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Abstract

Induction motor winding repair takes longer than other types of
failures, such as bearing failures. This research introduces a hybrid
deep learning framework, TE-LSTM, to predict winding
temperatures in induction motors used in oil and gas operations. It
aims to address the challenges of accurately forecasting potential
winding failures and enabling proactive maintenance strategies.
The TE-LSTM model combines a transformer encoder-based
architecture with long short-term memory to effectively model
intricate temporal relationships and sensor dynamics within the
dataset. The study utilized data collected from January 2016 to
December 2024 at 1-minute intervals from induction motors
equipped with stator winding temperature sensors. These motors
were designed with Class F insulation and had stage 1 and stage
2 alarms set at 257°F and 285°F, respectively. The findings
highlight the efficiency and performance of the TE-LSTM model in
predicting winding temperatures, which can significantly reduce
unplanned downtime and associated costs, thereby optimizing
maintenance operations and enhancing the reliability of the motor.
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INTRODUCTION

Faults in induction motors can disrupt
factory production lines, causing downtime and
leading to significant economic and operational
losses. Ensuring reliable motor operation is
therefore essential to minimize these impacts
[1]. Induction motor (IM) drives are utilized in a
wide range of applications, including conveyors,
cranes, ventilation systems, and the petroleum
industry [2]. The reliability and performance of
induction motors are critical for ensuring efficient
and safe industrial operations. The distribution of
failures in IM components is as follows: bearing-
related faults account for 40%, stator winding
faults for 38%, rotor-related faults for 10%, and
other faults for 12% [3] .

IMs are critical in industry, consuming 40-
50% of the capacity generated. Induction motors
(IM) are prone to various faults, and a standard
industry guideline states that for every 10°C

increase in temperature, the insulation's lifespan
is reduced by half [4]. Detecting faults early can
help avoid expensive failures and production
downtime. Diagnosing faults in electrical motors
involves analyzing various components, such as
insulation, bearings, shafts, stators, and rotors.
It also relies on multiple diagnostic signals,
including acoustic, vibration, and infrared signals
[5]. The demand for condition monitoring has
grown significantly due to the increasing
prevalence of automation, which has reduced
direct human interaction with machines for
supervising system operations. Condition
monitoring provides a visual representation of
machine parameters, enabling the detection,
analysis, and resolution of issues before failures
occur. Early fault detection in induction motors is
essential to prevent production downtime and
avoid catastrophic failures [6]. Reliability
Condition Monitoring (RCM) is a critical and
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highly efficient method for evaluating and
optimizing the maintenance requirements of
plants and equipment during operation. Its
primary objective is to reduce equipment failures
and improve preventive maintenance practices,
enabling industrial facilities to manage their
machinery effectively and efficiently.
Consequently, Prognostics and Health
Management (PHM) for induction motors has
emerged as a significant area of research [7].
Accurately predicting the remaining useful life
(RUL) of induction motors is critical for
optimizing condition-based maintenance (CBM)
strategies, enhancing operational reliability, and
minimizing maintenance costs [8]. PHM shifts
maintenance strategies from reactive
approaches such as post-failure repairs, routine
scheduled servicing, and ad-hoc corrective
actions to data-driven predictive maintenance.
Central to this ftransition is the accurate
estimation of remaining useful life (RUL), which
enables operators to forecast equipment
degradation and optimize  maintenance
interventions.

Induction Motor

Three-phase AC motors account for
approximately 60% of the total industrial
electricity consumption, with induction motor
(IM) drive systems being extensively utilized
across various applications. AC induction motors
are among the most used motors in industrial
settings. Typically, these motors deliver higher
power factors (PF) and greater efficiency when
operating at or near full load conditions [9].
Figure 1 illustrates the basic structure of an
induction motor (IM). The windings, made of
copper, are distributed across the machine. The
stator and rotor cores are constructed from
laminated silicon steel sheets.

Additionally, the rotor bars are positioned
near the top of the rotor and close to the air gap
to minimize leakage flux [10]. Motor winding can
be seen in Figure 2. Three temperature sensors
are typically installed at the motor winding to
monitor the winding's condition and prevent
overheating.

