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Abstract

Safety and maintenance efficiency are critical challenges in the
railway industry, particularly in the use of lifting jacks for locomotive
maintenance. This study proposes a predictive maintenance
framework that integrates the Hazard and Operability Study
(HAZOP), Failure Mode and Effects Analysis (FMEA), and Internet
of Things (loT) technology to detect potential failures in real time. A
case study was conducted at a locomotive maintenance depot in
Indonesia, where several occupational accidents had been recorded
due to lifting jack malfunctions. Based on HAZOP and FMEA
analyses components such as stoppers and drive motors were
identified as having high Risk Priority Numbers (RPN), each reaching
512, indicating significant failure risks. The proposed loT system
employs HCSR-04 and MPU6050 sensors to accurately monitor the
height and inclination of the equipment. Evaluation results show that
the system effectively detects anomalies with minimal data deviation
and a low data loss rate during a 10-day testing period. The
implementation of this system significantly reduces workplace
accident risks, improves maintenance efficiency, and supports digital
transformation within the industrial environment. These findings
demonstrate that the integration of HAZOP, FMEA, and IoT is
effective for risk mitigation and can be replicated in other railway
components. Moreover, this research opens new avenues for
developing Al-based predictive systems and implementing digital
twins as part of future smart maintenance strategies.
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INTRODUCTION

In the railway industry, locomotive
maintenance plays a crucial role in ensuring
operational safety and efficiency [1, 2, 3]. One of
the most vital tools in this process is the lifting jack,
which is used to elevate locomotives during the
inspection and repair of underframe components
[4, 5, 6]. The use of lifting jacks enables
technicians to access and maintain essential parts
such as the traction system, brakes, and
suspension. However, lifting jack malfunctions can
lead to serious workplace accidents, disrupt train

operations, and increase maintenance costs due
to unplanned repairs.

Based on a case study conducted at a
locomotive maintenance depot in Indonesia,
several workplace accidents were reported related
to the use of lifting jacks. Between 2020 and 2022,
incidents included workers being trapped between
the jack stopper and the locomotive underframe,
slipping during crane hook installation, and
electrical shocks caused by exposed wiring.
These incidents resulted in a range of injuries,
from minor bruises and lacerations requiring
stitches to significant mobility impairments. These
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findings  highlight that, despite  regular
maintenance practices, the risk of lifting jack
failure remains present, indicating the need for
more advanced methods to enhance workplace
safety. The historical distribution of these
workplace accidents from 2020 to 2022 is
illustrated in Figure 1.

To date, conventional methods such as the
Hazard and Operability Study (HAZOP) and
Failure Mode and Effect Analysis (FMEA) have
been widely applied to identify risks and design
mitigation strategies.
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Figure 1. Work Accident History on Locomotive
Jack Operation (2020-2022)

2022

HAZOP is designed to identify potential
hazards within operational systems [7, 8, 9], while
FMEA analyzes failure modes and their impacts
[10, 11, 12]. However, both approaches are
reactive in nature, where preventive actions are
taken only after risks have been identified based
on past experiences or incidents. This reactive
approach is less effective in addressing risks that
require real-time detection and early warning
before failure occurrence.

Numerous previous studies have been
conducted to address technical and safety-related
challenges concerning lifting jack systems and
railway infrastructure. These include stability
analyses of jack-up platforms, development of
multi-agent control systems, structural design
using finite element simulations, and the
integration of virtual reality and wireless sensor
technologies for equipment condition monitoring.
In addition, some research has explored risk
evaluation and maintenance frameworks using
multi-criteria  decision-making methods. A
summary of these previous studies is presented in
Table 1, serving as a foundation for further
research development.

Table 1. Review of Relevant Literature
No Title Method Contribution

1 Asynchronous Resilient Wireless Prototype design with redundant Advances resilient, energy-efficient
Sensor Network for Train Integrity WSN nodes; simulation and WSN architecture for safety-critical
Monitoring [13] experiments with 20-node networks rail applications and IoT integration.

under interference.

2 Suggestion of Maintenance Criteria for DSM and Fuzzy TOPSIS applied for ~ Offers a quantitative, structured
Electric Railroad Facilities Based on multi-criteria evaluation; quantified model for electrical railway facility
Fuzzy TOPSIS [14] weights of technical aspects maintenance planning.

3 FEA-based simulation using Pro/E Presents an efficient, simulation-
Finite Element Analysis on the Rack and ANSYS; includes stress based design method for mobile
of the JC-17B Mobile Lifting Jack [15] analysis, modal vibration analysis, lifting jack development, supporting

and redesign of motor position and future tech upgrades
rack thickness.

