong potential for real-world 
IoT IDS applications. 

Researchers [22] analyzed the impact of 
class imbalance on the performance of machine 
learning-based IDS using KNN, Gradient 
Boosting, and SVM algorithms on the BoT-IoT 
dataset. By applying SMOTE and random under 
sampling, they reported a significant 
improvement in the F1 score, highlighting the 
importance of balancing techniques in improving 
the reliability of IDS in IoT networks. Researchers  
[23] addressed the challenge of class imbalance 
in IDS datasets, which often reduces detection 
performance for rare attacks. Karatas used the 
CSE-CIC-IDS2018 dataset and applied SMOTE 
with six ML algorithms to improve detection rates. 
Researchers [24] evaluated ML models with 
various resampling strategies using F1-score and 
G-mean, demonstrating that proper integration 
enhances IDS robustness and accuracy in 
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identifying minority class intrusions within 
imbalanced network traffic. And researchers [25] 
developed a Collaborative Intrusion Detection 
System (CIDS) using Weighted Ensemble 
Averaging Deep Neural Network (WEA-DNN). 
This system achieves high accuracy and 
adaptability in detecting coordinated cyberattacks 
in heterogeneous networks, demonstrating the 

effectiveness of collaborative approaches in 
handling complex attack patterns. 

Research on handling data imbalance in 
IDS has been growing rapidly, with various 
methods proposed to improve the accuracy and 
reliability of classification models, which have 
been summarized in Table 1. 

 
Table 1. Summary of Approaches and Research Results on Imbalanced Data 

Ref Methodology Dataset Measurement Indicators Key Results 

[26] Resampling techniques: Random 
Oversampling, Random Under 
sampling , SMOTE, and Adaptive 
Synthetic Sampling. 

KDD99, UNSW-
NB15, UNSW-
NB17, UNSW-
NB18 

Macro Precision: 98%,  
Macro Recall: 96%,  
Macro F1-Score: 97% 

Oversampling improves Macro 
Precision and Macro Recall, 
especially on minority classes. 
Resampling helps detect more 
minority data but increases 
training time. 

[27] A combination of a Deep Neural 
Network (DNN) with a Bagging 
Classifier approach. Further 
experiments using CNN and 
hybrid CNN+LSTM. 

NSL-KDD, 
KDDCUP99, 
UNSW-NB15, 
Bot-Io 

Accuracy: 99.8%, 
Precision: 99.5%,  
Recall: 99.6%, 
F1-Score: 99.6% 

The DNN model with bagging 
produces high accuracy 
(99.8%), with low False Positive 
Rate. The combination of 
CNN+LSTM is more effective on 
IoT datasets such as Bot-Io. 

[28] Cluster-SMOTE + K-Means 
algorithm for preprocessing and 
Two-Layer CNN for classification. 

UNSW-NB15, 
CICIDS2017 

Accuracy: 98.77%,  
Recall: 98.3%, 
Precision: 98.9%,  
F1-Score: 98.6%,  
AUC: 99.2% 

CSK-CNN provides the highest 
AUC (99.2%) and F1-Score 
98.6%, demonstrating the 
model's ability to handle 
imbalanced data with high 
accuracy and generalization on 
both datasets. 

[29] Hybrid feature selection (filter + 
wrapper); Two-level IDS (normal 
vs. attack, then attack type); 
SMOTE for class imbalance; ML 
algorithms: Decision Tree, 
Random Forest, GNB, KNN 

BoT-IoT, TON-
IoT, CIC-
DDoS2019 

Accuracy: 99.82-100% 
Precision: 98.65-99.99% 
Recall: 98.56-100% 
F1-Score: 98.7-99.9% 
Detection Time: 0.02-
0.15s 

Decision Tree achieved highest 
accuracy and lowest detection 
time, outperforming other 
algorithms and prior works 

[30] SMOTE, Gaussian Distribution, 
SVM, RF methods. 

