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Abstract

Accurate real-time prediction of lithium-ion battery (LIB) capacity
degradation is essential for embedded battery-management
systems. Equivalent circuit models (ECMs) run quickly but lose
accuracy over time, whereas purely data-driven networks achieve
high precision at a high computational cost. This study intfroduces a
physics-informed neural network (PINN) that embeds the differential
equations of a first-order Thevenin ECM directly into the loss
function. Using only terminal voltage and current as inputs, the
network simultaneously estimates internal resistance, polarization
resistance, polarization capacitance, open-circuit voltage, and
capacity loss. The model was trained and evaluated over 300
charge—discharge cycles of an 18650 lithium-ferrous phosphate
(LFP) cell. The resulting capacity degradation estimation achieved a
root mean squared error (RMSE) of 0.012and a mean absolute
percentage error (MAPE) of 0.974 %, surpassing a neural ordinary
differential equation baseline with RMSE of 0.215. The trained
network contains 261 parameters, requires 0.6 ms per sample for
inference, and consumes 49 MB of memory. This computation cost
is far lower than that of a long short-term memory (LSTM)
benchmark with comparable accuracy. In addition, the proposed
model maintains its accuracy under limited dataset conditions. With
a fourfold smaller training set, the PINN maintained an RMSE of
0.023, whereas the LSTM error increased to 0.72. The results
demonstrate that lightweight neural networks guided by physics-
based constraints can provide reliable, real-time health estimation
on resource-limited hardware.
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INTRODUCTION
The extensive use of lithium-ion batteries in
energy storage systems (BESS) has driven

gap [4].

Physics-based

battery degradation model remains a significant

models have been

advancements in accurate battery degradation
modeling [1]. Battery degradation impacts, system
performance, safety, and economic viability [2].
Understanding and predicting battery degradation
processes under various operating conditions
remains a significant challenge. This challenge is
compounded by the highly nonlinear nature of
battery degradation mechanisms, including
chemical, thermal, and mechanical effects [3].
Therefore, developing a robust and accurate

extensively developed to understand and simulate
the mechanisms underlying battery degradation.
These models are generally divided into two main
categories: electrochemical models [5][6] and
electrical equivalent circuit models (ECMs) [7][8].
Electrochemical models are known for their high
accuracy in capturing the internal physicochemical
processes of batteries. However, they often
require intensive computation and detailed
knowledge of battery chemistry, which limits their

D.Santoso & M.D.Ashidgi, Dynamic modeling of lithium-ion battery degradation using ...

135


http://creativecommons.org/licenses/by-sa/4.0/
mailto:muhamad.dzaky@lecturer.sains.ac.id

SINERGI Vol. 30, No. 1, February 2026: 135-146

application in real-time systems. In contrast,
ECMs are gaining popularity for short-term
prediction and state estimation tasks due to their
simplicity and computational efficiency [9]. These
models predict battery behavior using electrical
components, making them practical for embedded
systems and battery management applications.

Several types of ECMs have been
developed to model battery behavior with varying
degrees of complexity. Among the most
commonly used are the simple linear model [10],
the first-order Thevenin model consisting of one
parallel resistor-capacitor (R-C) [11], the second-
order R-C model [7], and the Partnership for a
New Generation of Vehicles (PNGV) model [12].
These models are preferred due to their
computational efficiency, fewer parameters, and
suitability for real-time implementation [9]. Despite
its advantages, ECM has limitations in accurately
representing the complex, nonlinear degradation
mechanisms that occur over the battery's lifetime
[13]. Therefore, although ECM is effective for
operational monitoring and control, it may not have
the precision required for long-term degradation
prediction and analysis.

Recent advances in battery degradation
modeling increasingly rely on data-driven
approaches, particularly machine learning (ML)
techniques. These methods have gained
widespread attention due to their ability to capture
nonlinear and complex battery degradation
patterns without the need for detailed physical or
chemical models [14]. Unlike traditional physics-
based models, ML techniques can learn directly
from historical battery data to identify trends and
predict degradation trajectories. Several ML
algorithms have been explored by researchers,
such as random forest (RF) [15], XGBoost [16],
convolutional neural networks (CNN) [17],
recurrent neural networks (RNN) [18], and long
short-term memory (LSTM) networks [19], each
offering different strengths in handling time-series
and high-dimensional data.