4 Consensus Control for Multiagent Multi-agent system control theory; Offers an adaptive consensus
Systems under Asymmetric Actuator consensus-based control algorithm; control for asymmetric actuator
Saturations with Applications to Lyapunov-based stability analysis; systems, applicable to TLJSs for
Mobile Train Lifting Jack Systems [6] real-world TLJS experiments. safer and smarter operations.

5 HIRADC Analysis for Rolling Stock HIRADC methodology: hazard Provides an applicable HIRADC
Body Lifting Ngrombo Railway identification, risk assessment, and model for railway maintenance
Maintenance Center [16] control determination for lifting safety system improvement.

activities.

6 Dynamic Simulation of Railway Matlab-Simulink for motion Pioneers VR-integrated simulation in
Locomotive and Detection of simulation; VR for visualization and rail operations and training;
Electromechanical Equipment Based training; CAD for disassembly improves realism and maintenance
on Virtual Reality Technology [17] simulations. efficiency.

7 Mechanical Analysis on the Frame of Simulations using Pro/E and Provides a strong theoretical basis
JC-17B Mobile Lifting Jack [18] ANSYS; static analysis (stress and for future development of lifting jack

strain), buckling, and vibration frames and the prevention of
frequency analysis. structural resonance.

8 A Predictive Safety and Maintenance Case study in Indonesian depot; Provides a replicable predictive
Framework for Railway Locomotives: identified risks with HAZOP & framework for railway components;
Integrating HAZOP, FMEA, and loT- FMEA,; developed loT system supports future smart maintenance
Based Risk Mitigation (Present) using Al and digital twin.
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While HAZOP and FMEA are both widely
applied in industrial safety analysis, the literature
reveals that their integration remains limited in
scope, often confined to sequential or manual
application without digital support. Most studies
conduct HAZOP and FMEA separately or use
them as static tools for pre-operational risk
assessment, which lack adaptability in dynamic
environments such as railway maintenance
depots. For example, prior works often use
HAZOP to identify hazards [7][19] and FMEA to
prioritize them [12][20], yet fail to incorporate real-
time data or feedback loops to continuously
update risk levels. Additionally, integrated
HAZOP-FMEA frameworks [21][22] often overlook
the potential of loT-based data to enhance failure
mode detection and risk prediction. This study
addresses these limitations by introducing a fully
integrated, real-time predictive system that fuses
HAZOP and FMEA with loT sensor data, enabling
dynamic risk re-evaluation and early warning
capabilities. This approach goes beyond static risk
registers and offers a novel contribution to digital
safety systems, particularly in  high-risk
environments such as locomotive maintenance.

Despite the valuable contributions of
previous studies, none have comprehensively
integrated formal risk analysis methods such as
HAZOP and FMEA with Internet of Things (loT)
technology into a real-time predictive system for
monitoring the condition of locomotive lifting jacks.
In fact, workplace accidents involving lifting
equipment in railway depots still frequently occur
due to undetected functional failures. Therefore,
the present study is of particular importance as it
offers a predictive safety and maintenance
framework that combines structured risk
assessment with digital transformation through
loT sensors. This approach is expected to
enhance both efficiency and safety in
maintenance activities, while also paving the way
for the development of intelligent, data-driven
maintenance systems in the future.

The advancement of Internet of Things (loT)
technology presents new opportunities to
implement sensor-based monitoring systems
capable of detecting anomalies in lifting jack
operations in real time. 10T enables direct data
collection from operating equipment, transmitting
information to monitoring systems that analyze
failure patterns and provide early warnings [23,
24, 25]. Through this approach, maintenance
practices can shift toward predictive maintenance
systems, in which potential issues are identified
and addressed proactively—before they disrupt
operations.

Although HAZOP and FMEA methods have been
widely applied in industry, the integration of these
approaches with loT technology to develop an
effective predictive maintenance system remains
relatively rare. Currently, there is a lack of
comprehensive  frameworks that combine
HAZOP-FMEA-based risk analysis with real-time
loT-based monitoring in the context of railway
maintenance. Yet, such integration has the
potential to deliver significant benefits in improving
workplace safety and maintenance efficiency.

This study aims to address this gap by first
conducting a risk analysis of lifting jack failures
before developing an loT-based monitoring
system. The system will employ a combination of
sensors to continuously monitor the operational
parameters of the lifting jack in real time. The
collected data will be analyzed using the Risk
Priority Number (RPN) method from FMEA to
determine risk levels [10] and design more
effective mitigation strategies.

