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Abstract  
Induction motor winding repair takes longer than other types of 
failures, such as bearing failures. This research introduces a hybrid 
deep learning framework, TE-LSTM, to predict winding 
temperatures in induction motors used in oil and gas operations. It 
aims to address the challenges of accurately forecasting potential 
winding failures and enabling proactive maintenance strategies. 
The TE-LSTM model combines a transformer encoder-based 
architecture with long short-term memory to effectively model 
intricate temporal relationships and sensor dynamics within the 
dataset. The study utilized data collected from January 2016 to 
December 2024 at 1-minute intervals from induction motors 
equipped with stator winding temperature sensors. These motors 
were designed with Class F insulation and had stage 1 and stage 
2 alarms set at 257°F and 285°F, respectively. The findings 
highlight the efficiency and performance of the TE-LSTM model in 
predicting winding temperatures, which can significantly reduce 
unplanned downtime and associated costs, thereby optimizing 
maintenance operations and enhancing the reliability of the motor. 
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INTRODUCTION 
Faults in induction motors can disrupt 

factory production lines, causing downtime and 
leading to significant economic and operational 
losses. Ensuring reliable motor operation is 
therefore essential to minimize these impacts 
[1]. Induction motor (IM) drives are utilized in a 
wide range of applications, including conveyors, 
cranes, ventilation systems, and the petroleum 
industry [2]. The reliability and performance of 
induction motors are critical for ensuring efficient 
and safe industrial operations. The distribution of 
failures in IM components is as follows: bearing-
related faults account for 40%, stator winding 
faults for 38%, rotor-related faults for 10%, and 
other faults for 12% [3] .   

IMs are critical in industry, consuming 40-
50% of the capacity generated. Induction motors 
(IM) are prone to various faults, and a standard 
industry guideline states that for every 10°C 

increase in temperature, the insulation's lifespan 
is reduced by half [4]. Detecting faults early can 
help avoid expensive failures and production 
downtime. Diagnosing faults in electrical motors 
involves analyzing various components, such as 
insulation, bearings, shafts, stators, and rotors. 
It also relies on multiple diagnostic signals, 
including acoustic, vibration, and infrared signals 
[5]. The demand for condition monitoring has 
grown significantly due to the increasing 
prevalence of automation, which has reduced 
direct human interaction with machines for 
supervising system operations. Condition 
monitoring provides a visual representation of 
machine parameters, enabling the detection, 
analysis, and resolution of issues before failures 
occur. Early fault detection in induction motors is 
essential to prevent production downtime and 
avoid catastrophic failures [6]. Reliability 
Condition Monitoring (RCM) is a critical and 
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highly efficient method for evaluating and 
optimizing the maintenance requirements of 
plants and equipment during operation. Its 
primary objective is to reduce equipment failures 
and improve preventive maintenance practices, 
enabling industrial facilities to manage their 
machinery effectively and efficiently. 
Consequently, Prognostics and Health 
Management (PHM) for induction motors has 
emerged as a significant area of research [7]. 
Accurately predicting the remaining useful life 
(RUL) of induction motors is critical for 
optimizing condition-based maintenance (CBM) 
strategies, enhancing operational reliability, and 
minimizing maintenance costs [8]. PHM shifts 
maintenance strategies from reactive 
approaches such as post-failure repairs, routine 
scheduled servicing, and ad-hoc corrective 
actions to data-driven predictive maintenance. 
Central to this transition is the accurate 
estimation of remaining useful life (RUL), which 
enables operators to forecast equipment 
degradation and optimize maintenance 
interventions. 
 
Induction Motor 

Three-phase AC motors account for 
approximately 60% of the total industrial 
electricity consumption, with induction motor 
(IM) drive systems being extensively utilized 
across various applications. AC induction motors 
are among the most used motors in industrial 
settings. Typically, these motors deliver higher 
power factors (PF) and greater efficiency when 
operating at or near full load conditions [9]. 
Figure 1 illustrates the basic structure of an 
induction motor (IM). The windings, made of 
copper, are distributed across the machine. The 
stator and rotor cores are constructed from 
laminated silicon steel sheets. 