RF and XGBoost are ensemble learning
methods based on decision trees, known for their
robustness and interpretability, especially when
dealing with structured tabular data [15][16].
CNNs have shown promising results in extracting
local patterns from battery time-series data and
sensor signals due to their strong feature-
extraction capabilities [17]. RNNs are designed to
model sequential data and can capture temporal
dependencies, though they may suffer from
vanishing gradients [18]. To address this, LSTM,
an advanced variant of RNN, combines memory
cells and gating mechanisms, making it more
suitable for long-term sequence modeling and

degradation trend estimation [19]. Another ML
technique, such as Gaussian process regression
(GPR), uses Bayesian and statistical learning
theory. Therefore, it can quantify prediction
uncertainties, which is important for assessing the
reliability of battery health estimation [20].

These ML models have demonstrated
strong performance in predicting key battery
parameters, including capacity fade, internal
resistance, and state of health across diverse
operating conditions [21]. Their ability to
generalize from large datasets makes them
suitable for condition monitoring and predictive
maintenance in battery systems. However,
despite their high predictive accuracy, purely data-
driven methods face several challenges [22]. One
of the main limitations is the lack of interpretability,
which can make it challenging to understand the
physical mechanisms underlying degradation.
Furthermore, these models often require large,
high-quality training datasets to ensure
robustness and avoid overfitting, which may not
always be available in practical applications [23].
Consequently, while ML techniques offer high
performance compared to traditional modeling
approaches, careful consideration of data
requirements and transparency is critical in battery
applications.

Techniques such as grey relational analysis
(GRA) and principal component analysis (PCA)
have been used to remove redundant data and
reduce dimensionality [24][25]. These methods
improve model efficiency by minimizing
computational overhead and focusing on the most
relevant features. However, preprocessing steps
can add complexity to the modeling process and
may require significant domain expertise to
implement effectively. These limitations highlight
the need for hybrid solutions that balance the
strengths of physics-based and data-driven
approaches [206].

Several researchers have proposed hybrid
approaches that integrate physics-based insights
with data-driven methods. Ashidqi et al. proposed
a hybrid method using a perceptron and the
Thevenin equivalent circuit model [27]. Similarly,
Fan et al. introduced a physics-informed
integrated modeling method that combines
electrochemical modeling with machine learning
to improve degradation predictions [28]. These
methods demonstrated enhanced accuracy and
are computationally lightweight. However, the
models developed were unable to interpret the
dynamics of battery degradation.

To implement hybrid approaches for
dynamic models of battery degradation, physics-
based models using ECM can be utilized [27]. The
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Table 1. Summary of battery degradation dynamic modeling approaches

Model Category

Modeling Approach

Key Strengths

Limitations

Electrochemical
Model

Electrical Equivalent
Circuit Model

Machine Learning

Hybrid Method

Arrhenius
Electrochemical Models
[5116]

Thevenin (1%-order) [11]
2"-order R-C model [7]
PNGV model [12]

RF [15], XGBoost [16]

CNN [17]

RNN [18]

LSTM[19]

NODE [29]

High accuracy; captures
fundamental  physicochemical
processes

Simple structure; suitable for
real-time  applications; low
computational load

More accurate than 1%*-order; still
computationally efficient
Suitable for real-time; improved
accuracy

Robust; interpretable; works well
with tabular data

Excellent feature extraction from
structured signals

Handles sequential data; models
temporal behavior

Captures long-term
dependencies; effective in trend
forecasting

Captures  voltage
interpretable

dynamics;

High computational cost;
complex parameterization; not
suitable for real-time use
Limited accuracy in nonlinear
degradation modeling

Still limited in modeling long-
term nonlinear behavior

Reduced accuracy in highly
dynamic conditions

Requires labeled data; not
suitable for sequence modeling

Lacks temporal memory; limited

in capturing long-term
dependencies
Suffers from vanishing

gradients; lower stability

Requires more training data and
parameters; slower to train

High data requirement; limited
adaptability to new conditions

dynamic equation from the ECM can then be
combined with the ML technique to create a grey-
box model. Brucker et al. developed a grey-box
model using a neural ordinary differential equation
(NODE) to capture the slow voltage dynamics of
lithium-ion batteries [29]. While effective in
simplifying the representation of slow dynamics,
this approach requires extensive training data and
is less adaptable to varying operating conditions.
Martinez et al. present a dynamic model that
combines machine learning with Thevenin
equivalent circuits for battery health diagnosis and
prognosis [30]. While these models achieve better
control over health awareness, their reliance on
extensive feature sets and complex parameter
identification processes poses challenges for real-
time applications and scalability.