The main contributions of this study include:
1. The development of an loT-based predictive

maintenance framework that integrates
HAZOP and FMEA methods for detecting lifting
jack failures;

2. The implementation of loT sensors in a real-
time monitoring system, enabling earlier
anomaly detection compared to conventional
inspection methods;

3. The optimization of risk mitigation strategies
through a data-driven approach, thereby
improving maintenance efficiency and
reducing the likelihood of workplace accidents.

Through this approach, the study aims to provide

an innovative solution applicable to the railway

industry, enhancing both workplace safety and
maintenance effectiveness.

This article is structured to provide a
comprehensive overview of the conducted
research. The Literature Review section
discusses the fundamental concepts of locomotive
maintenance, the application of HAZOP and
FMEA in industrial risk management, and the
utilization of IoT in predictive maintenance
systems. The research methodology section
describes the proposed framework, data
collection, risk analysis, and the design of the loT-
based monitoring system. The results and
discussion  section presents experimental
outcomes and system evaluation, including the
effectiveness of integrating HAZOP and FMEA
with real-time monitoring. Finally, the conclusion
and Recommendations section summarizes the
key findings of the study and provides suggestions
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for future developments in predictive maintenance
systems within the railway industry.

METHOD
Research Framework

This study was conducted at a railway
company in Indonesia that operates a locomotive
maintenance facility utilizing a lifting jack system
as the primary tool for servicing the underframe of
locomotives (see Figure 2). The research focuses
on one of the main locomotive maintenance
depots, where lifting jacks are routinely used to
elevate locomotives for the inspection and repair
of critical components such as traction systems,
brakes, and suspension. This study proposes a
predictive maintenance framework that integrates
HAZOP, FMEA, and loT technologies to enhance
occupational safety in locomotive
maintenance[26][27].

The study begins by identifying potential
hazards in lifting jack operations using the HAZOP
method and assessing failure modes through
FMEA. Once the risks are identified, loT sensors
are employed to collect real-time operational data
to detect anomalies before failures occur, and the
study begins with hazard identification using the
HAZOP (Hazard and Operability Study) method,
aimed at identifying potential operational
deviations that could lead to accidents or system
failures in the lifting jack. Once the hazards are
identified, FMEA (Failure Modes and Effects
Analysis) is applied to evaluate possible failure
modes and their impacts on the system. The
results of this analysis are used to determine the
level of risk and prioritize the necessary mitigation
actions.

To enhance the reliability of predictive
maintenance, loT sensors are installed on the
lifting jack to collect real-time operational data.
The collected data includes information on the
position, tilt, and stability of the lifting jack during
operation.

R -
Figure 2. Lifting jacks for locomotive maintenance

Ultrasonic and gyroscope sensors are used to
ensure the stopper's position and detect potential
imbalances. The collected data are analyzed
using anomaly detection algorithms to identify
deviations from normal conditions before failures
occur. When operational parameters exceed safe
limits, the system issues early warnings to enable
preventive actions.

The final stage of this study involves the
implementation of an integrated framework
combining risk analysis through HAZOP and
FMEA, loT-based data collection, and real-time
monitoring with anomaly detection. Data from the
loT sensors is transmitted via an ESP32
microcontroller to Google Firebase, enabling real-
time monitoring of the lifting jack’s condition. With
this system in place, maintenance can be carried
out predictively, thereby reducing the risk of
equipment failure that could potentially lead to
workplace accidents. Overall, the research
methodology provides an innovative approach to
loT-based predictive maintenance by integrating
risk analysis with real-time monitoring. The
proposed system is expected to improve the lifting
jack’s safety and efficiency, minimize unexpected
failures, and ultimately enhance workplace safety.
[28]. The overall research framework integrating
HAZOP, FMEA, and loT-based monitoring is
illustrated in Figure 3.

loT-Based Predictive Maintenance System

This study proposes an loT-based
predictive maintenance system to enhance
occupational safety in the maintenance of
locomotive lifting jacks. The system is designed to
monitor the condition of the lifting jack in real time
by integrating various devices, sensors, and
communication  technologies. The system
architecture consists of several key components,
including sensor nodes, a router, a database, and
a web- or mobile-based monitoring platform
[29][30]. Figure 4 presents the overall architecture
of the proposed loT-based predictive maintenance
system, including sensor nodes, communication
modules, and the monitoring platform.
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Figure 3. Enhancing Workplace Safety in
Locomotive Maintenance
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Figure 4. loT-Based Predictive Maintenance
System

The sensor node serves as the core unit of
the system, responsible for collecting data from
the lifting jack. It comprises a NodeMCU ESP32,
which functions as the microcontroller and primary
communication module [31][32]. The ESP32
processes data from the sensors and transmits it
to the server via the internet. The HC-SR04 sensor
is used to measure the height or distance of the
liting jack stopper to ensure safe positioning
during operation [33][34], while the MPU6050
sensor functions as both an accelerometer [35]
and a gyroscope to detect tilt or imbalance in the
liting jack [36]. The data collected by these
sensors is processed by the ESP32 and
transmitted to the internet through a router for
further monitoring.