MQTT-IOT-
IDS2020 

Accuracy: 98.7%, 
Precision: 96.5%,  
Recall: 95.8%,  
F1-Score: 96.1% 

Significant improvement in 
model performance when using 
oversampling techniques. 

[31] RO, DT, RF, and SVM 
techniques. 

Specific IoT 
dataset 
(unspecified). 

Accuracy: 97.3%, 
Precision: 94.2%,  
Recall: 92.7%,  
F1-Score: 93.4% 

RO is able to improve model 
performance with a more 
balanced data distribution. 

[32] SMOTE, ADASYN and XGBoost. IoT dataset 
(unspecified). 

TPR: 92.5%,  
FPR: 5.3%,  
Accuracy: 95.4%,  
Precision: 93.1%,  
Recall: 92.8%,  
F1-Score: 92.9% 

Oversampling techniques have 
been shown to be helpful in 
increasing the sensitivity of the 
model to minority attacks. 

[33] Federated Learning (FL), 
SMOTE, ADASYN, and 
Generative Adversarial Networks 
(GANs). 

TON_IoT and 
DS2OS IoT 
datasets 

F1 score: up to 0.91;  
Precision: up to 0.89;  
Recall: up to 0.92;  
Accuracy: up to 95% 

Data augmentation improves 
performance by up to 22.9% in 
detecting anomalies compared 
to the baseline without data 
augmentation. 

[34] 
 

Feature engineering with mRMR 
+ SMOTE; CatBoost classifier; 
Optuna for hyperparameter 
tuning; Tested on binary and 
multi-class 

NSL-KDD, 
UNSW-NB15, 
CICIDS-2017 

Accuracy: 98.41-99.59% 
Precision: 97.36-99.44% 
Recall: 97.71-99.55% 
F1-Score: 97.52-99.49% 

Optimized CatBoost with mRMR 
+ SMOTE consistently 
outperformed baseline methods 
across all datasets 

[35] SMOTE, ADASYN, and 
BoostedEnML 

CSE-CIC-
IDS2018 and 
CIC-IDS2017 
datasets 

Precision: 1.0;  
Recall: 1.0;  
F1 score: 1.0;  
AUC: 1.0 

BoostedEnML with 
SMOTE/ADASYN achieves 
100% accuracy on multiclass 
classification on IDS dataset 
with reduced False Positives 
and False Negatives. 
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Table 1 summarizes the various 
approaches that have been applied, including 
machine learning methods, deep learning, and 
data preprocessing techniques such as 
oversampling and under sampling. Each 
approach is evaluated using various performance 
metrics on different benchmark datasets, 
demonstrating its effectiveness in handling 
imbalanced data. 

Although efforts to address data imbalance 
and optimize model architecture in machine 
learning-based IDS have been made, there is still 
a lack of specific approaches for IoT 
environments, especially those using 
communication protocols such as MQTT. Most 
studies still focus on traditional datasets such as 
NSL-KDD, BoT-IoT, and CICIDS2017, without 
considering the specific characteristics of IoT 
traffic. In addition, the balancing methods used 
are generally limited to oversampling and 
ensemble, while real-time adaptation and 
federated learning approaches are still rarely 
explored. Therefore, more comprehensive 
research is needed to develop more effective and 
adaptive IDS for the IoT ecosystem. 
 
METHOD 

This section describes the methods used 
in data processing and the process for generating 
the IDS model.  
 
Raw Dataset 

The RT_IOT2022 dataset is obtained from 
real-time IoT infrastructures from ThingSpeak-
LED, Wipro-Bulb, and MQTT-Temp, and then 
extracted to obtain useful features for attack 
detection. The data consists of 85 features with 
12 classes. 

Table 2 presents the attack types included 
in the RT_IOT2022 dataset along with the 
number of recorded packets for each type. The 
dataset encompasses a variety of attack 
categories, reflecting different intrusion 
techniques in IoT environments. 