Despite the progress made by these
studies, several challenges remain unresolved.
Existing models often require high-dimensional
feature sets, complex parameter tuning, or
computationally intensive training processes.
Furthermore, while integrating data-driven
methods with ECM is promising, it still faces
challenges in ensuring simplicity and adaptability
without sacrificing accuracy [31].

In this study, a novel hybrid approach is
proposed for dynamic modeling of battery
degradation by integrating artificial neural
networks (ANN) with the Thevenin equivalent
circuit model. Unlike previous studies, the
proposed method relies on only two input features
-- terminal voltage and current -- thereby
simplifying the modeling process, reducing the
amount of data required, and preserving high

prediction accuracy. This method addresses key
limitations of existing approaches by lowering
computational complexity and  minimizing
dependence on extensive feature sets. To train
the model, a pulse test is conducted to extract key
parameters such as open-circuit voltage,
polarization resistance, polarization capacitance,
and internal resistance, which are used in a
physics-informed  neural network  (PINN)
framework.

The performance of the proposed method is
evaluated through comparative analysis against
established techniques, including NODE and
LSTM networks. Model performance is assessed
by using root mean square error (RMSE) and
mean absolute percentage error (MAPE) to
measure prediction accuracy. In addition,
computational efficiency is evaluated by
comparing inference time, memory usage, and the
number of parameters. This comprehensive
analysis demonstrates the effectiveness of the
proposed method for accurately, interpretably,
and efficiently modeling battery degradation
across various operating conditions.

METHOD
In this study, the dynamic battery
degradation model will be obtained by

incorporating domain knowledge derived from a
first-order Thevenin model into the loss function of
an ANN. This method aims to bridge the gap
between data-driven and  physics-based
approaches. The steps taken in this study are
described in the subsections below.
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Physics-based model

A physics-based model is required to derive
a dynamical equation for the battery that can be
used to estimate its capacity degradation. In this
study, the first-order Thevenin equivalent circuit
model is utilized due to its simplicity and sufficient
accuracy [8]. The first-order Thevenin equivalent
circuit model is a simplified representation of a
battery's electrical behavior, consisting of an
open-circuit voltage (OCV) in series with a resistor
(R) and a parallel resistor-capacitor (R-C) network,
as shown in Figure 1.

The voltage across the battery terminals, V,,
is expressed as (1):

Ve (t) = Voo (8) — I, (£). R;(t) — Ve (t) (1)

Where V,. is the open circuit voltage, I, is the
current across the battery, R; is the internal
resistance, and Vi, is the voltage in the R-C
branch. V. can be written as (2):

Ve = Ry (1 — ¢ () @

Where R, and (, are the resistance and
capacitance in the parallel R-C branch. The
parameters R;, R, C,, and V,. evolve with battery
aging and are used to estimate battery
degradation. The dynamics of R, and C, then can
be expressed as (3):

dVre(®) _ In(t) _
dt Cp (D)

Vre(t)
Rp(t).Cp(t) (3)

The capacity degradation of the battery can
be calculated by measuring the change in internal
resistance (R;) and polarization capacitance (C,).
Capacity degradation will increase as internal
resistance rises and polarization capacitance
decreases. Thus, the relation between R,,, C,, and
capacity degradation can be mathematically
written as (4):

_CP_(O) Ri(t) 4
A0 = Cp(t) "R;(0) @)
RP

I— _____ e T 1

1 | S| :

|"'B‘i“| i :

gt ¢,

R

Vel S— —
- + D Vi

Figure 1. The first-order Thevenin equivaleﬁt
circuit model

AQ(t) represents capacity degradation, which can
be measured in percentage. Equation (4) shows
that the actual capacity degradation can be
measured by determining the initial polarization
capacitance (,(0), the initial internal resistance
R;(0), the actual polarization capacitance C,(t),
and the actual internal resistance R;(t).