The router acts as a communication bridge
between the sensor node and the internet [37].
After the sensor node gathers operational data,
the router sends the data to the cloud via an
internet connection. The router ensures fast and
real-time data transmission to the monitoring
system. Once the data is sent online, it is stored in
a cloud-based database such as Google Firebase
or other web platforms. This database serves as
the primary storage for all operational data, which
can later be analyzed to detect anomalies or
predict lifting jack failures.

The system enables sensor data to be
monitored from various devices, including
computers at the data center and mobile devices.
The data center functions as the monitoring hub,
presenting sensor data in the form of graphs,
trends, and advanced analytics, allowing
operators or technicians to access this information
for maintenance decision-making. Additionally,
the data can be accessed via mobile devices
through a web-based application or Firebase
interface. If an anomaly is detected in the lifting
jack’'s operation, the system will issue a
notification or alert to the user, enabling prompt
preventive action.

Overall, the system integrates sensor
nodes, communication networks, cloud storage,
and monitoring platforms to enable effective

predictive maintenance. With real-time monitoring,
the risk of lifting jack failure can be minimized,
maintenance efficiency can be improved, and
workplace safety can be better ensured. The
implementation of this system will assist operators
in maintaining the optimal condition of the lifting
jack and preventing accidents caused by
equipment failure.

Sensor Data-Based Failure Prediction
Algorithm

The methods used in the completion of the
research are written in this section. The method
includes research chronologically, including
research design, research procedure (in the form
of algorithms, Pseudocode or other), instruments,
and analysis techniques used in solving problems.
In addition, the description of the course of
research should be supported by references so
that the explanation can be accepted scientifically.

This code is designed to detect potential
system failures in an loT-based environment using
the NodeMCU ESP32 as the main microcontroller.
The system utilizes two types of sensors: the HC-
SR04 for distance measurement and the
MPUGB050 for detecting tilt angles and
acceleration. During the initialization phase, the
microcontroller is configured to read data from
both sensors and connect the device to a WiFi
network in order to transmit the data to Firebase
for real-time monitoring.

During data acquisition, the HC-SR04
sensor measures distance using ultrasonic waves,
while the MPUG6050 reads acceleration and
converts it into tilt angles. The system then
analyzes both sensor inputs to detect anomalies,
and if the distance change exceeds a predefined
threshold, it is considered a potential mechanical
failure. Likewise, if a significant change in tilt angle
is detected, the system identifies a possible
imbalance in the lifting jack that could affect its
stability. In the event of an anomaly, a warning
message is displayed through the Serial Monitor.
To ensure the data can be accessed and further
analyzed, the system transmits sensor data to
Firebase every five seconds, including distance,
tilt angle, and anomaly status. Firebase serves as
a cloud storage platform that enables users to
monitor the data in real time via computer or
mobile devices. With each iteration of the loop,
new data is updated and compared to the previous
data to improve the accuracy of failure pattern
detection. The workflow of the sensor data-based
failure prediction algorithm is illustrated in Figure
5.
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Figure 5. Sensor Data-Based Failure Prediction
Algorithm

RESULTS AND DISCUSSION

Risk Assessment Results Using HAZOP-FMEA
To carry out the HAZOP and FMEA

analyses in a structured and credible manner, a

multidisciplinary brainstorming team was formed
atthe PT KAI UPT locomotive maintenance depot.
The team consisted of seven members with varied
roles and expertise, ensuring comprehensive risk
identification and evaluation. Table 2 presents the
composition of the team, including field operators,
an engineer, a supervisor, and a safety officer,
each contributing to different aspects of the
analysis process.

The HAZOP (Hazard and Operability Study)
method was applied to systematically identify
potential hazards in the operation of lifting jacks
used for locomotive maintenance. This analysis
focused on deviations from normal operating
conditions that could lead to workplace accidents
or equipment failures. Each deviation was
categorized based on possible causes, associated
risks, and suggested preventive actions. Table 3
presents the results of this analysis.

The HAZOP analysis identified three critical
deviations (see Table 3): jack wheel instability,
stopper malfunction, and unstable electrical
supply. These issues pose significant operational
and safety risks, potentially leading to accidents or
system failures. Mitigation measures such as
automatic sensor integration, electrical system
reinforcement, and additional safety locks were
proposed to enhance system reliability.

