
 

SINERGI Vol. 30, No. 1, February 2026: 135-146 
http://publikasi.mercubuana.ac.id/index.php/sinergi 

http://doi.org/10.22441/sinergi.2026.1.013 
 

 
 

D.Santoso & M.D.Ashidqi, Dynamic modeling of lithium-ion battery degradation using ... 135 

 

Dynamic modeling of lithium-ion battery degradation using 
data-driven and physics-informed method  

 

Daniel Santoso1, Muhamad Dzaky Ashidqi2,3*  
1Department of Electronic and Computer Engineering, Universitas Kristen Satya Wacana, Indonesia 
2Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Indonesia 
3Department of Electrical Engineering, Universitas Sains Indonesia, Indonesia 

 

Abstract  
Accurate real‑time prediction of lithium‑ion battery (LIB) capacity 

degradation is essential for embedded battery‑management 
systems. Equivalent circuit models (ECMs) run quickly but lose 
accuracy over time, whereas purely data-driven networks achieve 
high precision at a high computational cost. This study introduces a 
physics‑informed neural network (PINN) that embeds the differential 

equations of a first‑order Thevenin ECM directly into the loss 
function. Using only terminal voltage and current as inputs, the 
network simultaneously estimates internal resistance, polarization 
resistance, polarization capacitance, open‑circuit voltage, and 
capacity loss. The model was trained and evaluated over 300 
charge–discharge cycles of an 18650 lithium-ferrous phosphate 
(LFP) cell. The resulting capacity degradation estimation achieved a 
root mean squared error (RMSE) of 0.012 and a mean absolute 
percentage error (MAPE) of 0.974 %, surpassing a neural ordinary 
differential equation baseline with RMSE of 0.215. The trained 
network contains 261 parameters, requires 0.6 ms per sample for 
inference, and consumes 49 MB of memory. This computation cost 
is far lower than that of a long short‑term memory (LSTM) 
benchmark with comparable accuracy. In addition, the proposed 
model maintains its accuracy under limited dataset conditions. With 
a fourfold smaller training set, the PINN maintained an RMSE of 
0.023, whereas the LSTM error increased to 0.72. The results 
demonstrate that lightweight neural networks guided by physics-
based constraints can provide reliable, real-time health estimation 
on resource‑limited hardware. 
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INTRODUCTION 

The extensive use of lithium-ion batteries in 
energy storage systems (BESS) has driven 
advancements in accurate battery degradation 
modeling [1]. Battery degradation impacts, system 
performance, safety, and economic viability [2]. 
Understanding and predicting battery degradation 
processes under various operating conditions 
remains a significant challenge. This challenge is 
compounded by the highly nonlinear nature of 
battery degradation mechanisms, including 
chemical, thermal, and mechanical effects [3]. 
Therefore, developing a robust and accurate 

battery degradation model remains a significant 
gap [4]. 

Physics-based models have been 
extensively developed to understand and simulate 
the mechanisms underlying battery degradation. 
These models are generally divided into two main 
categories: electrochemical models [5][6] and 
electrical equivalent circuit models (ECMs) [7][8]. 
Electrochemical models are known for their high 
accuracy in capturing the internal physicochemical 
processes of batteries. However, they often 
require intensive computation and detailed 
knowledge of battery chemistry, which limits their 
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application in real-time systems. In contrast, 
ECMs are gaining popularity for short-term 
prediction and state estimation tasks due to their 
simplicity and computational efficiency [9]. These 
models predict battery behavior using electrical 
components, making them practical for embedded 
systems and battery management applications. 

Several types of ECMs have been 
developed to model battery behavior with varying 
degrees of complexity. Among the most 
commonly used are the simple linear model [10], 
the first-order Thevenin model consisting of one 
parallel resistor-capacitor (R-C) [11], the second-
order R-C model [7], and the Partnership for a 
New Generation of Vehicles (PNGV) model [12]. 
These models are preferred due to their 
computational efficiency, fewer parameters, and 
suitability for real-time implementation [9]. Despite 
its advantages, ECM has limitations in accurately 
representing the complex, nonlinear degradation 
mechanisms that occur over the battery's lifetime 
[13]. Therefore, although ECM is effective for 
operational monitoring and control, it may not have 
the precision required for long-term degradation 
prediction and analysis. 

Recent advances in battery degradation 
modeling increasingly rely on data-driven 
approaches, particularly machine learning (ML) 
techniques. These methods have gained 
widespread attention due to their ability to capture 
nonlinear and complex battery degradation 
patterns without the need for detailed physical or 
chemical models [14]. Unlike traditional physics-
based models, ML techniques can learn directly 
from historical battery data to identify trends and 
predict degradation trajectories. Several ML 
algorithms have been explored by researchers, 
such as random forest (RF) [15], XGBoost [16], 
convolutional neural networks (CNN) [17], 
recurrent neural networks (RNN) [18], and long 
short-term memory (LSTM) networks [19], each 
offering different strengths in handling time-series 
and high-dimensional data.  