Dataset Preparation

The parameters required for the dataset are
determined from the battery dynamic equations. In
the previous subsection, the dynamic model was
obtained using the first-order Thevenin equivalent
circuit model as expressed in (2) and (3). From (2)
and (3), it can be inferred that the parameters
needed to complete the dynamic model are
Vi, Iy, R;, Ry, Cp, and V,.. To collect the data, an
experiment was conducted using a battery tester
unit. An 18650 lithium-iron phosphate (LFP)
battery was tested through a 300-cycle charging-
discharging test. The charging and discharging
process was conducted in a temperature-
controlled chamber. The chamber temperature is
maintained at 25 °C to minimize the effect of
temperature changes on battery degradation.

Experimental data collected from the
battery tester unit include five parameters:
terminal voltage (V;), charging-discharging current
(I,), temperature, and maximum capacity per
cycle, which can indicate capacity degradation.
The battery is charged and discharged using a
hybrid constant-current-constant-voltage (CC-CV)
charger to ensure it reaches its maximum
capacity. However, the other four parameters ( R;,
R,, Cp, and V,.) cannot be obtained from the
experiment. Thus, additional calculations are
needed to determine the initial
parameter values R;, Ry, C,,, and V.

The pulse-discharge test and transient-
response analysis method were applied to
determine the initial parameter values analytically.
First, a pulse discharge was applied to
measure R;. In this test, a step current (i) is
applied to the battery, triggering a voltage drop
(AV). The voltage drop was measured immediately
after a step current was applied. Then, the internal
resistance can be calculated analytically using the

(5):
Ri=7 (5)

Once the internal resistance (R;) has been
determined, the open-circuit voltage (V,.) can be
calculated using (1) by substituting the Ri value
(R;) from (5) and I, as Iz to determine the initial
value of V., Vi., or the voltage across the R-C
branch, it was assumed to be 0.
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To find the initial value of R,,, another test
was run. A tiny, steady current was used to
deplete the battery, and the voltage reduction over
time was recorded. Afterward, the steady-state
voltage decay was fitted to an exponential function
as shown (6):

(6)

The starting value of R, can be found by
solving (6) using the steady-state value and V,,
value from the previous step. Following this step,
the value of C, can be determined using the time
constant of the transient response that is given by

(7):
T = RP' CP

t
Vi = Vpe = IRp(1 = €70)

(7)

From the voltage response to the current step, the
settling time T was measured as the time required
for the voltage to reach approximately 63% of its
final value, which is typical for a first-order system
response of an R-C circuit [32][33].

Once the initial values of all parameters
have been obtained, the time-series dataset can
be created using a differential equation
approximation based on the Euler method, as in
(1) and (3). The discrete time-series model to
generate the dataset is provided by:

Vee(t + At) = Ve (8) + ("’(t) ‘;R‘fét)) At (8)
Ve(t + A) = Voo (£) = I (D)R; — Ve (0) ©)

At is the sampling interval. In this research, the
sampling interval is within one second. V. (t) and
V,.(t) were updated iteratively based on the
battery current (1,). Parameters calculated at each
time step using the discretized equations were
recorded and compiled into a dataset for training
the neural network model in the next step.

ANN Model

A neural network was used to estimate the
dynamics of the parameters R;, R, C, V5, and AQ
over time, using terminal voltage (V;) and battery
current (I,) as inputs. Neural Networks (NNs) are
employed in this study due to their strong
capability to model complex, nonlinear
relationships and to learn underlying patterns
directly from historical data without requiring
explicit mathematical formulations [34]. To create
the prediction model, the dataset collected in the
previous step will be used for neural network
training. As there are two input and five output
parameters, the ANN model was constructed with
the structure shown in Figure 2.x; andux,
represent the input features V, and I,
respectively.

= @

=@

Input Layer

Hidden Layer

Qutput Layer

Figure 2. ANN structure for battery degradation
model

In contrast, $;, ¥,, ¥3, V., and J represent five
output features: R;, R, Cp, Vo, @and AQ.