Table 2. Brainstorming Team Composition

No Division Position Role in the Analysis Years of Experience
1 Operator Mechanic Field Expert (Lifting Jack Ops) 7 years
2 Operator Mechanic Field Expert (Maintenance) 6 years
3 Operator Mechanic Field Expert (Operation) 5 years
4 Operator Mechanic Recorder 4 years
5 Engineering Maintenance Technical Expert (System Design) 8 years
Engineer
6 Safety Safety Officer Safety Advisor (K3 Compliance) 9 years
Department
7 Supervision Supervisor Facilitator (SOP & Coordination) 10 years
Table 3. HAZOP Worksheet.
No Process Idlent'f'ed Possible Risk Matrix Safeguards Recommendations
ssues Consequences (L,C,R)
1 Preparing the Jack's wheel The jack may tilt 3,2,M None Add a locking nut on
jack detaches or fall the wheels
from the axle
2 The lifting The stopper Load support 54,E None Perform testing
process starts does not rise does not move before use, add an
and does not up, motor automatic sensor on
push the load overheats, and the motor, and install
support locomotive tilts additional safety
nuts on the stopper
3 Holding the Voltage The jack cannot 3,4,H None Replace cables
locomotive below 220V sustain the load between jacks, and
for long, sudden improve the
drops, and electrical power
reduced motor distribution system
power
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Building upon the findings from HAZOP, a
Failure Modes and Effects Analysis (FMEA) was
conducted to assess potential failure modes, their
severity, occurrence likelihood, and detection
capability. The Risk Priority Number (RPN) was
calculated to rank failure risks and prioritize
mitigation strategies. Table 4 presents the results
of the FMEA analysis.

As shown in Table 4, two failure modes,
stopper malfunction and motor overheating,
received the highest RPN score of 512, indicating
that they are high-risk failure modes that require
immediate mitigation. These failures are closely
linked, as the failure of the stopper to rise places
additional strain on the motor, leading to
overheating. Meanwhile, the third failure mode,
uneven jack height (tilting), has an RPN of 504,
which is also considered critical. Although slightly
lower, it poses a significant safety hazard due to
the risk of locomotive instability during lifting
operations. To address these risks, appropriate
control measures such as pre-operation testing,
routine component maintenance, and the
installation of calibration sensors were proposed.
These controls aim to reduce the likelihood and
impact of failure modes while improving detection
capability.

Root Cause Analysis Using SW+1H

To further understand the underlying
causes of stopper failures, a 5W+1H (What, Who,
Why, When, Where, How) analysis was
conducted. This method helps pinpoint failure root
causes and determine targeted solutions.

The 5W+1H analysis confirmed that the
primary causes of stopper failure were loose
locking mechanisms, excessive motor runtime,
and inconsistencies in jack height adjustment (see
Table 5). To prevent recurrence, locking nuts,
automatic shutdown sensors, and jack height
sensors were recommended as key solutions.

loT System Performance Evaluation

The evaluation of the IloT system
performance aims to assess the accuracy,
stability, and responsiveness of the sensors in
monitoring the condition of the lifting jack in real
time. The sensor node used in this system
consists of an ESP32 microcontroller, an
MPUGB050 gyroscope, and an HC-SR04 ultrasonic
sensor. These components work together to
detect changes in the tilt angle and height of the
lifting jack and transmit the data to a web-based
platform.

Table 4. Failure Mode Identification Using FMEA

Component& 1 iorja  Fallure  prectofFailure  C2YSeof g o p RPN Control
Function Mode Failure Detection
Stopper Steel Stopper Load support The stopper 8 8 8 512 Perform pre-
(support to hold does not does not move nut becomes operation testing
load movement) rise up, locomotive loose
remains
stationary
Drive motor - Motor Potential motor The stopper 8 8 8 512 Conduct periodic
overheats damage, failure does not move maintenance on
to lift load up, causing the stopper
motor to keep components
running
Lifting jack - Uneven Locomotive Height 9 7 8 504 Calibrate each
system (multi- jack height becomes deviation jack, install height
point stopper (tilting) unstable and tits  among sensors for
align) stoppers on leveling
each jack
Table 5. 5W+1H Failure Analysis of Stopper Component
What Who Why When Where How ';°te".t'a'
olution
The stopper Operator Loose stopper  During the jack Worksite Monthly check Install locking
does not rise nut operation nut and
and fails to automatic
push the load sensor
support
Motor Operator Stopper failure  During the jack Worksite Monthly check Install
overheating causes the operation automatic
motor to keep switch-off
running sensor
Locomotive Operator Uneven jack During jack Worksite Monthly check Install height
tilts height operation sensors to
standardize
jack height
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The sensor node used in this system plays
a crucial role in the monitoring process. Figure 6
illustrates the sensor node configuration, which
consists of several main components: the ESP32
microcontroller, responsible for processing data
and transmitting it to the loT platform; the
MPUG050 gyroscope, which measures the tilt of
the lifting jack to detect its stability; and the HC-
SR04 ultrasonic sensor, which measures the
distance between the lifting jack and the surface
to monitor lifting height. In addition, the system
uses a 9V battery as the main power source,
allowing the device to operate independently.