 
Table 2. Attack type dataset RT_IOT2022 

Attack_type Packets 

DOS_SYN_Hping 94659 
Thing_Speak 8108 
ARP_poisioning 7750 
MQTT_Publish 4146 
NMAP_UDP_SCAN 2590 
NMAP_XMAS_TREE_SCAN 2010 
NMAP_OS_DETECTION 2000 
NMAP_TCP_scan 1002 
DDOS_Slowloris 534 
Wipro_bulb 253 
Metasploit_Brute_Force_SSH 37 
NMAP_FIN_SCAN 28 

 

Proposed Model 
Machine learning-based Intrusion 

Detection Systems (IDS) for IoT networks consist 
of several main stages, namely data ingestion, 
storage, feature engineering, model training, 
evaluation, deployment, monitoring, and 
retraining [36]. These stages form a continuous 
learning cycle to improve the accuracy of threat 
detection in the IoT ecosystem. 

The proposed architecture is divided into 
several parts, processes as shown in Figure 1. 
Figure 1 illustrates the process flow in applying 
machine learning techniques for network 
intrusion detection, which is divided into several 
important stages. Here is an explanation for each 
part:  
1. Data Preprocessing: This stage consists of 

two main sub-stages, namely: 
a) Preparation: Includes the process of data 

cleaning, data labeling, and data 
normalization to prepare the data before 
being used in model training. 

b) Balancing: Using various data balancing 
techniques, such as RUM, SMOTE, CSL, 
and RCS, to address class imbalance 
issues in the data. 
 

Data Preprocessing

Preparation

Data Labelling

Data Normalization

Balancing

Random Under Sampling

Cost Sensitive Learning 

Random Combination 

Sampling

SMOTE

Feature Selection

Mutual Information Correlation

Feature Classification

Decision Tree Linear Discriminant Analysis

Evaluation Indicator

Accuracy Precision

Recall F1 Score

G-Mean ROC

Data Cleaning Original

 

Figure 1. Machine learning architecture of our 
proposed model 
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2. Feature Selection: At this stage, relevant 
features are selected using techniques such 
as MIFS and CFS to ensure that only the 
most informative features are used in the 
model. 

3. Feature Classification: Here, a classification 
model is applied using algorithms such as DT 
and LDA to classify data based on the 
selected features. 

4. Evaluation Indicator: The results of the 
classification model are evaluated using 
several performance indicators, including 
Accuracy, Precision, Recall, F1 Score, and G-
Mean, to assess the effectiveness of intrusion 
detection. 

 
Balancing 

Balancing in the context of machine 
learning refers to techniques for dealing with 
imbalanced datasets, where one class has a 
much larger number of samples than the other 
classes [37][38]. This imbalance can affect model 
performance because the algorithm tends to 
prioritize predictions for the majority class and 
ignores the minority class, which is often more 
important to analyze [39][40]. The relatedness 
parameter, especially in the data distribution, has 
a significant impact on the model performance, 
especially in classification problems. If the 
dataset is highly imbalanced, the model tends to 
be biased towards the majority class, which leads 
to misclassification of the minority class and 
compromises the performance of standard 
learning algorithms [41][42][43]. In many cases, 
an imbalanced dataset occurs when one class is 
much smaller than the other classes. This 
imbalance can result in high accuracy, even 
though the model is not able to detect the 
minority class well, which may be more important 
in the context of a particular application [44][45]. 

In addition to data synchronization issues, 
the performance of machine learning-based IDS 
in IoT is also influenced by several other factors, 
such as real-time processors, where IDS must be 
able to detect threats instantly without high 
latency, so that Edge Computing and Federated 
Learning-based approaches can be used to 
accelerate detection without having to send all 
data to a central server [46]. Another factor is 
scalability, because IoT networks have a very 
large number of devices, so the IDS model must 
be able to handle the growth in the number of 
devices without experiencing a decrease in 
performance [47]. In addition, resource limitations 
on IoT devices, which often have limited 
computing power and memory, make IDS need 
to use lightweight models, such as DT or AB 

based ensemble learning, to increase efficiency 
[48].  