RF and XGBoost are ensemble learning 
methods based on decision trees, known for their 
robustness and interpretability, especially when 
dealing with structured tabular data [15][16]. 
CNNs have shown promising results in extracting 
local patterns from battery time-series data and 
sensor signals due to their strong feature-
extraction capabilities [17]. RNNs are designed to 
model sequential data and can capture temporal 
dependencies, though they may suffer from 
vanishing gradients [18]. To address this, LSTM, 
an advanced variant of RNN, combines memory 
cells and gating mechanisms, making it more 
suitable for long-term sequence modeling and 

degradation trend estimation [19]. Another ML 
technique, such as Gaussian process regression 
(GPR), uses Bayesian and statistical learning 
theory. Therefore, it can quantify prediction 
uncertainties, which is important for assessing the 
reliability of battery health estimation [20].  

These ML models have demonstrated 
strong performance in predicting key battery 
parameters, including capacity fade, internal 
resistance, and state of health across diverse 
operating conditions [21]. Their ability to 
generalize from large datasets makes them 
suitable for condition monitoring and predictive 
maintenance in battery systems. However, 
despite their high predictive accuracy, purely data-
driven methods face several challenges [22]. One 
of the main limitations is the lack of interpretability, 
which can make it challenging to understand the 
physical mechanisms underlying degradation. 
Furthermore, these models often require large, 
high-quality training datasets to ensure 
robustness and avoid overfitting, which may not 
always be available in practical applications [23]. 
Consequently, while ML techniques offer high 
performance compared to traditional modeling 
approaches, careful consideration of data 
requirements and transparency is critical in battery 
applications. 

Techniques such as grey relational analysis 
(GRA) and principal component analysis (PCA) 
have been used to remove redundant data and 
reduce dimensionality [24][25]. These methods 
improve model efficiency by minimizing 
computational overhead and focusing on the most 
relevant features. However, preprocessing steps 
can add complexity to the modeling process and 
may require significant domain expertise to 
implement effectively. These limitations highlight 
the need for hybrid solutions that balance the 
strengths of physics-based and data-driven 
approaches [26]. 

Several researchers have proposed hybrid 
approaches that integrate physics-based insights 
with data-driven methods. Ashidqi et al. proposed 
a hybrid method using a perceptron and the 
Thevenin equivalent circuit model [27]. Similarly, 
Fan et al. introduced a physics-informed 
integrated modeling method that combines 
electrochemical modeling with machine learning 
to improve degradation predictions [28]. These 
methods demonstrated enhanced accuracy and 
are computationally lightweight. However, the 
models developed were unable to interpret the 
dynamics of battery degradation. 

To implement hybrid approaches for 
dynamic models of battery degradation, physics-
based models using ECM can be utilized [27]. The 
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Table 1. Summary of battery degradation dynamic modeling approaches 
Model Category Modeling Approach Key Strengths Limitations 

Electrochemical 
Model 

Arrhenius 
Electrochemical Models 
[5][6] 

High accuracy; captures 
fundamental physicochemical 
processes 

High computational cost; 
complex parameterization; not 
suitable for real-time use 

Electrical Equivalent 
Circuit Model 

Thevenin (1st-order) [11] Simple structure; suitable for 
real-time applications; low 
computational load 

Limited accuracy in nonlinear 
degradation modeling 

 2nd-order R-C model [7] More accurate than 1st-order; still 
computationally efficient 

Still limited in modeling long-
term nonlinear behavior 

 PNGV model [12] Suitable for real-time; improved 
accuracy 

Reduced accuracy in highly 
dynamic conditions 

Machine Learning RF [15], XGBoost [16] Robust; interpretable; works well 
with tabular data 

Requires labeled data; not 
suitable for sequence modeling 

 CNN [17] Excellent feature extraction from 
structured signals 

Lacks temporal memory; limited 
in capturing long-term 
dependencies 

 RNN [18] Handles sequential data; models 
temporal behavior 

Suffers from vanishing 
gradients; lower stability 

 LSTM [19] Captures long-term 
dependencies; effective in trend 
forecasting 

Requires more training data and 
parameters; slower to train 

Hybrid Method NODE [29] Captures voltage dynamics; 
interpretable 

High data requirement; limited 
adaptability to new conditions 

 
dynamic equation from the ECM can then be 
combined with the ML technique to create a grey-
box model. Brucker et al. developed a grey-box 
model using a neural ordinary differential equation 
(NODE) to capture the slow voltage dynamics of 
lithium-ion batteries [29]. While effective in 
simplifying the representation of slow dynamics, 
this approach requires extensive training data and 
is less adaptable to varying operating conditions. 
Martinez et al. present a dynamic model that 
combines machine learning with Thevenin 
equivalent circuits for battery health diagnosis and 
prognosis [30]. While these models achieve better 
control over health awareness, their reliance on 
extensive feature sets and complex parameter 
identification processes poses challenges for real-
time applications and scalability.  