The graph in Figure 7 presents a
comparison of distance measurements between
the HC-SR04 sensor and manual measurements
using a measuring tape across ten consecutive
trials. The graph indicates that the results from
both methods are very close, with nearly identical
trend lines. This demonstrates that the HC-SR04
sensor possesses a high degree of accuracy in
measuring vertical distance within the lifting jack
system. The difference—illustrated by the gray
line—remains close to zero at each measurement
point, indicating that the deviation between the
sensor readings and manual measurements is
minimal and consistent.

HCSR-04
v

Gyroscope MPU6050 |« >

Mikrokontroller ESP32

Figure 6. Overview Sensor Node loT

350,0
300,0
5 2500 —&— measuring
g 200,0 tape
é 1500 —e—HCSR-04
2 100,0
50,0 Difference
- - (cm)
1 3 5 7 9
nth trial

Figure 7. Distance Measurement Comparison
Between the HC-SR04 Sensor and Measuring
Tape

This proves that the HC-SR04 ultrasonic sensor is
capable of providing data nearly equivalent to that
obtained through conventional measurement
methods, making it suitable for use in loT-based
monitoring systems. The consistency of these
results also shows that the sensor performs stably
across various distance ranges, from short to long,
without showing significant deviations. Therefore,
the use of the HC-SR04 sensor in this system
enhances the efficiency and effectiveness of real-
time lifting height monitoring  without
compromising data accuracy.

The graph above (Figure 8) presents a
comparison of tilt angle measurements between
the MPU6050 sensor and a manual measurement
reference using an inclinometer. The results from
ten trials show that both devices exhibit a nearly
identical trend pattern, with angle values steadily
increasing throughout the ftrials. The difference
line, depicted by the gray curve, indicates that the
deviation between MPUG050 and inclinometer
readings remains very small and stable, reflecting
minimal deviation.

This indicates that the MPUG6050 sensor
shows high accuracy and precision in detecting tilt
angle changes. Its performance suggests that the
gyroscope-accelerometer technology is reliable
enough to replace conventional instruments,
particularly in loT-based angle monitoring systems
requiring real-time accuracy and stability. With its
low deviation and high accuracy, integrating the
MPUG6050 into the lifting jack system can
significantly improve position monitoring and
enhance operational safety. To statistically
validate the accuracy of the HC-SR04 and
MPUB6050 sensors, a paired t-test was conducted
comparing sensor measurements with manual
reference values (using a measuring tape and
inclinometer, respectively) across ten trials.

100 -
80 A
==@== |nclinometer
60 A
® (degree)
(0]
2 40 1 —o— MPU6050
[a] degree
20 (degree)
Difference
0 - — (degree)
5 10 15
-20 - )
n th trial

Figure 8. Comparison of Tilt Angle
Measurements Between MPU6050 Sensor and
Inclinometer
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The null hypothesis assumed no significant
difference between the two measurement
methods. For distance measurement (HC-SR04
vs. measuring tape), the t-test yielded a p-value of
0.421 (a = 0.05), indicating that there is no
statistically significant difference between sensor
and manual readings. Similarly, for tilt angle
measurement (MPUG050 vs. inclinometer), the p-
value was 0.389, also exceeding the 0.05
threshold. These results support the conclusion
that both sensors provide measurements that are
statistically equivalent to conventional tools,
thereby confirming their reliability for use in
predictive monitoring systems. The inclusion of
this statistical test reinforces the accuracy claims
presented earlier in the graphical comparisons
(Figures 7 and 8), offering a more robust
justification for the adoption of IloT-based
measurements in critical maintenance tasks.