Additionally, the rotor bars are positioned 
near the top of the rotor and close to the air gap 
to minimize leakage flux [10]. Motor winding can 
be seen in Figure 2. Three temperature sensors 
are typically installed at the motor winding to 
monitor the winding's condition and prevent 
overheating. 

Induction motors are essential for 
ensuring uninterrupted operations in the oil and 
gas industry. These motors, a widely used type 
of electric motor, are valued for their simplicity, 
high reliability, and cost-effectiveness, making 
them a preferred choice in various industrial 
applications [11]. These motors typically employ 
Class F insulation, which has a standard 
maximum winding temperature of 311°F 
(155°C), as outlined in IEEE standard 43. 

 

 
Figure 1. Induction Motor 

 
However, when monitoring capabilities are 
limited, this threshold is often adjusted for safety 
reasons. In scenarios where only three sensors 
monitor the winding temperature, a more 
comprehensive approach is necessary. It is often 
adjusted by lowering the alarm set point of the 
winding temperatures.     

To account for potential temperature 
variations that could cause inaccurate 
information due to measurements taken only in 
a specific area, the maximum allowable 
temperature was reduced to 287°F 
(approximately 142°C). These precautionary 
measures help to safeguard motor integrity and 
longevity. Based on this adjusted limit, a two-tier 
alarm system was implemented as follows: 
 

 
Figure 2. Motor Winding 
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(1) The initial alarm (H) was activated at 257°F 
(about 125°C).  

(2) The critical alarm (HH) was triggered at 
285°F (around 141°C).  

This tiered system allows for graduated 
responses to rising temperatures. When the H 
alarm sounds at 257°F, it provides an early 
warning that allows operators to initiate 
preventive actions. The HH alarm at 285°F 
serves as a final caution signal, indicating that 
the temperature is approaching the adjusted 
maximum. Advanced predictive models are 
being explored to enhance this protective 
strategy. In this study, a TE-LSTM model 
combines the transformer encoder and LSTM 
architecture used to forecast potential alarm 
triggers. By anticipating these critical events, 
operators can implement more proactive 
maintenance strategies, thereby reducing the 
risks of unexpected shutdowns, production 
interruptions, and other operational hazards 
associated with motor overheating.  

Key components of an induction motor 
consist of 
(1) Rotor: The rotating component of an electric 

motor, driven by the interaction with the 
magnetic field.  

(2) Stator: the stationary part creates a rotating 
magnetic field. The stator consists of a 
copper winding or an aluminum winding. 
Copper or aluminum conductors carry 
electric current and produce magnetic fields.  

(3) Insulation: This material electrically isolates 
and protects windings. Insulation class 
defines the thermal capability of motor-
winding insulation materials. The two 
standard classes are F and B, which are 
described in Table 1.  

In recent years, the need for precise and 
reliable Fault Detection and Diagnosis (FDD) 
methods for complex industrial systems has 
grown significantly. The primary objective is to 
enhance the safety and reliability of these 
systems while reducing unplanned downtime of 
machinery or processes. Unscheduled 
interruptions caused by equipment failures have 
become a critical concern in production facilities, 
particularly where machines are required to 
operate continuously for extended periods.  

 
Table 1. Winding insulation class characteristics 

Characteristic Class F Class B 

Maximum operating 
temperature 155°C (311°F) 

130°C 
(266°F) 

Temp Rise Allowance 105°C (221°F) 80°C(176°F) 

 

Faults within a system or process can 
occur either independently or simultaneously. 
While simple faults may be identified through 
single measurements, complex systems often 
make it challenging to observe system or 
process states directly. Consequently, there is a 
growing demand for more efficient and 
automated approaches to support FDD in such 
environments [12][13]. 