Induction motors are essential for
ensuring uninterrupted operations in the oil and
gas industry. These motors, a widely used type
of electric motor, are valued for their simplicity,
high reliability, and cost-effectiveness, making
them a preferred choice in various industrial
applications [11]. These motors typically employ
Class F insulation, which has a standard
maximum winding temperature of 311°F
(155°C), as outlined in IEEE standard 43.

Figure 1. Induction Motor

However, when monitoring capabilities are
limited, this threshold is often adjusted for safety
reasons. In scenarios where only three sensors
monitor the winding temperature, a more
comprehensive approach is necessary. It is often
adjusted by lowering the alarm set point of the
winding temperatures.

To account for potential temperature
variations that could cause inaccurate
information due to measurements taken only in
a specific area, the maximum allowable
temperature was reduced to 287°F
(approximately 142°C). These precautionary

measures help to safeguard motor integrity and
longevity. Based on this adjusted limit, a two-tier
alarm system was implemented as follows:

Figure 2. Motor Winding
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(1) The initial alarm (H) was activated at 257°F
(about 125°C).

(2) The critical alarm (HH) was triggered at
285°F (around 141°C).

This tiered system allows for graduated
responses to rising temperatures. When the H
alarm sounds at 257°F, it provides an early
warning that allows operators to initiate
preventive actions. The HH alarm at 285°F
serves as a final caution signal, indicating that
the temperature is approaching the adjusted
maximum. Advanced predictive models are
being explored to enhance this protective
strategy. In this study, a TE-LSTM model
combines the transformer encoder and LSTM
architecture used to forecast potential alarm
triggers. By anticipating these critical events,
operators can implement more proactive
maintenance strategies, thereby reducing the
risks of unexpected shutdowns, production
interruptions, and other operational hazards
associated with motor overheating.

Key components of an induction motor
consist of
(1) Rotor: The rotating component of an electric

motor, driven by the interaction with the
magnetic field.

(2) Stator: the stationary part creates a rotating
magnetic field. The stator consists of a
copper winding or an aluminum winding.
Copper or aluminum conductors carry
electric current and produce magnetic fields.

(3) Insulation: This material electrically isolates
and protects windings. Insulation class
defines the thermal capability of motor-
winding insulation materials. The two
standard classes are F and B, which are
described in Table 1.

In recent years, the need for precise and
reliable Fault Detection and Diagnosis (FDD)
methods for complex industrial systems has
grown significantly. The primary objective is to
enhance the safety and reliability of these
systems while reducing unplanned downtime of
machinery  or  processes. Unscheduled
interruptions caused by equipment failures have
become a critical concern in production facilities,
particularly where machines are required to
operate continuously for extended periods.

Table 1. Winding insulation class characteristics

Characteristic Class F Class B
Maximum operating 130°C
temperature 155°C (311°F) (266°F)

Temp Rise Allowance 105°C (221°F) 80°C(176°F)

Faults within a system or process can
occur either independently or simultaneously.
While simple faults may be identified through
single measurements, complex systems often
make it challenging to observe system or
process states directly. Consequently, there is a
growing demand for more efficient and
automated approaches to support FDD in such
environments [12][13].

The reliability and availability of induction
motors (IMs) are essential for ensuring smooth
and continuous industrial operations. However,
IMs are subjected to various unavoidable
stresses during operation, including mechanical,
electrical, thermal, and environmental stresses.
These stresses arise from factors such as
variations in external loading, power supply
deviations, excessive  heat, insufficient
lubrication, sealing mechanism failures, dusty
environments, manufacturing defects, and
natural aging. To mitigate the risk of catastrophic
motor failures, industries employ early fault
detection and diagnosis techniques to identify
and address component degradation before
significant damage occurs [14][15].

Literature Review

Industrial System Maintenance:
Preventive = maintenance  (PM) involves
inspecting and servicing equipment based on a
predefined schedule. This approach ensures
equipment remains reliable and operational
during regular use while minimizing the risk of
unexpected failures. By proactively addressing
potential issues, PM helps avoid costly downtime
and the economic losses associated with sudden

equipment breakdowns [16]. Recent
developments in industrial maintenance have
emphasized various strategies, including

preventive maintenance (PM), condition-based

maintenance (CBM), predictive maintenance

(PdM), and hybrid approaches. These methods

focus on enhancing system reliability, minimizing

downtime, and optimizing operational efficiency,
particularly for complex and critical machines

[17]. The following summarizes the key

developments and approaches across these

maintenance strategies:

(1) Preventive Maintenance, A novel Preventive
Maintenance Strategy Optimization (PMSO)
model was introduced to balance system
reliability and cost. The proposed model
uses a two-level surrogate model to estimate
failure probabilities and optimize
maintenance intervals across different
operational periods. The proposed approach
has demonstrated effectiveness in reducing
operational costs and improving lifecycle
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safety through multiple case studies.
Although this model offers significant
structural reliability improvements, it lacks
real-time adaptability to dynamic system
conditions and external environmental
factors, such as temperature and humidity.
Incorporating loT and machine learning into
real-time maintenance adjustments can

enhance a model's flexibility and
responsiveness. Most preventive
maintenance is based on inspecting

components and operations, whether they
are normal or experiencing failure.
Maintenance operations consist of the
repair, replacement, or upgrading of
components or equipment itself [18].

(2) Reliability-Centered Maintenance (RCM) is a
systematic approach to optimizing
maintenance strategies for physical assets,
focusing on preserving their operational
functions in the current operating context.
This methodology defines economical
maintenance practices to restore and
maintain the operational ability of
components while emphasizing asset
management and cost reduction. RCM
achieves these goals by carefully balancing
preventive and corrective maintenance
strategies. The maintenance process
involves a comprehensive analysis of
system functions, potential failures, and their
consequences, leading to the development
of tailored maintenance plans that prioritize
critical components and eliminate
unnecessary tasks [18].

(3) Condition-Based Maintenance: CBM has
become increasingly important for ensuring
reliable operations. A significant contribution
is the development of a CBM strategy for
redundant systems using reinforcement
learning (RL). The proposed method
dynamically optimizes maintenance by
reducing both the cost and system
downtime. It is particularly effective in
redundant systems, outperforming
traditional strategies in terms of cost-
effectiveness and reliability. CBM is an
advanced maintenance strategy that uses
real-time monitoring and data analysis to
determine when maintenance activities
should be performed. This method can
benefit from integration with more advanced
machine learning techniques, such as deep
learning, to handle real-time, high-
dimensional data more effectively [19]. This
strategy allows maintenance decisions to be
adjusted dynamically based on real-time
environmental conditions, such as

temperature and humidity. Condition-Based
Maintenance (CBM) analyzes real-time
system data to assess equipment health and
initiate maintenance when parameters (e.g.,
vibration, temperature) exceed predefined
thresholds. In contrast, Predictive
Maintenance (PdM) leverages advanced
analytics, machine learning, and historical
trends to forecast potential failures [20] .

It is critical to integrate multiple PDMs to
forecast early warnings that indicate an IM is
nearing failure [21]. The implementation of PDM
for induction motors in the oil and gas operations
requires a structured approach. The key steps
include prioritizing critical assets, deploying
appropriate sensors, integrating diverse data
streams, and developing machine learning
models. Establishing clear thresholds for
maintenance actions and providing staff training
on new technologies are critical for successful
adoption. Condition monitoring (CM) is essential
for PdM because it allows continuous tracking of
machinery performance. Hybrid models offer
substantial improvements in fault detection
accuracy, as demonstrated in industrial
applications like mine water inflow prediction.

METHODS
Deep Learning Hybrid Model

Deep learning models, particularly Long
Short-Term Memory (LSTM) networks, have
become integral to predictive maintenance
(PdM) frameworks due to their ability to
process the multidata representations such as
sensor time-series data, vibration patterns, and
thermal profiles [21][22]. A dynamic PdM
strategy utilizing a combination of Convolutional
Neural Networks (CNN) and Bidirectional Long
Short-Term  Memory  (Bi-LSTM)  models
demonstrated superior performance in
predicting the RUL of systems, which led to more
informed maintenance decisions. This approach
was validated using NASA’s turbofan engine
dataset, which highlighted its ability to improve
both system reliability and maintenance
efficiency. Although promising, this method
focuses on individual components and can be
extended to multicomponent systems.
Additionally, integrating this predictive approach
with decision-support systems can enhance the
capacity of the system to automate real-time
maintenance decisions [11][23].