The graph above (see Figure 9) illustrates
the number of sensor data transmissions to the
database over a 10-day period, from May 6 to May
15, 2024. Four key indicators are presented in this
graph: the number of actual data successfully
transmitted (Number of Data), the ideal number of
data that should have been transmitted (Ideal), the
number of lost data points (Loss Data), and the
percentage of data loss (% Loss Data). Overall,
the number of actual data received is slightly lower
than the ideal number each day, indicating some
data loss during the transmission process.
However, both the absolute and percentage
values of data loss remain low and relatively
consistent on a daily basis, which reflects the
stability of the loT data communication system.
The system's performance in transmitting sensor
data to the database can be considered reliable,
given the minimal data loss observed. The losses
are likely caused by external factors such as
network disturbances, brief power interruptions, or
server latency.
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Figure 9. Measurement of Sensor Data
Transmission to the Database

Therefore, the IoT system used in this study
demonstrates high reliability and is suitable for
continuous long-term monitoring applications.

Figure 10 displays the web interface of the
Lifting Jack monitoring system, accessible via a
browser on a PC or laptop. This interface shows
two key parameters from the sensor readings in
real time: distance and inclination. The detected
distance is 5.68 cm, measured by the HCSR-04
ultrasonic sensor. Meanwhile, the inclination
values along three axes (X, Y, and Z) are recorded
by the MPUGB050 sensor, with results of X: -0.01
rad, Y: -0.03 rad, and Z: 0.30 rad, respectively.
This information is crucial for accurately
monitoring the condition and stability of the lifting
jack, especially to ensure that the lifting process
occurs within safe inclination limits. The interface
is designed to be simple yet informative,
facilitating quick user comprehension of the tool’s
condition and enhancing the effectiveness of
remote monitoring within the implemented loT
system.

Figure 11 illustrates the real-world
implementation of the sensor monitoring system at
a locomotive maintenance company, carried out
by a field technical team.

LIFTING JACK KAl

JARAK KEMIRINGAN
X'-0.01 rad

Y. 0,03 rad

Z 0.30 rad

a2 o s sOoOweCente@

Figure 10. Web Interface of the Lifting Jack
Monitoring System

Figure 11. System Implementation in a
Locomotive Maintenance Company
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The image shows two main activities during
the installation and testing process: on the left
side, the team is seen installing or calibrating the
sensor on the structure of the lifting jack, which is
used to elevate the locomotive body for
maintenance or inspection purposes. On the right
side of the image, the team is testing sensor
readings beneath the locomotive, likely validating
distance or inclination measurements directly
using a mobile device and minicomputer. The
presence of personal protective equipment (such
as safety helmets and work uniforms) indicates
that the activity is conducted following
occupational safety procedures. This
documentation demonstrates that the developed
system is not limited to simulations or laboratory
setups but has been successfully deployed in a
real industrial environment. It forms part of the
ongoing digitalization of locomotive maintenance
processes through the application of IloT
technology.

Compared to previous studies (see Table 1)
that mostly focused on structural analysis,
technical simulations, or static risk evaluation
models, this research offers a new contribution by
integrating HAZOP and FMEA methods into an
loT-based sensor system. This approach makes
risk analysis more dynamic and adaptive through
real-time data support, providing a significant
improvement in risk mitigation effectiveness and
opening opportunities for the development of
intelligent maintenance systems in the future.

Implications for the Railway Industry
Cost Efficiency & Enhanced Work Safety
through Predictive Maintenance

The implementation of loT-based predictive
maintenance in the railway industry offers two
major benefits: cost efficiency and improved work
safety. By enabling early detection of potential
equipment failures, this system helps reduce
downtime, extend equipment lifespan, and lower
maintenance costs by up to 30-40% compared to
time-based maintenance [38]. To support the cost-
efficiency claim, a simplified estimation was
conducted by comparing traditional time-based
maintenance with an loT-based predictive
maintenance system applied to locomotive lifting
jacks. In a conventional system, the total annual
cost, including routine inspections and unplanned
repairs, can reach approximately IDR 136 million
per lifting jack unit. This is primarily due to frequent
breakdowns and rigid maintenance schedules. In
contrast, an loT-enabled predictive approach by
reducing failure frequency, minimizing scheduled
inspections, and providing real-time monitoring
can lower annual costs to around IDR 49 million,
including both sensor deployment and system

maintenance. This results in an estimated cost
saving of over 60%, validating the significant
economic  benefit of integrating loT in
maintenance operations. In this study, the use of
HC-SR04 and MPU6050 sensors allows real-time
monitoring of distance and inclination on lifting
jacks, providing early warnings of deviations that
may indicate failure risks.

Potential Application of IoT in Other Railway
Maintenance Systems

The success of this predictive maintenance
system demonstrates the broader potential of loT
implementation in  other critical railway
components, such as braking systems,
suspension, bearings, and traction motor cooling
systems. loT excels at integrating sensor data
collection, real-time transmission, and predictive
analytics to identify wear or anomalies before they
escalate [39]. Recent comprehensive reviews [40]
have highlighted the rapid integration of loT
technologies into railway systems, emphasizing
their capabilities in real-time data acquisition,
embedded decision-making, and adaptable
network infrastructures. These technological
advancements strongly support the predictive
maintenance framework proposed in this study,
confirming the feasibility of extending IoT
applications beyond lifting jacks to broader areas
of railway asset monitoring and operational
optimization.