The ANN model is trained using the
physics-based loss function, since the study's
approach is a physics-based neural network.
Thus, the ANN dynamically learns parameters
while satisfying the physics-based constraints
imposed by the governing equations. This is
achieved during training using a combined loss
function that includes data-based output loss,
physics-based R-C constraints, and a battery
degradation (AQ) constraint. These loss functions
are given by:

Lowt = Nz|Vt(t)true Vt(t)prf?dl (10)
dVRC 0.01/ (11)
RC Nz | C B Cp
0.01}2
_ Cp (12)
Lag = NZ| 3600 R;

Equations (10), (11), and (12) provide data-
driven output loss, R-C physics-based constraint,
and battery degradation loss, respectively. The
number of data used in the training phase is
denoted by N. The overall loss then can be
computed as:

Liotar = Lout + LAQ + Lpc (13)
During training, the NN learns how R;, R, C,, V.,
and AQ evolve and predicts battery degradatlon as
a function of these parameters. This method
ensures real-time prediction with robust and
accurate results.
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RESULTS AND DISCUSSION

This section presents the findings from
the data preparation and model simulation for the
model proposed in this study. The data
preparation results include parameter initialization
and dataset construction. The acquired dataset is
used to build a battery degradation model using
the proposed physics-based NN method. Details
of the results and their analysis are explained in
the subsections below.

Data Preparation

The data generated during the experimental
process include key parameters such as terminal
voltage (V;), battery current (I,), and capacity
degradation (AQ). The proposed model requires
additional parameters, including R;, R,, C,, and
V,.. Using (5), (6), and (7), the initial values of
these parameters are obtained as shown in Table
2. The initial parameter values were used to
generate a time-series dataset for 300 cycles
using the Euler method based on (8) and (9).

Model Simulation

The dataset obtained in the previous step
was trained to build a physics-based NN model.
The proposed model was successfully
constructed and can be used to estimate the
dynamics of the parameters R;, R,, C,, and V,,
over cycles, providing accurate predictions of
battery performance degradation in each cycle.
The comparison between the estimated and
actual battery degradation is shown in Figure 3.
This plot compares the actual battery capacity
degradation and the predictions obtained from the
proposed PINN model over 50 charge-discharge
cycles.

Capacity (%)
B

98 4

Table 2. Parameters initial value

Metrics Proposed PINN
R; 9.24 mQ
Ve 3.54V
C, 3.49 kF
R 5.17 mQ

D

The actual data shows a nearly linear degradation
trend with local fluctuations caused by minor
operational or measurement variations. The PINN
model predictions closely track this degradation
curve, effectively capturing both the general trend
and subtler variations across the cycle range.
The accurate alignment of the PINN
prediction with the measured data indicates that

the model successfully incorporates domain
knowledge through the embedded physical
constraints. This physics-informed structure

enables the model to distinguish true degradation.
Dynamics from high-frequency noise, enhancing
both its predictive performance and
interpretability. It is noteworthy that the PINN
model remains consistent even in areas where the
actual capacity shows abrupt drops (e.g., around
cycles 10, 30, and 42), suggesting robust
generalization. The close correspondence
between the prediction and ground truth supports
the hypothesis that incorporating physical laws
into the learning framework improves the
modeling of battery capacity fade.

To assess model performance, the
degradation estimates from the proposed model
are compared with those from previous methods.
The methods developed in previous research for
comparison are LSTM [19] and NODE [29].

— Actual (data)
---- PINN Prediction

T T
o 1o 20

T
E L )

Cycles

Figure 3. Battery degradation estimation curve compared to the actual value.
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Figure 4. Accuracy comparison between the proposed method, LSTM, and NODE.

All models were trained using the same dataset
and input features to ensure a fair comparison.
The comparison of battery degradation estimation
using these three methods is shown in Figure 4.

Figure 4 illustrates the comparative
performance of three different battery degradation
prediction models, including LSTM, NODE, and
the proposed hybrid model, against actual
degradation data over 50 charge-discharge
cycles. The figure clearly shows that the LSTM
prediction (red dashed line) best matches the
actual data trajectory (blue line) in the short term.
This is consistent with its numerical performance
shown in Table 3, where LSTM achieves the
lowest RMSE (0.009) and MAPE (0.68%).
However, upon closer inspection, the LSTM model
is susceptible to sudden changes in the data,
including outliers. For example, in parts of the data
where there is a sudden drop in observed
degradation, which may be caused by
measurement errors or irregular cell performance,
the LSTM model tends to follow these unusual
changes without any correction or smoothing. This
shows that while LSTM can provide accurate
predictions at each point, it may not handle noise
well and may overfit to noise or unexpected
variations in the data.