Despite the progress made by these 
studies, several challenges remain unresolved. 
Existing models often require high-dimensional 
feature sets, complex parameter tuning, or 
computationally intensive training processes. 
Furthermore, while integrating data-driven 
methods with ECM is promising, it still faces 
challenges in ensuring simplicity and adaptability 
without sacrificing accuracy [31].  

In this study, a novel hybrid approach is 
proposed for dynamic modeling of battery 
degradation by integrating artificial neural 
networks (ANN) with the Thevenin equivalent 
circuit model. Unlike previous studies, the 
proposed method relies on only two input features 
-- terminal voltage and current -- thereby 
simplifying the modeling process, reducing the 
amount of data required, and preserving high 

prediction accuracy. This method addresses key 
limitations of existing approaches by lowering 
computational complexity and minimizing 
dependence on extensive feature sets. To train 
the model, a pulse test is conducted to extract key 
parameters such as open-circuit voltage, 
polarization resistance, polarization capacitance, 
and internal resistance, which are used in a 
physics-informed neural network (PINN) 
framework.  

The performance of the proposed method is 
evaluated through comparative analysis against 
established techniques, including NODE and 
LSTM networks. Model performance is assessed 
by using root mean square error (RMSE) and 
mean absolute percentage error (MAPE) to 
measure prediction accuracy. In addition, 
computational efficiency is evaluated by 
comparing inference time, memory usage, and the 
number of parameters. This comprehensive 
analysis demonstrates the effectiveness of the 
proposed method for accurately, interpretably, 
and efficiently modeling battery degradation 
across various operating conditions. 

METHOD 
In this study, the dynamic battery 

degradation model will be obtained by 
incorporating domain knowledge derived from a 
first-order Thevenin model into the loss function of 
an ANN. This method aims to bridge the gap 
between data-driven and physics-based 
approaches. The steps taken in this study are 
described in the subsections below. 
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Physics-based model 
A physics-based model is required to derive 

a dynamical equation for the battery that can be 
used to estimate its capacity degradation. In this 
study, the first-order Thevenin equivalent circuit 
model is utilized due to its simplicity and sufficient 
accuracy [8]. The first-order Thevenin equivalent 
circuit model is a simplified representation of a 
battery's electrical behavior, consisting of an 
open-circuit voltage (OCV) in series with a resistor 
(R) and a parallel resistor-capacitor (R-C) network, 
as shown in Figure 1. 

The voltage across the battery terminals, 𝑉𝑡, 
is expressed as (1): 

𝑉𝑡(𝑡) = 𝑉𝑜𝑐(𝑡) − 𝐼𝑏(𝑡). 𝑅𝑖(𝑡) − 𝑉𝑅𝐶(𝑡) (1) 

Where 𝑉𝑜𝑐 is the open circuit voltage, 𝐼𝑏 is the 
current across the battery, 𝑅𝑖 is the internal 

resistance, and 𝑉𝑅𝐶 is the voltage in the R-C 

branch. 𝑉𝑅𝐶 can be written as (2): 

𝑉𝑅𝐶 = 𝐼𝑏𝑅𝑖(1 − 𝑒
−𝑡(

𝑅𝑃
𝐶𝑃

)
)             (2) 

Where 𝑅𝑃 and 𝐶𝑃 are the resistance and 
capacitance in the parallel R-C branch. The 
parameters 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, and 𝑉𝑜𝑐  evolve with battery 

aging and are used to estimate battery 
degradation. The dynamics of 𝑅𝑝 and 𝐶𝑝 then can 

be expressed as (3): 

𝑑𝑉𝑅𝐶(𝑡)

𝑑𝑡
=

𝐼𝑏(𝑡)

𝐶𝑝(𝑡)
−

𝑉𝑅𝐶(𝑡)

𝑅𝑝(𝑡).𝐶𝑝(𝑡)
                                                                                                                          (3) 

The capacity degradation of the battery can 
be calculated by measuring the change in internal 
resistance (𝑅𝑖) and polarization capacitance (𝐶𝑝). 

Capacity degradation will increase as internal 
resistance rises and polarization capacitance 
decreases. Thus, the relation between 𝑅𝑝, 𝐶𝑝, and 

capacity degradation can be mathematically 
written as (4): 

∆𝑄(𝑡) =
𝐶𝑝(0)

𝐶𝑝(𝑡)
.

𝑅𝑖(𝑡)

𝑅𝑖(0) 
             (4) 

 
Figure 1. The first-order Thevenin equivalent 

circuit model 
 

∆𝑄(𝑡) represents capacity degradation, which can 
be measured in percentage. Equation (4) shows 
that the actual capacity degradation can be 
measured by determining the initial polarization 
capacitance 𝐶𝑝(0), the initial internal resistance 

𝑅𝑖(0), the actual polarization capacitance 𝐶𝑝(𝑡), 

and the actual internal resistance 𝑅𝑖(𝑡). 
 