The reliability and availability of induction 
motors (IMs) are essential for ensuring smooth 
and continuous industrial operations. However, 
IMs are subjected to various unavoidable 
stresses during operation, including mechanical, 
electrical, thermal, and environmental stresses. 
These stresses arise from factors such as 
variations in external loading, power supply 
deviations, excessive heat, insufficient 
lubrication, sealing mechanism failures, dusty 
environments, manufacturing defects, and 
natural aging. To mitigate the risk of catastrophic 
motor failures, industries employ early fault 
detection and diagnosis techniques to identify 
and address component degradation before 
significant damage occurs [14][15].  
 
Literature Review 

Industrial System Maintenance: 
Preventive maintenance (PM) involves 
inspecting and servicing equipment based on a 
predefined schedule. This approach ensures 
equipment remains reliable and operational 
during regular use while minimizing the risk of 
unexpected failures. By proactively addressing 
potential issues, PM helps avoid costly downtime 
and the economic losses associated with sudden 
equipment breakdowns [16]. Recent 
developments in industrial maintenance have 
emphasized various strategies, including 
preventive maintenance (PM), condition-based 
maintenance (CBM), predictive maintenance 
(PdM), and hybrid approaches. These methods 
focus on enhancing system reliability, minimizing 
downtime, and optimizing operational efficiency, 
particularly for complex and critical machines 
[17]. The following summarizes the key 
developments and approaches across these 
maintenance strategies: 
(1) Preventive Maintenance, A novel Preventive 

Maintenance Strategy Optimization (PMSO) 
model was introduced to balance system 
reliability and cost. The proposed model 
uses a two-level surrogate model to estimate 
failure probabilities and optimize 
maintenance intervals across different 
operational periods. The proposed approach 
has demonstrated effectiveness in reducing 
operational costs and improving lifecycle 
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safety through multiple case studies. 
Although this model offers significant 
structural reliability improvements, it lacks 
real-time adaptability to dynamic system 
conditions and external environmental 
factors, such as temperature and humidity. 
Incorporating IoT and machine learning into 
real-time maintenance adjustments can 
enhance a model's flexibility and 
responsiveness. Most preventive 
maintenance is based on inspecting 
components and operations, whether they 
are normal or experiencing failure. 
Maintenance operations consist of the 
repair, replacement, or upgrading of 
components or equipment itself [18].  

(2) Reliability-Centered Maintenance (RCM) is a 
systematic approach to optimizing 
maintenance strategies for physical assets, 
focusing on preserving their operational 
functions in the current operating context. 
This methodology defines economical 
maintenance practices to restore and 
maintain the operational ability of 
components while emphasizing asset 
management and cost reduction. RCM 
achieves these goals by carefully balancing 
preventive and corrective maintenance 
strategies. The maintenance process 
involves a comprehensive analysis of 
system functions, potential failures, and their 
consequences, leading to the development 
of tailored maintenance plans that prioritize 
critical components and eliminate 
unnecessary tasks [18].  

(3) Condition-Based Maintenance: CBM has 
become increasingly important for ensuring 
reliable operations. A significant contribution 
is the development of a CBM strategy for 
redundant systems using reinforcement 
learning (RL). The proposed method 
dynamically optimizes maintenance by 
reducing both the cost and system 
downtime. It is particularly effective in 
redundant systems, outperforming 
traditional strategies in terms of cost-
effectiveness and reliability. CBM is an 
advanced maintenance strategy that uses 
real-time monitoring and data analysis to 
determine when maintenance activities 
should be performed. This method can 
benefit from integration with more advanced 
machine learning techniques, such as deep 
learning, to handle real-time, high-
dimensional data more effectively [19]. This 
strategy allows maintenance decisions to be 
adjusted dynamically based on real-time 
environmental conditions, such as 

temperature and humidity. Condition-Based 
Maintenance (CBM) analyzes real-time 
system data to assess equipment health and 
initiate maintenance when parameters (e.g., 
vibration, temperature) exceed predefined 
thresholds. In contrast, Predictive 
Maintenance (PdM) leverages advanced 
analytics, machine learning, and historical 
trends to forecast potential failures [20] . 