This study uses data balancing techniques 
in the following ways: 1) RUS, a technique for 
randomly reducing the number of samples from 
the majority class so that the number is 
comparable to the minority class; 2) SMOTE is a 
popular over-sampling technique where synthetic 
samples from the minority class are created 
based on interpolation between existing samples; 
3) CSL is a technique that does not change the 
data distribution but adapts the learning algorithm 
by giving greater weight to prediction errors in the 
minority class; 4) RCS is a combination of RUS 
and SMOTE, this technique balances the dataset 
by reducing some of the majority class samples 
while adding synthetic samples to the minority 
class. 

 
Selection Feature 

This study uses selection features for 
MIFS and CFS, MIFS looks for the best 15 
feature values from the MI Score while CFS 
selects features based on the correlation value of 
0.8. MIFS gets 15 different features for original 
data, RUM, SMOTE, CSL, and RCS. While CFS 
produces a different number of features for each 
original data, RUM, CSL, SMOTE, and RCS. 
Original data produces 53 features, RUM data 
produces 58 features, CSL data produces 64, 
SMOTE data produces 61 features, and RCS 
data produces 51 features. 

 
Classification 

Classification is an important process in 
the workflow that aims to build an ML or DL 
model that is able to predict or classify data 
based on previously selected features [49]. In this 
study, there are two methods used, namely DT 
and LDA. DT is one of the most widely used 
models due to its simplicity and high 
interpretability [50][51]. This method works by 
building a DT from a dataset, where each node 
represents a feature, a branch represents a 
feature value, and a leaf represents a class or 
final result [52][53]. While LDA is a statistical 
classification method that seeks a linear 
projection of the data to maximize the separation 
between classes [54]. 

 
RESULTS AND DISCUSSION 

In this study, we implemented several 
techniques to handle data imbalance and 
improve the performance of the attack detection 
system. We compared the original data and four 
data balancing techniques, namely RUS, CSL, 
SMOTE, and RCS. Each technique was followed 
by two feature selection methods, namely CFS 
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with a threshold of 0.8 and MIFS to select the 
best 15 features. After the features were 
selected, we used two different classification 

techniques, namely DT and LDA. Table 3 
illustrates the distribution of attack data before 
and after the balancing technique was performed. 

 
Table 3. Distribution of RT_IOT2022 Dataset before and after balancing 

Attack_type Original RUS CSL SMOTE RCS 

DOS_SYN_Hping 94659 25 94659 75762 4000 
Thing_Speak 8108 25 8108 75762 4000 
ARP_poisioning 7750 25 7750 75762 4000 
MQTT_Publish 4146 25 4146 75762 4000 
NMAP_UDP_SCAN 2590 25 2590 75762 1000 
NMAP_XMAS_TREE_SCAN 2010 25 2010 75762 1000 
NMAP_OS_DETECTION 2000 25 2000 75762 1000 
NMAP_TCP_scan 1002 25 1002 75762 1000 
DDOS_Slowloris 534 25 534 75762 534 
Wipro_bulb 253 25 253 75762 500 
Metasploit_Brute_Force_SSH 37 25 37 75762 500 
NMAP_FIN_SCAN 28 25 28 75762 500 

 

 
(a) DT_Ori Training 

 
(b) DT_Ori Testing 

 
(c) DT_RUS Traning 

 
(d) DT_RUS Testing 

 
(e) DT_CSL Training 

 
(f) DT_CSL Testing 

 
(g) DT_Smote Traning 

 
(h) DT_Smote Testing 

 
(i) DT_RCS training 

 
(j) DT_RCS Testing 

 
(k) LDA_Ori Training 

 
(l) LDA_Ori Testing 

 
(m) LDA_RUS Traning 

 
(n) LDA_RUS Testing 

 
(o) LDA_CSL Traning 

 
(p) LDA_CSL Testing 

 
(q) LDA_Smote Training 

 
(r) LDA_Smote Testing 

 
(s) LDA_RCS Training 

 
(t) LDA_RCS Testing 

Figure 2. Confusion Matrix MIFS 
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(a) DT_Ori Training 