Dataset Preparation 

The parameters required for the dataset are 
determined from the battery dynamic equations. In 
the previous subsection, the dynamic model was 
obtained using the first-order Thevenin equivalent 
circuit model as expressed in (2) and (3). From (2) 
and (3), it can be inferred that the parameters 
needed to complete the dynamic model are 
𝑉𝑡 , 𝐼𝑏 , 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, and 𝑉𝑜𝑐. To collect the data, an 

experiment was conducted using a battery tester 
unit. An 18650 lithium-iron phosphate (LFP) 
battery was tested through a 300-cycle charging-
discharging test. The charging and discharging 
process was conducted in a temperature-
controlled chamber. The chamber temperature is 
maintained at 25 °C to minimize the effect of 
temperature changes on battery degradation. 

Experimental data collected from the 
battery tester unit include five parameters: 
terminal voltage (𝑉𝑡), charging-discharging current 
(𝐼𝑏), temperature, and maximum capacity per 
cycle, which can indicate capacity degradation. 
The battery is charged and discharged using a 
hybrid constant-current-constant-voltage (CC-CV) 
charger to ensure it reaches its maximum 
capacity. However, the other four parameters ( 𝑅𝑖, 

𝑅𝑝, 𝐶𝑝, and 𝑉𝑜𝑐) cannot be obtained from the 

experiment. Thus, additional calculations are 
needed to determine the initial 
parameter 𝑣𝑎𝑙𝑢𝑒𝑠 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, and 𝑉𝑜𝑐. 

The pulse-discharge test and transient-
response analysis method were applied to 
determine the initial parameter values analytically. 
First, a pulse discharge was applied to 
measure 𝑅𝑖. In this test, a step current (𝐼𝑠) is 
applied to the battery, triggering a voltage drop 
(∆𝑉). The voltage drop was measured immediately 
after a step current was applied. Then, the internal 
resistance can be calculated analytically using the 
(5): 

𝑅𝑖 =
∆𝑉

𝐼𝑠
                                                                                                                          (5) 

Once the internal resistance (𝑅𝑖) has been 

determined, the open-circuit voltage (𝑉𝑜𝑐) can be 
calculated using (1) by substituting the Ri value 
(𝑅𝑖) from (5) and 𝐼𝑠 as 𝐼𝐵 to determine the initial 

value of 𝑉𝑜𝑐, 𝑉𝑅𝐶, or the voltage across the R-C 
branch, it was assumed to be 0. 
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To find the initial value of 𝑅𝑝, another test 

was run. A tiny, steady current was used to 
deplete the battery, and the voltage reduction over 
time was recorded. Afterward, the steady-state 
voltage decay was fitted to an exponential function 
as shown (6): 

𝑉𝑡 = 𝑉𝑜𝑐 − 𝐼𝑅𝑃(1 − 𝑒−
𝑡

𝜏)                                                                                                                         (6) 

The starting value of 𝑅𝑃 can be found by 

solving (6) using the steady-state value and 𝑉𝑜𝑐 
value from the previous step. Following this step, 
the value of 𝐶𝑝 can be determined using the time 

constant of the transient response that is given by 
(7): 

𝜏 = 𝑅𝑃. 𝐶𝑃   (7) 

From the voltage response to the current step, the 
settling time 𝜏 was measured as the time required 
for the voltage to reach approximately 63% of its 
final value, which is typical for a first-order system 
response of an R-C circuit [32][33].  

Once the initial values of all parameters 
have been obtained, the time-series dataset can 
be created using a differential equation 
approximation based on the Euler method, as in 
(1) and (3). The discrete time-series model to 
generate the dataset is provided by: 

𝑉𝑅𝐶(𝑡 + ∆𝑡) = 𝑉𝑅𝐶(𝑡) + (
𝐼𝑏(𝑡)

𝐶𝑝
−

𝑉𝑅𝐶(𝑡)

𝑅𝑝.𝐶𝑝
) ∆𝑡     (8) 

𝑉𝑡(𝑡 + ∆𝑡) = 𝑉𝑜𝑐(𝑡) − 𝐼𝑏(𝑡)𝑅𝑖 − 𝑉𝑅𝐶(𝑡) (9) 

∆𝑡 is the sampling interval. In this research, the 
sampling interval is within one second. 𝑉𝑅𝐶(𝑡) and 

𝑉𝑜𝑐(𝑡) were updated iteratively based on the 

battery current (𝐼𝑏). Parameters calculated at each 
time step using the discretized equations were 
recorded and compiled into a dataset for training 
the neural network model in the next step. 
 
ANN Model 

A neural network was used to estimate the 
dynamics of the parameters 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, 𝑉𝑜𝑐, and ∆𝑄 

over time, using terminal voltage (𝑉𝑡) and battery 
current (𝐼𝑏) as inputs. Neural Networks (NNs) are 
employed in this study due to their strong 
capability to model complex, nonlinear 
relationships and to learn underlying patterns 
directly from historical data without requiring 
explicit mathematical formulations [34]. To create 
the prediction model, the dataset collected in the 
previous step will be used for neural network 
training. As there are two input and five output 
parameters, the ANN model was constructed with 
the structure shown in Figure 2. 𝑥1 and 𝑥2 
represent the input features 𝑉𝑡 and 𝐼𝑏, 
respectively. 