It is critical to integrate multiple PDMs to 
forecast early warnings that indicate an IM is 
nearing failure [21]. The implementation of PDM 
for induction motors in the oil and gas operations 
requires a structured approach. The key steps 
include prioritizing critical assets, deploying 
appropriate sensors, integrating diverse data 
streams, and developing machine learning 
models. Establishing clear thresholds for 
maintenance actions and providing staff training 
on new technologies are critical for successful 
adoption. Condition monitoring (CM) is essential 
for PdM because it allows continuous tracking of 
machinery performance. Hybrid models offer 
substantial improvements in fault detection 
accuracy, as demonstrated in industrial 
applications like mine water inflow prediction. 

 
METHODS 
Deep Learning Hybrid Model 

Deep learning models, particularly Long 
Short-Term Memory (LSTM) networks, have 
become integral to predictive maintenance 
(PdM) frameworks due to their ability to 
process the multidata representations such as 
sensor time-series data, vibration patterns, and 
thermal profiles [21][22]. A dynamic PdM 
strategy utilizing a combination of Convolutional 
Neural Networks (CNN) and Bidirectional Long 
Short-Term Memory (Bi-LSTM) models 
demonstrated superior performance in 
predicting the RUL of systems, which led to more 
informed maintenance decisions. This approach 
was validated using NASA’s turbofan engine 
dataset, which highlighted its ability to improve 
both system reliability and maintenance 
efficiency. Although promising, this method 
focuses on individual components and can be 
extended to multicomponent systems. 
Additionally, integrating this predictive approach 
with decision-support systems can enhance the 
capacity of the system to automate real-time 
maintenance decisions [11][23].  

Recent research has applied the 
Transformer architecture and hybrid CNN-LSTM 
models for early fault forecasting in large 
induction motors, yielding highly accurate 
predictive results. These hybrid deep learning 
frameworks, which integrate Transformer 
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networks, have gained prominence as practical 
solutions for analyzing complex multivariate 
time-series data (e.g., vibration, thermal, and 
current signals). The combined use of preventive 
maintenance and predictive techniques has 
evolved into a more comprehensive approach to 
increasing industrial system reliability. A 
practical strategy involves using a decision table 
to combine predictive maintenance with 
constraints related to under-resourcing, such as 
budgeted costs or labor availability. This enables 
maintenance planners to optimize schedules, 
improving the sustainability of any system 
dynamically. Despite this, the application of 
advanced AI methods, such as deep 
reinforcement learning, to real-time maintenance 
scheduling for complex, high-dimensional 
systems has not been explored [11]. Precise 
forecasting of winding temperatures enables 
optimized scheduling of production workflows 
and data-driven maintenance strategies, 
enhancing operational efficiency while 
minimizing downtime and maintenance costs 
[24]. The Transformer and Long Short-Term 
Memory (LSTM) models are foundational deep 
learning architectures used in time-series 
forecasting and sequence modeling.  

 
Transformer Model 

In the context of temperature prediction for 
induction motors, transformers excel at 
capturing long-range dependencies in sensor 
data, which is crucial for accuracy. Below is the 
sequence of building the models:  
(1) Data Encoding: The preprocessed data are 

converted into tensors for efficient 
processing by the neural network model. 

(2) Positional Encoding: Position information is 
embedded in the input sequence to preserve 
the temporal context. 

(3) Transformer Encoder Module: The 
Transformer Encoder serves as a critical 
component for analyzing sequential and 
time-series data, leveraging self-attention 
mechanisms to capture temporal 
dependencies and contextual patterns 
across the input.  

(4) LSTM Decoder with Attention: The 
transformer output is then processed by an 
LSTM decoder employing an attention 
mechanism. This combination enables the 
model to focus on the relevant input 
sequences, thereby enhancing its predictive 
performance. 

In model performance evaluation, the loss value is 
calculated using the mean square error, and 
optimization was performed to minimize the loss, 
typically using the Adam optimizer [25]. Finally, the 

model’s performance was evaluated using the 
mean absolute error and root mean squared error 
as key metrics. 
 
Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) 
network, developed by Hochreiter and 
Schmidhuber in 1997, is a specialized recurrent 
neural network (RNN) designed to overcome 
the vanishing gradient problem, a critical 
limitation in traditional RNNs that impedes 
learning of long-range dependencies in 
sequential data. LSTM uses gating mechanisms 
to control the flow of information through the 
network, enabling it to maintain information over 
long sequences. The key components of an 
LSTM unit include: 
(1) Input Gate: This gate controls the input data 

information. 
(2) Forget Gate: The gate decides the 

information to discard from the cell state. 
(3) Memory-cell Gate: The gate updates the cell 

state with new information. 
(4) Output Gate: This gate determines the 

output at each time step. 
Memory-cell gate in the LSTM helps preserve 
long-term dependencies, making it suitable for 
sequence prediction tasks, such as predicting 
future temperature values based on previous 
readings. The LSTM's ability to learn temporal 
dependencies from time-series data complements 
the Transformer's self-attention mechanism [26]. 
While the Transformer captures global 
relationships, the LSTM focuses on learning 
temporal dynamics, and the combination of both 
architectures is effective for predicting winding 
temperatures in induction motors. 
 
Hybrid Transformer and Long-term Short 
Memory (TE-LSTM) 

The TE-LSTM model combines the 
Transformer's global attention mechanism with 
the LSTM's strength relative to learning 
sequential dependencies. The proposed hybrid 
model is beneficial for time-series data because 
understanding both long-term dependencies and 
short-term trends is crucial for accurate 
forecasting. The overview of the proposed model 
architecture is described as follows:  
The model takes as input time-series data, i.e., the 
winding temperature readings of the induction 
motors. Positional Encoding involves converting 
the token embedding into a positional embedding 
to help the transformer-encoder model understand 
the sequence order, as shown in (1) and (2) [27]. 
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𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑model

) (1) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
𝑝𝑜𝑠

10000
2𝑖

𝑑model

) (2) 

With pos is the position, i is the dimension, and 
𝑑model is the model size.  

Positional embeddings are fed through the 
layers of the encoder. Each layer applies Self-
Attention and Feedforward layers to extract 
functional patterns from the data. Transformer-
Encoder Block: The core of the Transformer is its 
self-attention mechanism, which computes 
attention scores for each pair of elements in a 
sequence. This allows the model to weigh the 
importance of each element in the sequence when 
making predictions. Mathematically, the self-
attention mechanism can be defined as (3): 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3) 

with: 
𝑄 represents the query matrix, and 

𝐾 is the key matrix, and 
𝑉 is the value matrix, and 

𝑑𝑘 is the dimension of the matrix 𝐾. 
This mechanism allows the Transformer-Encoder 
to focus on different parts of the input sequence 
depending on the importance of each part, which 
makes it highly effective for time-series  
forecasting. 

LSTM decoder with attention mechanism, 
where the output from the transformer encoder is 
input to the LSTM decoder. The concept behind 
the LSTM block, which focuses explicitly on 
capturing temporal dependencies in the data and 
using an attention mechanism, is that it can look 
back to relevant time stamps, facilitating better 
predictions. Learn attention scores with linear 
layers + tanh between the Recognition Exception 
squad. Output Layer: Finally, the LSTM decoder 
produces predictions of the temperature for the 
next step in accordance with the learned 
temperature from the prior steps. TE-LSTM 
combines the Transformer-Encoder with a global 
attention mechanism with LSTM to allow learning 
from sequential dependencies. In this study, we 
propose a schematic representation of the 
process of developing a TE-LSTM model 
(Transformer-Encoder Long Short-Term 
Memory) to predict the winding temperature and 
useful life of electrical machines. The key steps 
involved in this process are as follows and can 
be seen in Figure 3.  

(1) Data Collection and Data Processing: 
Sensor Data Acquisition: Real-time data 
from multiple sensors, including winding 
temperature, vibration, and electrical 
current, are collected at minute intervals.  

(2) Data Cleaning: Duplicate entries are 
eliminated, and missing values are 
addressed using appropriate cleaning 
methods. After preprocessing, the dataset is 
split into two parts: 90% is allocated for 
training the model, while the remaining 10% 
is reserved for validation, ensuring robust 
and reliable model performance. 