 
(b) DT_Ori Testing 

 
(c) DT_RUS Traning 

 
(d) DT_RUS Testing 

 
(e) DT_CSL Training 

 
(f) DT_CSL Testing 

 
(g) DT_Smote Traning 

 
(h) DT_Smote Testing 

 
(i) DT_RCS training 

 
(j) DT_RCS Testing 

 
(k) LDA_Ori Training 

 
(l) LDA_Ori Testing 

 
(m) LDA_RUS Traning 

 
(n) LDA_RUS Testing 

 
(o) LDA_CSL Traning 

 
(p) LDA_CSL Testing 

 
(q) LDA_Smote Training 

 
(r) LDA_Smote Testing 

 
(s) LDA_RCS Training 

 
(t) LDA_RCS Testing 

Figure 3. Confusion Matrix CFS 
 

Table 3 shows the distribution of the 
amount of data for each attack type (Attack Type) 
based on the application of various data 
balancing techniques: Original (without 
balancing), RUS, CSL, SMOTE, and RCS. 
SMOTE is best suited to ensure a uniform data 
distribution, while RCS provides more flexibility in 
determining the amount of data. RUS is effective 
in creating a balanced data distribution, but risks 
reducing important information. CSL is a safe 
choice because it does not modify the original 
data but only modifies the training approach. This 
study produces a Confusion Matrix that can be 
used to calculate various performance metrics, 

such as Accuracy, Precision, Recall, F1-Score, 
and G-Mean to visualize the trade-off between 
True Positive Rate (TPR) and False Positive 
Rate (FPR). Figure 2 and Figure 3 illustrate the 
classification results with the DT and LDA 
algorithms. 

Figure 2 is the Confusion Matrix of MIFS 
results, while Figure 3 is the Confusion Matrix of 
CFS results. This Confusion Matrix illustrates the 
results of training data and testing data with DT 
and LDA classifications. From the confusion 
matrix, the Precision, Recall, F1-Score values are 
obtained which are displayed in Table 4, Table 5, 
Figure 4 and Figure 5. 
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Table 4 compares the performance of DT 
and LDA models on data that has been balanced 
with various methods (Original, RUS, CSL, 
SMOTE, RCS) using the evaluation metrics 
Precision, Recall, and F1 Score. The DT model 
consistently outperforms LDA in all balancing 
methods and evaluation metrics, both on training 
and testing data. The RUS and CSL Balancing 
methods produce perfect precision and recall on 
training data for DT, but performance decreases 
on testing data and SMOTE is the best balancing 
method on testing data, providing the highest 
precision, recall, and F1 Score performance for 
DT. while RCS also produces good performance, 
but is still slightly below SMOTE for testing data. 
Performance on training data tends to be higher 
than on testing data. This is an indication that 
some methods such as RUS may cause the 
model to overfit on training data due to overly 
simple data. 

Table 5 compares the performance of DT 
and LDA models with a correlation selection 
feature of 0.8. Overall, the DT model consistently 
outperforms LDA in terms of precision, recall, and 
F1 score, both on training and testing data. While 
LDA shows the best performance on the RUS 
method compared to other methods. RUS 
provides perfect performance for DT on training 
data, but its generalization to testing data is poor. 

And SMOTE is the best method for testing, 
producing the highest precision, recall, and F1 
score for DT, indicating better generalization 
ability while RCS has almost comparable results 
with SMOTE, but still slightly lower especially in 
precision. All methods show a decrease in 
performance from training to testing data, 
especially on LDA. This indicates that LDA is 
more susceptible to generalization challenges 
than DT. 

Figure 4 compares the accuracy of DT and 
LDA classification models based on two feature 
selection methods: MIFS and CFS. DT 
outperforms LDA in all balancing techniques and 
feature selection approaches, with consistently 
higher accuracy, CFS is more effective than 
MIFS, especially for SMOTE and RCS, producing 
near-perfect accuracy on testing data. In the 
Balancing Technique, SMOTE and RCS provide 
the best results in both feature selections, 
demonstrating their ability to improve the 
distribution of the minority class without 
sacrificing model performance, while RUS is less 
effective especially on testing data, because 
accuracy decreases drastically for both models, 
indicating poor generalization and CSL does not 
provide significant improvement compared to the 
original data, both in DT and LDA. 