 

Figure 2. ANN structure for battery degradation 
model 

In contrast, 𝑦̂1, 𝑦̂2, 𝑦̂3, 𝑦̂4, and 𝑦̂5 represent five 

output features: 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, 𝑉𝑜𝑐, and ∆𝑄. 

The ANN model is trained using the 
physics-based loss function, since the study's 
approach is a physics-based neural network. 
Thus, the ANN dynamically learns parameters 
while satisfying the physics-based constraints 
imposed by the governing equations. This is 
achieved during training using a combined loss 
function that includes data-based output loss, 
physics-based R-C constraints, and a battery 
degradation (∆𝑄) constraint. These loss functions 
are given by: 

 

 

ℒ𝑜𝑢𝑡 =
1

𝑁
∑|𝑉𝑡(𝑡)𝑡𝑟𝑢𝑒 − 𝑉𝑡(𝑡)𝑝𝑟𝑒𝑑|

2
𝑁

𝑖=1

 (10) 

ℒ𝑅𝐶 =
1

𝑁
∑ |

𝑑𝑉𝑅𝐶

𝑑𝑡
+

1

𝑅𝑝𝐶𝑝

𝑉𝑅𝐶 −
0.01

𝐶𝑝 
|

2𝑁

𝑖=1

 (11) 

ℒ∆𝑄 =
1

𝑁
∑ |∆𝑄 −

𝐶𝑝

3600
.
0.01

𝑅𝑖 
|

2𝑁

𝑖=1

 (12) 

 

Equations (10), (11), and (12) provide data-
driven output loss, R-C physics-based constraint, 
and battery degradation loss, respectively. The 
number of data used in the training phase is 
denoted by N. The overall loss then can be 
computed as: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑜𝑢𝑡  + ℒ∆𝑄 + ℒ𝑅𝐶                                                                                                                              (13) 

During training, the NN learns how  𝑅𝑖, 𝑅𝑝, 𝐶𝑝, 𝑉𝑜𝑐, 

and ∆𝑄 evolve and predicts battery degradation as 
a function of these parameters. This method 
ensures real-time prediction with robust and 
accurate results. 

 



SINERGI Vol. 30, No. 1, February 2026: 135-146 

 

140 D.Santoso & M.D.Ashidqi, Dynamic modeling of lithium-ion battery degradation using ... 

 

RESULTS AND DISCUSSION 
This section presents the findings from 

the data preparation and model simulation for the 
model proposed in this study. The data 
preparation results include parameter initialization 
and dataset construction. The acquired dataset is 
used to build a battery degradation model using 
the proposed physics-based NN method. Details 
of the results and their analysis are explained in 
the subsections below. 

Data Preparation  
The data generated during the experimental 

process include key parameters such as terminal 
voltage (𝑉𝑡), battery current (𝐼𝑏), and capacity 
degradation (∆𝑄). The proposed model requires 

additional parameters, including  𝑅𝑖, 𝑅𝑝, 𝐶𝑝, and 

𝑉𝑜𝑐. Using (5), (6), and (7), the initial values of 
these parameters are obtained as shown in Table 
2. The initial parameter values were used to 
generate a time-series dataset for 300 cycles 
using the Euler method based on (8) and (9). 

Model Simulation  
The dataset obtained in the previous step 

was trained to build a physics-based NN model. 
The proposed model was successfully 
constructed and can be used to estimate the 
dynamics of the parameters 𝑅𝑖, 𝑅𝑝, 𝐶𝑝, and 𝑉𝑜𝑐 

over cycles, providing accurate predictions of 
battery performance degradation in each cycle. 
The comparison between the estimated and 
actual battery degradation is shown in Figure 3. 
This plot compares the actual battery capacity 
degradation and the predictions obtained from the 
proposed PINN model over 50 charge-discharge 
cycles.  
 

Table 2. Parameters initial value 
Metrics Proposed PINN 

 𝑅𝑖 9.24 mΩ 

 𝑉𝑜𝑐  3.54 V 

 𝐶𝑝 3.49 kF 

 𝑅𝑝 5.17 mΩ 

 
The actual data shows a nearly linear degradation 
trend with local fluctuations caused by minor 
operational or measurement variations. The PINN 
model predictions closely track this degradation 
curve, effectively capturing both the general trend 
and subtler variations across the cycle range. 

The accurate alignment of the PINN 
prediction with the measured data indicates that 
the model successfully incorporates domain 
knowledge through the embedded physical 
constraints. This physics-informed structure 
enables the model to distinguish true degradation. 
Dynamics from high-frequency noise, enhancing 
both its predictive performance and 
interpretability. It is noteworthy that the PINN 
model remains consistent even in areas where the 
actual capacity shows abrupt drops (e.g., around 
cycles 10, 30, and 42), suggesting robust 
generalization. The close correspondence 
between the prediction and ground truth supports 
the hypothesis that incorporating physical laws 
into the learning framework improves the 
modeling of battery capacity fade.  