Using the same system architecture—
comprising sensor nodes, microcontrollers,
wireless communication, and cloud storage—
railway companies can replicate this framework
for various maintenance tasks in depots or
onboard trains. Furthermore, predictive
maintenance strategies enabled by loT not only
improve technical reliability but also contribute to
reducing work-related accidents. As shown by
[41], workplace accidents often correlate with the
absence of preventive safety systems and poor
policy enforcement, both of which can be
addressed through automated early warning
systems.

This leads to the development of an
interconnected maintenance system, where the
condition of all major components is monitored
centrally via digital platforms. Maintenance can
thus shift toward a condition-based approach
rather than relying solely on mileage or fixed
intervals, enhancing flexibility and operational
efficiency [42].

Furthermore, broad IoT adoption supports
the realization of a smart railway system, where all
assets—static and dynamic—are  digitally
connected for automated monitoring and control.
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For example, traction motor cooling systems
equipped with temperature and airflow sensors
can self-regulate cooling intensity and issue
warnings in case of overheating, preventing
system failures.

In this way, loT evolves from a mere
technical tool into a foundational element for the
digital transformation and automation of railway
maintenance. Companies that have successfully
applied loT to lifting jacks can leverage this
advantage to expand its wuse, improving
infrastructure integrity, reducing system failure
risks, and fostering safer, more efficient, and
modern railway operations.

Future Research Directions

While the  predictive  maintenance
framework based on HAZOP-FMEA and loT
developed in this study has demonstrated high
effectiveness in monitoring lifting jack systems,
several promising avenues remain open for future
research. One of the most strategic directions is
the integration of Artificial Intelligence (Al) and
Machine Learning (ML) into the predictive
analytics system. The current anomaly detection
approach, which relies on threshold-based
parameters, works well for known failure patterns
but is limited in identifying novel or complex
anomalies. By utilizing ML algorithms such as
decision trees, support vector machines, or deep
learning, the system could be trained on historical
data to detect early signs of failure with greater
adaptability and precision. As suggested by [43],
ML-driven fault detection systems in rolling stock
offer significant improvements in accuracy and
responsiveness [44][45].

Further research can also explore the
application of this framework to other critical
railway components, such as braking systems,
axle bearings, and traction motors. A multi-sensor
approach—integrating vibration, temperature,
pressure, and current sensors—could provide
more comprehensive insights into the condition of
these subsystems. This also opens the
opportunity to develop a Digital Twin, a dynamic
digital representation of physical assets that
enables real-time simulation, diagnostics, and
optimization. According to [46], Digital Twins play
a pivotal role in Industry 4.0 by facilitating more
informed and context-aware  maintenance
decisions in intelligent transportation systems.

Another important direction involves the
integration of loT-based monitoring systems with

enterprise-level management tools, including
Enterprise Resource Planning (ERP) and
Computerized Maintenance Management

Systems (CMMS). Such integration would ensure
that sensor-generated data not only serves
technical diagnostics but also supports
operational workflows, such as spare part
inventory management, technician scheduling,
and safety auditing, leading to a fully digitized and
streamlined maintenance ecosystem. In addition,
longitudinal studies are needed to evaluate the
real-world performance of the loT system,
particularly its hardware durability in harsh
environments and data transmission stability
under varying network conditions. This includes
assessing long-term energy efficiency and
ensuring the system's compatibility with daily
operational requirements in railway maintenance
contexts.

CONCLUSION

This study proposed an loT-based
predictive maintenance framework by integrating
HAZOP and FMEA methods to improve the safety
and reliability of locomotive lifting jacks. The
significant results show that the developed loT
system can detect anomalies in real time with high
accuracy and low data loss, while also identifying
critical failure points in the stopper and drive motor
with RPN values reaching 512. Statistical testing
further confirmed that sensor measurements were
not significantly different from manual references,
validating the system’s reliability in operational
monitoring. The main finding of this research is the
transformation of traditional risk analysis into a
dynamic, data-driven framework. Its contribution
lies in strengthening the empirical aspect through
field validation, the theoretical aspect by
advancing an adaptive HAZOP-FMEA model, and
the scientific aspect by providing clear evidence of
the superiority of 1oT integration over conventional
methods, while also paving the way for future
applications of artificial intelligence and digital
twins in smart maintenance strategies.
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