In contrast, the NODE model exhibits a
smoother prediction trajectory that maintains a
generally linear trend over the cycles. This is a
result of its learning framework, which assumes
continuous-time dynamics via neural ordinary
differential equations. However, this same
structure makes it less responsive to localized
changes in the data, especially abrupt variations.
As seen in both Figure 4 and Table 3, NODE has
the highest RMSE (0.215) and a slightly lower R?
(0.98), suggesting that while it preserves the
overall trend, it systematically deviates from actual

measurements. This limitation may arise from the
NODE architecture's implicit bias toward smooth
prediction trends, which limits its flexibility in
adapting to real-world degradation behavior that is
neither completely smooth nor uniform.

The proposed hybrid model, based on
PINN, combines recurrent neural structures with
physical constraints and offers a balance between
the tendency of LSTM models to overfit and the
overly smooth behavior seen in NODE-based
approaches. When visualized, the predicted curve
(green dashed line) aligns well with the actual
data, including in areas with small fluctuations or
outliers. Rather than directly following these
anomalies, the PINN incorporates physical
insights into the degradation process, thereby
stabilizing and guiding its predictions. This is
further supported by quantitative results showing
that, while the PINN is slightly less accurate than
the LSTM in absolute error, it performs better in
terms of generalization. These results strengthen
the main argument of this study that integrating
physics into learning models can improve
robustness and interpretability. Thus, the
proposed method contributes to ongoing research
by offering a practical alternative to models that
rely solely on data, which can compromise long-
term reliability, or purely physics-based methods
that often struggle to adapt to varying conditions.

Table 3. Accuracy and performance comparison
between the proposed method and the previous

D.Santoso & M.D.Ashidgi, Dynamic modeling of lithium-ion battery degradation using ...

method
Metrics Proposed LSTM NODE
RMSE 0.012 0.009 0.215
MAPE 0.97% 0.68% 1.27%
R-squared (R?) 0.99 0.99 0.98
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This study also found that the proposed
method can produce accurate models with a
limited dataset. When sufficient datasets are
available, LSTM can produce more accurate
models than PINN. However, with a limited
dataset, the proposed method maintains its
accuracy, whereas LSTM produces models with
lower accuracy. The comparison is shown in
Figure 5. In this scenario, the LSTM model, which
relies entirely on data-driven learning, exhibits
significant deviations from the actual battery
degradation trend. This is clearly visible in Figure
5, where the LSTM prediction curve shifts
significantly below the actual capacity trajectory as
the number of cycles increases. This divergence
suggests that the LSTM model struggles to
generalize when the data is limited or noisy. This
may be due to its tendency to overfit or its limited
capacity to capture the underlying degradation
behavior when the training data is insufficient.

In contrast, the proposed model closely
aligns with the actual degradation curve,
demonstrating stability and consistency across all
cycles. This visual observation is supported by the
metrics in Table 4, where the proposed model
achieves lower RMSE and MAPE, and a
substantially higher R? value, than the LSTM
model. These results confirm that the proposed
model not only captures the overall trend but also
maintains predictive accuracy even with reduced
data availability.

The robustness of the proposed model
stems from its architectural design. Unlike LSTM,
which relies solely on learning temporal patterns
from data, the PINN framework integrates prior
physics knowledge by embedding differential
equations  describing  battery  degradation
mechanisms directly into the training process.

g9%.0

B3

Capacity (%)

e

ar.s

These physics-based constraints serve as a form
of regularization, helping prevent overfitting,
guiding the learning process, and enabling the
model to capture degradation behavior consistent
with physics principles, even when the available
data is limited.

These findings strengthen the primary
contribution of this study: that incorporating
domain-specific physical laws into machine
learning models enables the development of data-
efficient, generalizable battery degradation
models. This is particularly important in real-world
applications, where collecting large, high-quality
battery datasets can be challenging and
expensive. In contrast to previous research that
relied solely on data-driven models, this study's
results demonstrate a clear move toward a hybrid
modeling approach.