Recent research has applied the
Transformer architecture and hybrid CNN-LSTM
models for early fault forecasting in large
induction motors, yielding highly accurate
predictive results. These hybrid deep learning
frameworks, which integrate Transformer
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networks, have gained prominence as practical
solutions for analyzing complex multivariate
time-series data (e.g., vibration, thermal, and
current signals). The combined use of preventive
maintenance and predictive techniques has
evolved into a more comprehensive approach to
increasing industrial system reliability. A
practical strategy involves using a decision table
to combine predictive maintenance with
constraints related to under-resourcing, such as
budgeted costs or labor availability. This enables
maintenance planners to optimize schedules,
improving the sustainability of any system
dynamically. Despite this, the application of
advanced Al methods, such as deep
reinforcement learning, to real-time maintenance
scheduling for complex, high-dimensional
systems has not been explored [11]. Precise
forecasting of winding temperatures enables
optimized scheduling of production workflows
and data-driven maintenance strategies,
enhancing operational efficiency  while
minimizing downtime and maintenance costs
[24]. The Transformer and Long Short-Term
Memory (LSTM) models are foundational deep
learning architectures used in time-series
forecasting and sequence modeling.

Transformer Model

In the context of temperature prediction for
induction motors, transformers excel at
capturing long-range dependencies in sensor
data, which is crucial for accuracy. Below is the
sequence of building the models:

(1) Data Encoding: The preprocessed data are
converted into tensors for efficient
processing by the neural network model.

(2) Positional Encoding: Position information is
embedded in the input sequence to preserve
the temporal context.

(3) Transformer Encoder Module: The
Transformer Encoder serves as a critical
component for analyzing sequential and
time-series data, leveraging self-attention
mechanisms to capture temporal

dependencies and contextual patterns
across the input.
(4) LSTM Decoder with Attention: The

transformer output is then processed by an
LSTM decoder employing an attention
mechanism. This combination enables the
model to focus on the relevant input
sequences, thereby enhancing its predictive
performance.
In model performance evaluation, the loss value is
calculated using the mean square error, and
optimization was performed to minimize the loss,
typically using the Adam optimizer [25]. Finally, the

model’s performance was evaluated using the
mean absolute error and root mean squared error
as key metrics.

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM)
network, developed by Hochreiter and
Schmidhuber in 1997, is a specialized recurrent
neural network (RNN) designed to overcome

the vanishing gradient problem, a critical
limitation in traditional RNNs that impedes
learning of long-range dependencies in

sequential data. LSTM uses gating mechanisms
to control the flow of information through the
network, enabling it to maintain information over
long sequences. The key components of an
LSTM unit include:
(1) Input Gate: This gate controls the input data
information.
(2) Forget Gate: The gate decides the
information to discard from the cell state.
(3) Memory-cell Gate: The gate updates the cell
state with new information.
(4) Output Gate: This gate determines the
output at each time step.
Memory-cell gate in the LSTM helps preserve
long-term dependencies, making it suitable for
sequence prediction tasks, such as predicting
future temperature values based on previous
readings. The LSTM's ability to learn temporal
dependencies from time-series data complements
the Transformer's self-attention mechanism [26].
While the Transformer captures global
relationships, the LSTM focuses on learning
temporal dynamics, and the combination of both
architectures is effective for predicting winding
temperatures in induction motors.

Hybrid Transformer and Long-term Short
Memory (TE-LSTM)

The TE-LSTM model combines the
Transformer's global attention mechanism with
the LSTM's strength relative to learning
sequential dependencies. The proposed hybrid
model is beneficial for time-series data because
understanding both long-term dependencies and
short-term trends is crucial for accurate
forecasting. The overview of the proposed model
architecture is described as follows:

The model takes as input time-series data, i.e., the
winding temperature readings of the induction
motors. Positional Encoding involves converting
the token embedding into a positional embedding
to help the transformer-encoder model understand
the sequence order, as shown in (1) and (2) [27].
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Positional embeddings are fed through the
layers of the encoder. Each layer applies Self-
Attention and Feedforward layers to extract
functional patterns from the data. Transformer-
Encoder Block: The core of the Transformer is its
self-attention mechanism, which computes
attention scores for each pair of elements in a
sequence. This allows the model to weigh the
importance of each element in the sequence when
making predictions. Mathematically, the self-
attention mechanism can be defined as (3):

T

Attention(Q, K, V) = softmax (Q

Jd_k> Vo @3

with:

Q represents the query matrix, and

K is the key matrix, and

V is the value matrix, and

d; is the dimension of the matrix K.