 
Table 4. Performance Comparison with MIFS 

Classification with 
balancing 

Training Testing 
Precision Recall F1 Score Precision Recall F1 Score 

DT_Ori 0.921 0.914 0.909 0.812 0.804 0.805 
LDA_Ori 0.588 0.581 0.522 0.568 0.547 0.509 
DT_RUS 1.000 1.000 1.000 0.805 0.824 0.786 
LDA_RUS 0.725 0.702 0.684 0.594 0.738 0.637 
DT_CSL 0.921 0.914 0.909 0.811 0.803 0.804 
LDA_CSL 0.588 0.581 0.522 0.568 0.547 0.509 
DT_Smote 0.980 0.980 0.980 0.937 0.937 0.937 
LDA_Smote 0.632 0.618 0.605 0.63 0.616 0.603 
DT_RCS 0.989 0.990 0.989 0.893 0.897 0.894 
LDA_RCS 0.557 0.503 0.506 0.553 0.497 0.503 

 
Table 5. Performance Comparison with CFS 

Classification with 
balancing 

Training Testing 
Precision Recall F1 Score Precision Recall F1 Score 

DT_Ori 1.000 1.000 1.000 0.931 0.954 0.938 
LDA_Ori 0.588 0.581 0.522 0.568 0.547 0.509 
DT_RUS 1.000 1.000 1.000 0.911 0.915 0.895 
LDA_RUS 0.725 0.702 0.684 0.594 0.738 0.637 
DT_CSL 1.000 1.000 1.000 0.937 0.951 0.942 
LDA_CSL 0.588 0.581 0.522 0.568 0.547 0.509 
DT_Smote 1.000 1.000 1.000 1.000 1.000 1.000 
LDA_Smote 0.944 0.943 0.943 0.944 0.943 0.943 
DT_RCS 1.000 1.000 1.000 0.992 0.995 0.993 
LDA_RCS 0.879 0.889 0.878 0.878 0.887 0.878 
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Figure 5 presents the evaluation results of 
the classification model's performance based on 
the G-Mean, which reflects the balance between 
recall and specificity. G-Mean is particularly 
important for imbalanced datasets, as it provides 
an overview of the model's ability to handle both 
majority and minority classes simultaneously. DT 
is superior to LDA due to its higher G-Mean value 
in all balancing techniques and feature selection 
approaches. CFS is more effective than MIFS in 
improving G-Mean, especially in DT with SMOTE 
and RCS. The SMOTE and RCS balancing 
techniques provide the best results for DT, with 
almost perfect G-Mean, while LDA fails to 
produce adequate G-Mean values, especially 
with MIFS, although there is a slight increase in 
CFS. Balancing with RUS is ineffective, 
especially in LDA, where G-Mean remains zero in 
all scenarios. 

Table 6 presents a comparative analysis of 
accuracy and G-Mean across various classifier 
methods used in intrusion detection. The 
comparison includes previously proposed 
methods and the newly developed models. 

In the proposed model, the use of DT and 
LDA with various balancing techniques showed 
mixed results. Several DT variants, such as 

DT_Ori_CFS, DT_RUS_MI, DT_RUS_CFS, 
DT_CSL_CFS, and DT_Smote_CFS, achieved 
100% accuracy, indicating that the model is very 
good at recognizing patterns in the data. 
However, despite the high accuracy, the G-Mean 
of some models, such as DT_Ori_MI was only 
49.21%, indicating that the model is less able to 
handle class precision. Meanwhile, the LDA 
method performed much worse, with some 
variants such as LDA_RCS_MI and 
LDA_RCS_CFS having a G-Mean of 0.00%, 
meaning the model failed to recognize a single 
class at all.  