(3) Sliding Window Method [28]. The time series 
data are organized into sequential windows 
to capture temporal dependencies [29].  

The study utilized motor winding 
temperature records from motors that had been 
running for more than 10 years. This creates the 
following series of processing steps, and the 
analysis workflow is as follows:  
(1) The actual temperature data of the induction 

motors were represented as a time series. 
This is a widespread use of positional 
Encoding because it preserves the order or 
sequence, allowing the model to understand 
the time aspect of data.  

(2) The Transformer Encoder: The encoder 
takes the input sequence and processes it 
with multiple attention heads to model long-
range dependencies in the temperature 
data. This allows the model to remember 
past sensor readings when predicting future 
temperatures.  

(3) LSTM Decoder with Attention: The LSTM 
decoder reads the encoded sequence and 
pays attention to both short-term and long-
term trends inside it. The attention 
mechanism provides additional context to 
the LSTM, calculated by weighing the critical 
time steps; thus, the LSTM can be used to  

(4) LSTM Decoder with Attention: The LSTM 
decoder reads the encoded sequence and 
pays attention to both short-term and long-
term trends inside it. The attention 
mechanism provides additional context to 
the LSTM by weighing the critical time steps, 
enabling the LSTM to make more accurate 
temperature predictions. 

(5) Predictions: This is the final step where a 
temperature prediction is made for the next 
step, allowing verification of whether it 
approaches alarm levels H and HH. 

 
Research Gap 

To have a better intuition of our 
contributions, we summarize a few significant 
research gaps in this work.  
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Figure 3. A framework of TE-LSTM for Winding temperature prediction 

 
Although many strides have already been made 
in the predictive maintenance of induction 
motors, we can still mention some challenges, as 
follows: 
(1) Deep Learning model: This work introduces 

a hybrid deep learning model that stands 
apart from existing approaches, such as [27] 
and [21]. The previously mentioned models 
combined an LSTM with no Transformer-
based model. In that case, they may fail to 
capture the long-term dependencies of the 
sensor data because the Transformer is 
designed to process sequential data. 

(2) This work introduces winding temperature 
predictions, especially for their early warning 
and failure time. To the best of our 
knowledge, this work is the first study to 
analyze IM winding temperature using the 
TE-LSTM model. 

(3) Primary Data: This work observed the 
winding temperature of induction motors 
using actual operational data from the oil and 
gas industry, which will be available upon 
request. In this work, the study aims to 
alleviate some of these limitations by 
introducing a hybrid TE-LSTM that 
effectively addresses both long-term 
dependencies and local patterns in motor 
temperature data, thereby creating an 
opportunity base for better interpretability 
and cross-domain transfer learning tasks 
[30]. 

 
RESULTS AND DISCUSSION  

This hybrid approach leverages the 
benefits of Transformer and LSTM architectures, 

allowing better capture of long-term 
dependencies and short-term patterns in the 
temperature data, which can help a model 
produce more accurate predictions for winding 
temperatures in induction motors. In this study, 
data from two motors were collected. Both 
motors were specified with a voltage level of 4.16 
kV, 3-phase, 60 Hz, asynchronous motors. 
Motor A's power output was 470 HP, and Motor 
B's was 600 HP. Motor A and B data were 
collected between January 2016 and December 
2024. This resulted in over two million data 
points per motor, which were recorded at 1-
minute intervals.  