This mechanism allows the Transformer-Encoder
to focus on different parts of the input sequence
depending on the importance of each part, which
makes it highly effective for time-series
forecasting.

LSTM decoder with attention mechanism,
where the output from the transformer encoder is
input to the LSTM decoder. The concept behind
the LSTM block, which focuses explicitly on
capturing temporal dependencies in the data and
using an attention mechanism, is that it can look
back to relevant time stamps, facilitating better
predictions. Learn attention scores with linear
layers + tanh between the Recognition Exception
squad. Output Layer: Finally, the LSTM decoder
produces predictions of the temperature for the
next step in accordance with the learned
temperature from the prior steps. TE-LSTM
combines the Transformer-Encoder with a global
attention mechanism with LSTM to allow learning
from sequential dependencies. In this study, we
propose a schematic representation of the
process of developing a TE-LSTM model
(Transformer-Encoder Long Short-Term
Memory) to predict the winding temperature and
useful life of electrical machines. The key steps
involved in this process are as follows and can
be seen in Figure 3.

(1) Data Collection and Data Processing:
Sensor Data Acquisition: Real-time data
from multiple sensors, including winding
temperature, vibration, and electrical
current, are collected at minute intervals.

(2) Data Cleaning: Duplicate entries are
eliminated, and missing values are
addressed using appropriate cleaning

methods. After preprocessing, the dataset is
split into two parts: 90% is allocated for
training the model, while the remaining 10%
is reserved for validation, ensuring robust
and reliable model performance.

(3) Sliding Window Method [28]. The time series
data are organized into sequential windows
to capture temporal dependencies [29].

The study utilized motor winding
temperature records from motors that had been
running for more than 10 years. This creates the
following series of processing steps, and the
analysis workflow is as follows:

(1) The actual temperature data of the induction
motors were represented as a time series.
This is a widespread use of positional
Encoding because it preserves the order or
sequence, allowing the model to understand
the time aspect of data.

(2) The Transformer Encoder: The encoder
takes the input sequence and processes it
with multiple attention heads to model long-
range dependencies in the temperature
data. This allows the model to remember
past sensor readings when predicting future
temperatures.

(3) LSTM Decoder with Attention: The LSTM
decoder reads the encoded sequence and
pays attention to both short-term and long-
term trends inside it. The attention
mechanism provides additional context to
the LSTM, calculated by weighing the critical
time steps; thus, the LSTM can be used to

(4) LSTM Decoder with Attention: The LSTM
decoder reads the encoded sequence and
pays attention to both short-term and long-
term trends inside it. The attention
mechanism provides additional context to
the LSTM by weighing the critical time steps,
enabling the LSTM to make more accurate
temperature predictions.

(5) Predictions: This is the final step where a
temperature prediction is made for the next
step, allowing verification of whether it
approaches alarm levels H and HH.

Research Gap

To have a better intuition of our
contributions, we summarize a few significant
research gaps in this work.
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Although many strides have already been made
in the predictive maintenance of induction
motors, we can still mention some challenges, as
follows:

(1) Deep Learning model: This work introduces
a hybrid deep learning model that stands
apart from existing approaches, such as [27]
and [21]. The previously mentioned models
combined an LSTM with no Transformer-
based model. In that case, they may fail to
capture the long-term dependencies of the
sensor data because the Transformer is
designed to process sequential data.

This work introduces winding temperature
predictions, especially for their early warning
and failure time. To the best of our
knowledge, this work is the first study to
analyze IM winding temperature using the
TE-LSTM model.

Primary Data: This work observed the
winding temperature of induction motors
using actual operational data from the oil and
gas industry, which will be available upon
request. In this work, the study aims to
alleviate some of these limitations by
introducing a hybrid TE-LSTM that
effectively addresses both long-term
dependencies and local patterns in motor
temperature data, thereby creating an
opportunity base for better interpretability
and cross-domain transfer learning tasks
[30].

3)

RESULTS AND DISCUSSION
This hybrid approach leverages the
benefits of Transformer and LSTM architectures,

Figure 3. A framework of TE-LSTM for Winding temperature prediction

-~

allowing  better capture of long-term
dependencies and short-term patterns in the
temperature data, which can help a model
produce more accurate predictions for winding
temperatures in induction motors. In this study,
data from two motors were collected. Both
motors were specified with a voltage level of 4.16
kV, 3-phase, 60 Hz, asynchronous motors.
Motor A's power output was 470 HP, and Motor
B's was 600 HP. Motor A and B data were
collected between January 2016 and December
2024. This resulted in over two million data
points per motor, which were recorded at 1-
minute intervals.