Overall, although some models have high 
accuracy, the low G-Mean indicates that the 
model is less effective in handling data 
smoothness. The best models are those that 
have a balance between high accuracy and G-
Mean, such as DT_RUS_CFS and 
DT_Smote_CFS, which achieve 100% accuracy 
and G-Mean close to 100%. This shows that the 
Decision Tree method with balancing techniques 
such as SMOTE and CFS is a more reliable 
choice than other methods, especially for 
applications in IDS in IoT Smart Home, where 
precision in detecting attacks from various 
classes is very important. 

 

 
Figure 4. Comparison of Accuracy values 
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Figure 5. Comparison of G-Mean values 

 
Table 6. Comparison of Accuracy and G-Mean 

Ref. Classifier Method Accuracy G-Mean 

[55] DL ensemble 99.3% 99% 
[56] mLSTM 99.9% 97.1% 
[57] 
 
[58] 

SMOTE 
ADASYN 
SVM-SMOT 
Borderline1-
SMOTE 
Borderline2-
SMOTE 

94.81% 
89.42% 
93.51% 
92.22% 
90.23% 

92.93% 
91.54% 
94.53% 
92.60% 
92.03% 

Proposed 
Model 

DT_Ori_MI 
DT_Ori_CFS 
DT_RUS_MI 
DT_RUS_CFS 
DT_CSL_MI 
DT_CSL_CFS 
DT_Smote_MI 
DT_Smote_CFS 
DT_RCS_MI 
DT_RCS_CFS 
LDA_Ori_MI 
LDA_Ori_CFS 
LDA_RUS_MI 
LDA_RUS_CFS 
LDA_CSL_MI 
LDA_CSL_CFS 
LDA_Smote_MI 
LDA_Smote_CFS 
LDA_RCS_MI 
LDA_RCS_CFS 

98.58% 
100.00% 
100.00% 
100.00% 
98.58% 
100.00% 
97.98% 
100.00% 
99.35% 
99.99% 
91.58% 
91.58% 
72.38% 
72.38% 
91.58% 
91.58% 
61.86% 
94.31% 
67.55% 
89.50% 

49.21% 
99.99% 
100.00% 
100.00% 
49.21% 
99.99% 
87.94% 
100.00% 
93.83% 
99.98% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
2.07% 
69.11% 
0.00% 
46.04% 

 
 

CONCLUSION AND FUTURE WORKS 
This study evaluates the impact of various 

data balancing techniques, RUS, CSL, Smote, 
RCS, combined with feature selection methods 
MIFS, CFS, and classification algorithms DT, 
LDA. This study concludes: 1) DT consistently 
outperformed LDA across all balancing methods, 
achieving higher accuracy, G-Mean, and other 
performance metrics; 2) CFS proved more 
effective than Mutual Information, especially 
when combined with SMOTE and RCS balancing 
techniques. These combinations resulted in 
nearly perfect G-Mean and accuracy, indicating 
excellent handling of imbalanced data; 3) Among 
balancing techniques, SMOTE and RCS showed 
the best performance, particularly for DT, as they 
effectively addressed class imbalance while 
maintaining generalization to testing data; 4) 
RUS was the least effective balancing method, 
often leading to poor generalization and 
significant performance drops, especially with 
LDA; 5) LDA demonstrated limitations in handling 
imbalanced datasets, failing to produce 
meaningful G-Mean and accuracy, even with 
advanced balancing techniques. 
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Based on the results of this study, there 
are several future works that can be done to 
further improve the effectiveness of intrusion 
detection systems for IoT networks: 1) Combining 
Advanced Balancing Techniques with more 
sophisticated oversampling and under sampling  
methods, such as Adaptive Synthetic Sampling 
(ADASYN) or generative adversarial networks 
(GANs) for synthetic data generation; 2) 
Performing feature engineering and 
dimensionality reduction with additional feature 
selection or extraction methods, such as Principal 
Component Analysis (PCA) or autoencoders, to 
improve model performance and reduce 
computational overhead.  
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