To assess model performance, the 
degradation estimates from the proposed model 
are compared with those from previous methods. 
The methods developed in previous research for 
comparison are LSTM [19] and NODE [29]. 

 

 

 
Figure 3. Battery degradation estimation curve compared to the actual value. 
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Figure 4. Accuracy comparison between the proposed method, LSTM, and NODE. 

All models were trained using the same dataset 
and input features to ensure a fair comparison. 
The comparison of battery degradation estimation 
using these three methods is shown in Figure 4. 

Figure 4 illustrates the comparative 
performance of three different battery degradation 
prediction models, including LSTM, NODE, and 
the proposed hybrid model, against actual 
degradation data over 50 charge-discharge 
cycles. The figure clearly shows that the LSTM 
prediction (red dashed line) best matches the 
actual data trajectory (blue line) in the short term. 
This is consistent with its numerical performance 
shown in Table 3, where LSTM achieves the 
lowest RMSE (0.009) and MAPE (0.68%). 
However, upon closer inspection, the LSTM model 
is susceptible to sudden changes in the data, 
including outliers. For example, in parts of the data 
where there is a sudden drop in observed 
degradation, which may be caused by 
measurement errors or irregular cell performance, 
the LSTM model tends to follow these unusual 
changes without any correction or smoothing. This 
shows that while LSTM can provide accurate 
predictions at each point, it may not handle noise 
well and may overfit to noise or unexpected 
variations in the data. 

In contrast, the NODE model exhibits a 
smoother prediction trajectory that maintains a 
generally linear trend over the cycles. This is a 
result of its learning framework, which assumes 
continuous-time dynamics via neural ordinary 
differential equations. However, this same 
structure makes it less responsive to localized 
changes in the data, especially abrupt variations. 
As seen in both Figure 4 and Table 3, NODE has 
the highest RMSE (0.215) and a slightly lower R² 
(0.98), suggesting that while it preserves the 
overall trend, it systematically deviates from actual 

measurements. This limitation may arise from the 
NODE architecture's implicit bias toward smooth 
prediction trends, which limits its flexibility in 
adapting to real-world degradation behavior that is 
neither completely smooth nor uniform. 

The proposed hybrid model, based on 
PINN, combines recurrent neural structures with 
physical constraints and offers a balance between 
the tendency of LSTM models to overfit and the 
overly smooth behavior seen in NODE-based 
approaches. When visualized, the predicted curve 
(green dashed line) aligns well with the actual 
data, including in areas with small fluctuations or 
outliers. Rather than directly following these 
anomalies, the PINN incorporates physical 
insights into the degradation process, thereby 
stabilizing and guiding its predictions. This is 
further supported by quantitative results showing 
that, while the PINN is slightly less accurate than 
the LSTM in absolute error, it performs better in 
terms of generalization. These results strengthen 
the main argument of this study that integrating 
physics into learning models can improve 
robustness and interpretability. Thus, the 
proposed method contributes to ongoing research 
by offering a practical alternative to models that 
rely solely on data, which can compromise long-
term reliability, or purely physics-based methods 
that often struggle to adapt to varying conditions. 

 
Table 3. Accuracy and performance comparison 
between the proposed method and the previous 

method 
Metrics Proposed LSTM NODE 

RMSE 0.012 0.009 0.215 

MAPE 0.97% 0.68% 1.27% 

R-squared (R²) 0.99 0.99 0.98 
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This study also found that the proposed 
method can produce accurate models with a 
limited dataset. When sufficient datasets are 
available, LSTM can produce more accurate 
models than PINN. However, with a limited 
dataset, the proposed method maintains its 
accuracy, whereas LSTM produces models with 
lower accuracy. The comparison is shown in 
Figure 5. In this scenario, the LSTM model, which 
relies entirely on data-driven learning, exhibits 
significant deviations from the actual battery 
degradation trend. This is clearly visible in Figure 
5, where the LSTM prediction curve shifts 
significantly below the actual capacity trajectory as 
the number of cycles increases. This divergence 
suggests that the LSTM model struggles to 
generalize when the data is limited or noisy. This 
may be due to its tendency to overfit or its limited 
capacity to capture the underlying degradation 
behavior when the training data is insufficient.  

In contrast, the proposed model closely 
aligns with the actual degradation curve, 
demonstrating stability and consistency across all 
cycles. This visual observation is supported by the 
metrics in Table 4, where the proposed model 
achieves lower RMSE and MAPE, and a 
substantially higher R² value, than the LSTM 
model. These results confirm that the proposed 
model not only captures the overall trend but also 
maintains predictive accuracy even with reduced 
data availability.  