Two methods were used to handle missing
data: replacing it with a fixed value of 90°F and
removing the affected data. The replacement
value of 90°F was chosen because during
periods when the motor was not in operation, the
winding temperature stabilized around 90°F
while the motor's space heater was still in
operation. The data were then normalized using
both Z-score and Min-Max normalization
techniques, and the dataset was split into
training (90%) and testing (10%) sets. The model
is trained using a time-series dataset with 90%
allocation for training and 10% for testing. The
trained model then predicts when critical
temperature thresholds H would be reached,
providing valuable information for proactive
maintenance decisions. Winding temperature
data for both Motor A and B can be seen in
Figures 4 and 5. Loss for this model is also
indicated in Figure 8.
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Figure 4. Winding temperature of Motor A (4.16 kV, 470HP) from 1/1/2021 to 31/12/2024

Actual Winding Temperature

300 — Actual Winding Temperature

275

250

P
J
L

Temperature
Pl
(=]
o

175
150
125 1
100
-
s

v

D o

,\’9 ,\’Sﬁ
4 qn
O "19
Date

Figure 5. Winding temperature of Motor B (4.16 kV, 600 HP)

Model predictions for both motors can be
seen in Figure 6 and Figure 7. The TE-LSTM
model was evaluated for its prediction
capabilities. The model's predictions were highly
accurate for both early warning winding
temperatures at 257 °F and at 285 °F. The
graphs show the performance of the two motors,
highlighting the strengths and limitations of the
predictive models. The predicted winding

temperature (orange line) for Motors A and B
matches the actual winding temperature (blue
line) throughout the period, demonstrating the
model’'s  proficiency in tracking overall
temperature trends. The motor usually operates
within 100°F to 125°F, but spikes above 275°F
indicate possible overheating or atypical
operation.
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Figure 6. Winding Temperature Estimation for Motor A: 470 HP, 4.16 kV, 3P, and 60 Hz from TE-
LSTM. The estimated winding temperature reaches 257°F on July 26, 2024, matching the actual
temperature

The TE-LSTM model for Motor B demonstrated
its ability to capture the overall temperature
trends, closely following the actual winding
temperature variations from early February to
mid-March. The actual temperature fluctuated
rapidly between 200°F and 275°F, and the model
effectively predicted these changes, although
with a smoother profile. These results show that
the Transformer-LSTM model successfully
identified the underlying temperature patterns
The TE-LSTM model was also evaluated
for model prediction. The model's predictions
were highly accurate for both early and late
failure detection. The graphs depict the
performance of the two motors, highlighting the
strengths and limitations of the predictive
models. The predicted winding temperature
(orange line) for Motor A generally matches the

actual winding temperature (blue line)
throughout the period, demonstrating the
model's  proficiency in tracking overall

temperature trends. Nonetheless, discrepancies
in the magnitude and timing of significant
temperature spikes are noted, especially in early
July and mid-September. The motor usually
operates within 100°F to 125°F, but spikes
above 275°F indicate possible overheating or
atypical operation. The TE-LSTM model for Motor

February to mid-March. The actual temperature
fluctuated rapidly between 200°F and 275°F, and
the model effectively predicted these changes,
although with a smoother profile. These results
show that the Transformer-LSTM model
successfully identified the underlying temperature
patterns; however, further tuning is required to
enhance the model's responsiveness to sharp
temperature fluctuations. Validating thermal
models under operational conditions has been a
focus of prior research, highlighting the
importance of accurate winding temperature
prediction for optimizing machine performance. In
summary, although the models exhibit strengths in
tracking general temperature trends, the observed
discrepancies in the spike magnitudes and sharp
variations indicate areas for model refinement.
The TE-LSTM model's predictions closely
mirror the actual winding temperature curve,
although it has a less erratic profile. The actual
temperature fluctuates swiftly between 200°F
and 275°F. Although the model accurately
forecasts these variations, it might benefit from
additional adjustments to more accurately reflect
these abrupt changes. Researchers have
emphasized the importance of accurately
predicting winding temperatures to fully exploit
motor performance, as well as the need to

B demonstrated its ability to capture the overall validate thermal models under operational
temperature trends, closely following the actual conditions to ensure their efficacy.

winding temperature variations from early
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Figure 7. Winding Temperature Estimation of Motor B for 600 HP, 4.16 kV, 3P, and 60 Hz from TE-

LSTM. The estimated winding temperature reached 257°F on February 8, 2021, matching the actual
temperature
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Figure 8. TE-LSTM Model Loss for Motor A
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Figure 9. TE-LSTM Model Loss for Motor B.