Table 4. Accuracy and performance comparison
between the proposed method and LSTM within
the limited dataset condition

Metrics Proposed LSTM
RMSE 0.023 0.72
MAPE 1.01% 6.17%
R-squared (R?) 0.96 0.73

Table 5. Computational efficiency comparison
between the proposed method and LSTM

Metrics Proposed PINN LSTM
Number of 261 1920
Parameters

Inference Time
Memory usage

0.6 ms/sample
49 MB

11 ms/sample
566 MB

—— Actual [data)
- Proposed
LSTM

o 1 20

E 40 e

Cycles

Figure 5. Comparison of the LSTM and PINN models constructed with a limited dataset.
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This strategy offers a more balanced solution by
combining the interpretability of physics-based
models with the predictive power of ML
techniques.

In addition to its efficient use of data, the
proposed model also demonstrates greater
computational efficiency than purely data-driven
methods. This is illustrated in Table 5, which
presents a comparison of computation
parameters, including inference time, memory
usage, and number of parameters, between the
proposed PINN model and the LSTM model.

The comparison of computational efficiency
shows that the proposed PINN method clearly
outperforms the LSTM model across model
complexity, inference speed, and memory
consumption. The PINN model uses a simpler
architecture, reducing complexity and resulting in
an inference time of 0.6 ms per sample, nearly 18
times faster than the LSTM. It also requires only
49 MB of memory, reflecting a significantly more
efficient use of computational resources. This
efficiency is primarily attributed to the architecture
of the proposed model, which relies on a neural
network with only two input features: terminal
voltage and current. By limiting the input space to
essential physical variables, the model avoids the
need for high-dimensional feature extraction or
long input sequences, as is common in purely
data-driven approaches such as LSTMs.
Additionally, by embedding physical knowledge
into the learning process, the PINN follows a
guided learning path, further reducing the
computational burden often associated with
modeling long-term dependencies. These findings
demonstrate that the physics-informed approach
not only achieves strong prediction accuracy with
limited data but also significantly lowers
computational requirements, making it particularly
suitable for real-time applications and deployment
in environments with constrained processing and
memory resources.

Comparison to Recent Methods
To further assess the performance of the
proposed hybrid ANN-Thevenin model and

highlight its contribution to advancing dynamic
battery degradation modeling, a comparative
analysis is conducted against several existing
models from the literature. These models include
equivalent circuit models, particularly first- and
second-order Thevenin models, as well as various
data-driven machine learning techniques, such as
RF, XGBoost, GPR, and GRU-based recurrent
neural networks (GRU-RNN). Each model was
trained and validated on the same dataset, and its
performance was evaluated using three standard
metrics: RMSE, MAPE, and R2. A summary of the
results is provided in Table 6.

The comparative analysis in Table 6
highlights the strong performance of the proposed
hybrid model. It achieves an RMSE of 0.012, the
lowest MAPE of 0.974 %, and a high R? of 0.992,
matching or even outperforming the best methods
from previous studies. These results demonstrate
the model's ability not only to capture the overall
degradation trend but also to reflect subtle,
nonlinear changes in battery condition under
dynamic operating conditions. This represents a
significant step forward compared to traditional
physics-based models, such as the first- and
second-order Thevenin models, which vyield
RMSE values of 1.733 and 1.093, and MAPE
values of 8.033% and 6.181%, respectively. The
relatively poor performance of these classical
approaches highlights their limited capacity to
model time-varying degradation, mainly due to
simplifying assumptions and the absence of
mechanisms to learn from temporal data.

Among the machine learning methods
considered, XGBoost demonstrated the strongest
performance, with an RMSE of 0.011 and an R?
value of 0.992, making its accuracy comparable to
that of the proposed model. However, XGBoost
and other tree-based models, such as RF, rely on
static feature extraction and are not inherently
designed to capture time-dependent patterns.
This issue limits their ability to accurately model
battery degradation, as the process is affected by
the dynamic factors such as charge-discharge
cycles, temperature changes, and variations in
state of charge.