The robustness of the proposed model 
stems from its architectural design. Unlike LSTM, 
which relies solely on learning temporal patterns 
from data, the PINN framework integrates prior 
physics knowledge by embedding differential 
equations describing battery degradation 
mechanisms directly into the training process. 

These physics-based constraints serve as a form 
of regularization, helping prevent overfitting, 
guiding the learning process, and enabling the 
model to capture degradation behavior consistent 
with physics principles, even when the available 
data is limited. 

These findings strengthen the primary 
contribution of this study: that incorporating 
domain-specific physical laws into machine 
learning models enables the development of data-
efficient, generalizable battery degradation 
models. This is particularly important in real-world 
applications, where collecting large, high-quality 
battery datasets can be challenging and 
expensive. In contrast to previous research that 
relied solely on data-driven models, this study's 
results demonstrate a clear move toward a hybrid 
modeling approach. 

 
Table 4. Accuracy and performance comparison 
between the proposed method and LSTM within 

the limited dataset condition 
Metrics Proposed LSTM 

RMSE 0.023 0.72 

MAPE 1.01% 6.17% 

R-squared (R²) 0.96 0.73 

 
Table 5. Computational efficiency comparison 

between the proposed method and LSTM 
Metrics Proposed PINN LSTM 

Number of 
Parameters 

261 1920 

Inference Time 0.6 ms/sample 11 ms/sample 

Memory usage 49 MB 566 MB 

 

 
Figure 5. Comparison of the LSTM and PINN models constructed with a limited dataset. 
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This strategy offers a more balanced solution by 
combining the interpretability of physics-based 
models with the predictive power of ML 
techniques. 

In addition to its efficient use of data, the 
proposed model also demonstrates greater 
computational efficiency than purely data-driven 
methods. This is illustrated in Table 5, which 
presents a comparison of computation 
parameters, including inference time, memory 
usage, and number of parameters, between the 
proposed PINN model and the LSTM model.  

The comparison of computational efficiency 
shows that the proposed PINN method clearly 
outperforms the LSTM model across model 
complexity, inference speed, and memory 
consumption. The PINN model uses a simpler 
architecture, reducing complexity and resulting in 
an inference time of 0.6 ms per sample, nearly 18 
times faster than the LSTM. It also requires only 
49 MB of memory, reflecting a significantly more 
efficient use of computational resources. This 
efficiency is primarily attributed to the architecture 
of the proposed model, which relies on a neural 
network with only two input features: terminal 
voltage and current. By limiting the input space to 
essential physical variables, the model avoids the 
need for high-dimensional feature extraction or 
long input sequences, as is common in purely 
data-driven approaches such as LSTMs. 
Additionally, by embedding physical knowledge 
into the learning process, the PINN follows a 
guided learning path, further reducing the 
computational burden often associated with 
modeling long-term dependencies. These findings 
demonstrate that the physics-informed approach 
not only achieves strong prediction accuracy with 
limited data but also significantly lowers 
computational requirements, making it particularly 
suitable for real-time applications and deployment 
in environments with constrained processing and 
memory resources. 

Comparison to Recent Methods 
To further assess the performance of the 

proposed hybrid ANN-Thevenin model and 

highlight its contribution to advancing dynamic 
battery degradation modeling, a comparative 
analysis is conducted against several existing 
models from the literature. These models include 
equivalent circuit models, particularly first- and 
second-order Thevenin models, as well as various 
data-driven machine learning techniques, such as 
RF, XGBoost, GPR, and GRU-based recurrent 
neural networks (GRU-RNN). Each model was 
trained and validated on the same dataset, and its 
performance was evaluated using three standard 
metrics: RMSE, MAPE, and R². A summary of the 
results is provided in Table 6. 

The comparative analysis in Table 6 
highlights the strong performance of the proposed 
hybrid model. It achieves an RMSE of 0.012, the 
lowest MAPE of 0.974 %, and a high R² of 0.992, 
matching or even outperforming the best methods 
from previous studies. These results demonstrate 
the model's ability not only to capture the overall 
degradation trend but also to reflect subtle, 
nonlinear changes in battery condition under 
dynamic operating conditions. This represents a 
significant step forward compared to traditional 
physics-based models, such as the first- and 
second-order Thevenin models, which yield 
RMSE values of 1.733 and 1.093, and MAPE 
values of 8.033% and 6.181%, respectively. The 
relatively poor performance of these classical 
approaches highlights their limited capacity to 
model time-varying degradation, mainly due to 
simplifying assumptions and the absence of 
mechanisms to learn from temporal data. 

Among the machine learning methods 
considered, XGBoost demonstrated the strongest 
performance, with an RMSE of 0.011 and an R² 
value of 0.992, making its accuracy comparable to 
that of the proposed model. However, XGBoost 
and other tree-based models, such as RF, rely on 
static feature extraction and are not inherently 
designed to capture time-dependent patterns. 
This issue limits their ability to accurately model 
battery degradation, as the process is affected by 
the dynamic factors such as charge-discharge 
cycles, temperature changes, and variations in 
state of charge.