The Transformer-LSTM model's ability to track
overall temperature trends is commendable;
further tuning might be necessary to enhance
accuracy. The learning curve for both models
indicates that the losses can be found in Figures
8 and 9.

The TE-LSTM model for Motor B
demonstrated its ability to capture the overall
temperature trends, closely following the actual
winding temperature variations from early February
to mid-March. The actual temperature fluctuated
rapidly between 200°F and 275°F, and the model
effectively predicted these changes, although with
a smoother profile. These results show that the
Transformer-LSTM model successfully identified
the underlying temperature patterns; however,
further tuning is required to enhance the model's
responsiveness to sharp temperature fluctuations.
Validating thermal models under operational
conditions has been a focus of prior research,
highlighting the importance of accurate winding
temperature prediction for optimizing machine
performance. In summary, although the models
exhibit strengths in tracking general temperature
trends, the observed discrepancies in the spike
magnitudes and sharp variations indicate areas for
model refinement.

The TE-LSTM model's predictions closely
mirror the actual winding temperature curve. The
actual temperature fluctuates swiftly between
200°F and 275°F. Although the model accurately
forecasts these variations, it might benefit from

additional adjustments to more accurately reflect
these abrupt changes. Researchers have
emphasized the importance of accurately
predicting winding temperatures to fully exploit
motor performance, as well as the need to validate
thermal models under operational conditions to
ensure their efficacy. The Transformer-LSTM
model's ability to track overall temperature trends
is commendable; further tuning might be necessary
to enhance accuracy.

Performance Evaluation

The Root Mean Square Error (RMSE) of
Motor A was 0.803, and Motor B was 0.301,
reflecting the error margin between the predicted
and actual temperature values or performance
degradation over time, as listed in Table 2. The
RMSE is commonly used to assess prediction
model accuracy, with lower values indicating
better fitting between predicted and observed
data.

The estimated winding temperature of
257°F for both Motor A and Motor B is accurate,
resulting in an early warning detection for the H
alarm, matching the actual winding temperature.

Table 2. Performance Evaluation

Motor RMSE
A 0.301
B 0.803
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CONCLUSION

A hybrid Transformer-Encoder with an
LSTM architecture (TE-LSTM) considerably
improved the temperature alarm prediction of
induction motors. This hybrid deep learning
model can also predict the performance of motor
and other equipment assets, helping change
maintenance strategies from reactive to
proactive—reducing unplanned downtime while
boosting operational effectiveness. This model is
beneficial in the oil and gas industry because it
mitigates frequent motor failures, which helps to
increase reliability, maintain production uptime,
and reduce operational costs.

FUTURE DISCUSSION

Despite these advancements, several
research gaps remain in the field of maintenance
strategies. Most studies focus on either static
environments or predetermined damage
intervals, which cannot be applied to real-world
dynamic situations. Future studies should better
incorporate real-time information from loT
devices to gain an accurate and necessary
understanding of ICT (Information and
Communication Technology) system health. The
addition of deep learning capabilities to TE-LSTM
means that it can be used in larger industrial
systems, resulting in better optimization of
maintenance schedules based on prior research.
Many predictive maintenance models | have seen
and worked on focus on a single part; however,
in the real world, it is not that simple because we
sometimes deal with multicomponent systems.

Further research is required on
multicomponent systems with interdependence,
which require  sophisticated time-based
maintenance scheduling strategies. Resource
constraint integration: There is little exploration
into integrating resource constraints (e.g., a
constrained maintenance budget and workforce)
with dynamic types of maintenance. To
summarize, these areas can form the foundation
for an integrated decision-making framework that
will assist in creating sustainable, efficient
industrial-based preventive strategies.
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