Table 6. Performance comparison of the proposed hybrid ANN-Thevenin model with existing methods

Method RMSE MAPE R-squared (R?)
The first order Thevenin [10] 1.733 8.033% 0.715
The second-order Thevenin [7] 1.093 6.181% 0.765
RF [15] 0.049 1.733% 0.988
XGBoost [16] 0.011 1.175% 0.992
GPR [20] 0.073 2.113% 0.907
GRU-RNN [18] 0.108 1.277% 0.883
Proposed hybrid method 0.012 0.974% 0.992
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Similarly, GPR provides relatively accurate
results. However, this method faces scalability
challenges when applied to larger datasets and
tends to be less effective at capturing rapidly
changing degradation patterns.

The GRU-RNN model demonstrates better
temporal information handling due to its sequential
architecture. However, its overall performance
remains lower than that of the proposed hybrid
approach. This indicates that although GRU can
capture short-term dependencies in the data, it
may struggle to generalize to more complex and
long-term degradation patterns without the
support of physical insights or constraints to guide
the learning process.

The effectiveness of the proposed hybrid
model lies in integrating the Thevenin equivalent
circuit, which provides a physics-based foundation
for capturing electrochemical behavior, with an
artificial neural network that learns residual
nonlinearities and temporal dependencies. This
combination allows the model to maintain physical
interpretability and strong generalizability, while
improving predictive accuracy under dynamic
operating conditions. This approach reflects
broader developments in the field of battery
prognosis, where there is a shift from purely data-
or physics-based models towards hybrid
frameworks that leverage the complementary
strengths of both methodologies.

Thus, instead of simply validating previous
results, this study builds on recent advances by
demonstrating that a hybrid Thevenin ANN-ECM
structure can achieve both high accuracy and
robustness in modeling dynamic battery
degradation. The proposed method is suitable for
practical applications, especially in conditions
where data may contain noise and operating
conditions change over time.

Limitations and Future Work

While the proposed PINN model
demonstrates strong accuracy and robustness in
modeling battery degradation, it has been
evaluated only on data from the first 50 charge—
discharge cycles. This represents only a small
portion of the typical lifespan of a lithium-ion
battery, which can range from 500 to over 2000
cycles depending on the application. As such, the
current study does not fully capture long-term
degradation behavior, particularly the nonlinear
effects that may emerge after extended cycling.

It is important to note that using early-cycle
data in this study assumes that initial degradation
patterns reflect the dominant operational behavior
in many practical battery applications, especially
when early diagnostics are essential for predictive
maintenance and system reliability. Early-cycle

performance often provides valuable insight into
long-term trends, enabling timely estimation of
battery health before significant degradation sets
in.

However, the linearity observed during
early degradation may not remain consistent
throughout the battery’s full lifecycle. Therefore,
further investigation is needed to validate the
model across a broader range of cycles. Future
work will focus on extending the training and
evaluation of the proposed model using long-term
cycling data, covering several hundred to
thousands of cycles. This will help assess the
model’s capability to generalize across different
degradation phases and capture complex,
nonlinear behavior over time. Additionally, future
studies aim to incorporate temperature variations,
load profiles, and other real-world operating
conditions to enhance the model's applicability in
practical battery management systems.

CONCLUSION

This study demonstrates that the proposed
PINN model offers an effective and efficient
solution  for modeling dynamic  battery
degradation. By integrating physical constraints
from the Thevenin equivalent circuit into the
learning process, the model achieves a strong
balance between predictive accuracy and
robustness. When evaluated on 300 charge—
discharge cycles of an 18650 LFP cell, the PINN
achieved RMSE of 0.012 and MAPE of 0.974 %,
outperforming the NODE baseline, which
recorded an RMSE of 0.215. While the LSTM
model achieved slightly better accuracy with larger
datasets, it was more sensitive to noise and
showed poor generalization when the data was
limited. In contrast, the proposed PINN maintained
reliable performance even under reduced training
conditions. With a fourfold smaller training set, the
PINN retained a low RMSE of 0.023, whereas the
LSTM error increased significantly to 0.72. In
addition to its predictive performance, the
proposed PINN model is also computationally
efficient. The final network comprises only 261
parameters, achieves inference speeds of 0.6 ms
per sample, and requires only 49 MB of memory.
Compared to LSTM, which has higher memory
requirements and slower inference, the PINN is
significantly =~ better  suited for real-time
applications, especially in conditions where both
data and computational resources are limited.
Overall, the results confirm that lightweight neural
networks  enhanced  with physics-based
knowledge can offer accurate, robust, and real-
time estimation of battery health.
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