Two methods were used to handle missing 
data: replacing it with a fixed value of 90°F and 
removing the affected data. The replacement 
value of 90°F was chosen because during 
periods when the motor was not in operation, the 
winding temperature stabilized around 90°F 
while the motor's space heater was still in 
operation. The data were then normalized using 
both Z-score and Min-Max normalization 
techniques, and the dataset was split into 
training (90%) and testing (10%) sets. The model 
is trained using a time-series dataset with 90% 
allocation for training and 10% for testing. The 
trained model then predicts when critical 
temperature thresholds H would be reached, 
providing valuable information for proactive 
maintenance decisions. Winding temperature 
data for both Motor A and B can be seen in 
Figures 4  and 5. Loss for this model is also 
indicated in Figure 8. 
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Figure 4. Winding temperature of Motor A (4.16 kV, 470HP) from 1/1/2021 to 31/12/2024  

 

Figure 5. Winding temperature of Motor B (4.16 kV, 600 HP) 
 

Model predictions for both motors can be 
seen in Figure 6 and Figure 7. The TE-LSTM 
model was evaluated for its prediction 
capabilities. The model's predictions were highly 
accurate for both early warning winding 
temperatures at 257 °F and at 285 °F. The 
graphs show the performance of the two motors, 
highlighting the strengths and limitations of the 
predictive models. The predicted winding 

temperature (orange line) for Motors A and B 
matches the actual winding temperature (blue 
line) throughout the period, demonstrating the 
model’s proficiency in tracking overall 
temperature trends. The motor usually operates 
within 100°F to 125°F, but spikes above 275°F 
indicate possible overheating or atypical 
operation.
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Figure 6. Winding Temperature Estimation for Motor A: 470 HP, 4.16 kV, 3P, and 60 Hz from TE-

LSTM. The estimated winding temperature reaches 257°F on July 26, 2024, matching the actual 

temperature 

The TE-LSTM model for Motor B demonstrated 
its ability to capture the overall temperature 
trends, closely following the actual winding 
temperature variations from early February to 
mid-March. The actual temperature fluctuated 
rapidly between 200°F and 275°F, and the model 
effectively predicted these changes, although 
with a smoother profile. These results show that 
the Transformer-LSTM model successfully 
identified the underlying temperature patterns 

The TE-LSTM model was also evaluated 
for model prediction. The model's predictions 
were highly accurate for both early and late 
failure detection. The graphs depict the 
performance of the two motors, highlighting the 
strengths and limitations of the predictive 
models. The predicted winding temperature 
(orange line) for Motor A generally matches the 
actual winding temperature (blue line) 
throughout the period, demonstrating the 
model's proficiency in tracking overall 
temperature trends. Nonetheless, discrepancies 
in the magnitude and timing of significant 
temperature spikes are noted, especially in early 
July and mid-September. The motor usually 
operates within 100°F to 125°F, but spikes 
above 275°F indicate possible overheating or 
atypical operation. The TE-LSTM model for Motor 
B demonstrated its ability to capture the overall 
temperature trends, closely following the actual 
winding temperature variations from early 

February to mid-March. The actual temperature 
fluctuated rapidly between 200°F and 275°F, and 
the model effectively predicted these changes, 
although with a smoother profile. These results 
show that the Transformer-LSTM model 
successfully identified the underlying temperature 
patterns; however, further tuning is required to 
enhance the model's responsiveness to sharp 
temperature fluctuations. Validating thermal 
models under operational conditions has been a 
focus of prior research, highlighting the 
importance of accurate winding temperature 
prediction for optimizing machine performance. In 
summary, although the models exhibit strengths in 
tracking general temperature trends, the observed 
discrepancies in the spike magnitudes and sharp 
variations indicate areas for model refinement.  

The TE-LSTM model's predictions closely 
mirror the actual winding temperature curve, 
although it has a less erratic profile. The actual 
temperature fluctuates swiftly between 200°F 
and 275°F. Although the model accurately 
forecasts these variations, it might benefit from 
additional adjustments to more accurately reflect 
these abrupt changes. Researchers have 
emphasized the importance of accurately 
predicting winding temperatures to fully exploit 
motor performance, as well as the need to 
validate thermal models under operational 
conditions to ensure their efficacy. 
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Figure 7. Winding Temperature Estimation of Motor B for 600 HP, 4.16 kV, 3P, and 60 Hz from TE-

LSTM. The estimated winding temperature reached 257°F on February 8, 2021, matching the actual 

temperature 
 

 

Figure 8. TE-LSTM Model Loss for Motor A 
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Figure 9. TE-LSTM Model Loss for Motor B. 