 
Table 6. Performance comparison of the proposed hybrid ANN-Thevenin model with existing methods 

Method RMSE MAPE R-squared (R²) 

The first order Thevenin [10] 1.733 8.033% 0.715 

The second-order Thevenin [7] 1.093 6.181% 0.765 

RF [15] 0.049 1.733% 0.988 

XGBoost [16] 0.011 1.175% 0.992 

GPR [20] 0.073 2.113% 0.907 

GRU-RNN [18] 0.108 1.277% 0.883 

Proposed hybrid method 0.012 0.974% 0.992 
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Similarly, GPR provides relatively accurate 
results. However, this method faces scalability 
challenges when applied to larger datasets and 
tends to be less effective at capturing rapidly 
changing degradation patterns. 

The GRU-RNN model demonstrates better 
temporal information handling due to its sequential 
architecture. However, its overall performance 
remains lower than that of the proposed hybrid 
approach. This indicates that although GRU can 
capture short-term dependencies in the data, it 
may struggle to generalize to more complex and 
long-term degradation patterns without the 
support of physical insights or constraints to guide 
the learning process. 

The effectiveness of the proposed hybrid 
model lies in integrating the Thevenin equivalent 
circuit, which provides a physics-based foundation 
for capturing electrochemical behavior, with an 
artificial neural network that learns residual 
nonlinearities and temporal dependencies. This 
combination allows the model to maintain physical 
interpretability and strong generalizability, while 
improving predictive accuracy under dynamic 
operating conditions. This approach reflects 
broader developments in the field of battery 
prognosis, where there is a shift from purely data- 
or physics-based models towards hybrid 
frameworks that leverage the complementary 
strengths of both methodologies. 

Thus, instead of simply validating previous 
results, this study builds on recent advances by 
demonstrating that a hybrid Thevenin ANN-ECM 
structure can achieve both high accuracy and 
robustness in modeling dynamic battery 
degradation. The proposed method is suitable for 
practical applications, especially in conditions 
where data may contain noise and operating 
conditions change over time. 

 
Limitations and Future Work 

While the proposed PINN model 
demonstrates strong accuracy and robustness in 
modeling battery degradation, it has been 
evaluated only on data from the first 50 charge–
discharge cycles. This represents only a small 
portion of the typical lifespan of a lithium-ion 
battery, which can range from 500 to over 2000 
cycles depending on the application. As such, the 
current study does not fully capture long-term 
degradation behavior, particularly the nonlinear 
effects that may emerge after extended cycling. 

It is important to note that using early-cycle 
data in this study assumes that initial degradation 
patterns reflect the dominant operational behavior 
in many practical battery applications, especially 
when early diagnostics are essential for predictive 
maintenance and system reliability. Early-cycle 

performance often provides valuable insight into 
long-term trends, enabling timely estimation of 
battery health before significant degradation sets 
in. 

However, the linearity observed during 
early degradation may not remain consistent 
throughout the battery’s full lifecycle. Therefore, 
further investigation is needed to validate the 
model across a broader range of cycles. Future 
work will focus on extending the training and 
evaluation of the proposed model using long-term 
cycling data, covering several hundred to 
thousands of cycles. This will help assess the 
model’s capability to generalize across different 
degradation phases and capture complex, 
nonlinear behavior over time. Additionally, future 
studies aim to incorporate temperature variations, 
load profiles, and other real-world operating 
conditions to enhance the model's applicability in 
practical battery management systems. 

 
CONCLUSION 

This study demonstrates that the proposed 
PINN model offers an effective and efficient 
solution for modeling dynamic battery 
degradation. By integrating physical constraints 
from the Thevenin equivalent circuit into the 
learning process, the model achieves a strong 
balance between predictive accuracy and 
robustness. When evaluated on 300 charge–
discharge cycles of an 18650 LFP cell, the PINN 
achieved RMSE of 0.012 and MAPE of 0.974 %, 
outperforming the NODE baseline, which 
recorded an RMSE of 0.215. While the LSTM 
model achieved slightly better accuracy with larger 
datasets, it was more sensitive to noise and 
showed poor generalization when the data was 
limited. In contrast, the proposed PINN maintained 
reliable performance even under reduced training 
conditions. With a fourfold smaller training set, the 
PINN retained a low RMSE of 0.023, whereas the 
LSTM error increased significantly to 0.72. In 
addition to its predictive performance, the 
proposed PINN model is also computationally 
efficient. The final network comprises only 261 
parameters, achieves inference speeds of 0.6 ms 
per sample, and requires only 49 MB of memory. 
Compared to LSTM, which has higher memory 
requirements and slower inference, the PINN is 
significantly better suited for real-time 
applications, especially in conditions where both 
data and computational resources are limited. 
Overall, the results confirm that lightweight neural 
networks enhanced with physics-based 
knowledge can offer accurate, robust, and real-
time estimation of battery health. 
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