 
The Transformer-LSTM model's ability to track 
overall temperature trends is commendable; 
further tuning might be necessary to enhance 
accuracy. The learning curve for both models 
indicates that the losses can be found in Figures 
8 and 9. 

The TE-LSTM model for Motor B 
demonstrated its ability to capture the overall 
temperature trends, closely following the actual 
winding temperature variations from early February 
to mid-March. The actual temperature fluctuated 
rapidly between 200°F and 275°F, and the model 
effectively predicted these changes, although with 
a smoother profile. These results show that the 
Transformer-LSTM model successfully identified 
the underlying temperature patterns; however, 
further tuning is required to enhance the model's 
responsiveness to sharp temperature fluctuations. 
Validating thermal models under operational 
conditions has been a focus of prior research, 
highlighting the importance of accurate winding 
temperature prediction for optimizing machine 
performance. In summary, although the models 
exhibit strengths in tracking general temperature 
trends, the observed discrepancies in the spike 
magnitudes and sharp variations indicate areas for 
model refinement.  

The TE-LSTM model's predictions closely 
mirror the actual winding temperature curve. The 
actual temperature fluctuates swiftly between 
200°F and 275°F. Although the model accurately 
forecasts these variations, it might benefit from 

additional adjustments to more accurately reflect 
these abrupt changes. Researchers have 
emphasized the importance of accurately 
predicting winding temperatures to fully exploit 
motor performance, as well as the need to validate 
thermal models under operational conditions to 
ensure their efficacy. The Transformer-LSTM 
model's ability to track overall temperature trends 
is commendable; further tuning might be necessary 
to enhance accuracy.  

  
Performance Evaluation 

The Root Mean Square Error (RMSE) of 
Motor A was 0.803, and Motor B was 0.301, 
reflecting the error margin between the predicted 
and actual temperature values or performance 
degradation over time, as listed in Table 2.  The 
RMSE is commonly used to assess prediction 
model accuracy, with lower values indicating 
better fitting between predicted and observed 
data.  

The estimated winding temperature of 
257°F for both Motor A and Motor B is accurate, 

resulting in an early warning detection for the H 
alarm, matching the actual winding temperature. 
 

Table 2. Performance Evaluation 
Motor RMSE 

A 0.301 
B 0.803 
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CONCLUSION  
A hybrid Transformer-Encoder with an 

LSTM architecture (TE-LSTM) considerably 
improved the temperature alarm prediction of 
induction motors. This hybrid deep learning 
model can also predict the performance of motor 
and other equipment assets, helping change 
maintenance strategies from reactive to 
proactive—reducing unplanned downtime while 
boosting operational effectiveness. This model is 
beneficial in the oil and gas industry because it 
mitigates frequent motor failures, which helps to 
increase reliability, maintain production uptime, 
and reduce operational costs. 

 
FUTURE DISCUSSION 

Despite these advancements, several 
research gaps remain in the field of maintenance 
strategies. Most studies focus on either static 
environments or predetermined damage 
intervals, which cannot be applied to real-world 
dynamic situations. Future studies should better 
incorporate real-time information from IoT 
devices to gain an accurate and necessary 
understanding of ICT (Information and 
Communication Technology) system health. The 
addition of deep learning capabilities to TE-LSTM 
means that it can be used in larger industrial 
systems, resulting in better optimization of 
maintenance schedules based on prior research. 
Many predictive maintenance models I have seen 
and worked on focus on a single part; however, 
in the real world, it is not that simple because we 
sometimes deal with multicomponent systems.  

Further research is required on 
multicomponent systems with interdependence, 
which require sophisticated time-based 
maintenance scheduling strategies. Resource 
constraint integration: There is little exploration 
into integrating resource constraints (e.g., a 
constrained maintenance budget and workforce) 
with dynamic types of maintenance. To 
summarize, these areas can form the foundation 
for an integrated decision-making framework that 
will assist in creating sustainable, efficient 
industrial-based preventive strategies. 
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