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Abstract  
Safety and maintenance efficiency are critical challenges in the 
railway industry, particularly in the use of lifting jacks for locomotive 
maintenance. This study proposes a predictive maintenance 

framework that integrates the Hazard and Operability Study 
(HAZOP), Failure Mode and Effects Analysis (FMEA), and Internet 
of Things (IoT) technology to detect potential failures in real time. A 
case study was conducted at a locomotive maintenance depot in 

Indonesia, where several occupational accidents had been recorded 
due to lifting jack malfunctions. Based on HAZOP and FMEA 
analyses components such as stoppers and drive motors were 
identified as having high Risk Priority Numbers (RPN), each reaching 
512, indicating significant failure risks. The proposed IoT system 

employs HCSR-04 and MPU6050 sensors to accurately monitor the 

height and inclination of the equipment. Evaluation results show that 
the system effectively detects anomalies with minimal data deviation 
and a low data loss rate during a 10-day testing period. The 

implementation of this system significantly reduces workplace 
accident risks, improves maintenance efficiency, and supports digital 
transformation within the industrial environment. These findings 
demonstrate that the integration of HAZOP, FMEA, and IoT is 
effective for risk mitigation and can be replicated in other railway 

components. Moreover, this research opens new avenues for 
developing AI-based predictive systems and implementing digital 
twins as part of future smart maintenance strategies. 
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INTRODUCTION  
In the railway industry, locomotive 

maintenance plays a crucial role in ensuring 
operational safety and efficiency  [1, 2, 3]. One of 
the most vital tools in this process is the lifting jack, 

which is used to elevate locomotives during the 
inspection and repair of underframe components  
[4, 5, 6]. The use of lifting jacks enables 
technicians to access and maintain essential parts 

such as the traction system, brakes, and 
suspension. However, lifting jack malfunctions can 
lead to serious workplace accidents, disrupt train 

operations, and increase maintenance costs due 
to unplanned repairs. 

Based on a case study conducted at a 
locomotive maintenance depot in Indonesia, 
several workplace accidents were reported related 

to the use of lifting jacks. Between 2020 and 2022, 
incidents included workers being trapped between 
the jack stopper and the locomotive underframe, 
slipping during crane hook installation, and 

electrical shocks caused by exposed wiring. 
These incidents resulted in a range of injuries, 
from minor bruises and lacerations requiring 
stitches to significant mobility impairments. These  
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findings highlight that, despite regular 
maintenance practices, the risk of lifting jack 
failure remains present, indicating the need for 
more advanced methods to enhance workplace 

safety. The historical distribution of these 
workplace accidents from 2020 to 2022 is 
illustrated in Figure 1. 

To date, conventional methods such as the 

Hazard and Operability Study (HAZOP) and 
Failure Mode and Effect Analysis (FMEA) have 
been widely applied to identify risks and design 
mitigation strategies.  

 
 

Figure 1. Work Accident History on Locomotive 

Jack Operation (2020–2022) 

HAZOP is designed to identify potential 
hazards within operational systems  [7, 8, 9], while 
FMEA analyzes failure modes and their impacts  
[10, 11, 12]. However, both approaches are 

reactive in nature, where preventive actions are 
taken only after risks have been identified based 
on past experiences or incidents. This reactive 
approach is less effective in addressing risks that 

require real-time detection and early warning 
before failure occurrence. 

Numerous previous studies have been 
conducted to address technical and safety-related 
challenges concerning lifting jack systems and 

railway infrastructure. These include stability 
analyses of jack-up platforms, development of 
multi-agent control systems, structural design 
using finite element simulations, and the 

integration of virtual reality and wireless sensor 
technologies for equipment condition monitoring. 
In addition, some research has explored risk 
evaluation and maintenance frameworks using 
multi-criteria decision-making methods. A 

summary of these previous studies is presented in 
Table 1, serving as a foundation for further 
research development. 

 
Table 1. Review of Relevant Literature 

No Title Method Contribution 

1 Asynchronous Resilient Wireless 

Sensor Network for Train Integrity 
Monitoring [13] 

Prototype design with redundant 

WSN nodes; simulation and 
experiments with 20-node networks 

under interference. 

Advances resilient, energy-efficient 

WSN architecture for safety-critical 
rail applications and IoT integration. 

2 Suggestion of Maintenance Criteria for 
Electric Railroad Facilities Based on 

Fuzzy TOPSIS [14] 

DSM and Fuzzy TOPSIS applied for 
multi-criteria evaluation; quantified 

weights of technical aspects 

Offers a quantitative, structured 
model for electrical railway facility 

maintenance planning. 

3  
Finite Element Analysis on the Rack 

of the JC-17B Mobile Lifting Jack [15] 

FEA-based simulation using Pro/E 
and ANSYS; includes stress 

analysis, modal vibration analysis, 

and redesign of motor position and 
rack thickness. 

Presents an efficient, simulation-
based design method for mobile 

lifting jack development, supporting 

future tech upgrades 

4 Consensus Control for Multiagent 

Systems under Asymmetric Actuator 
Saturations with Applications to 

Mobile Train Lifting Jack Systems [6] 

Multi-agent system control theory; 

consensus-based control algorithm; 
Lyapunov-based stability analysis; 

real-world TLJS experiments. 

Offers an adaptive consensus 

control for asymmetric actuator 
systems, applicable to TLJSs for 

safer and smarter operations. 

5 HIRADC Analysis for Rolling Stock 
Body Lifting Ngrombo Railway 

Maintenance Center [16] 

HIRADC methodology: hazard 
identification, risk assessment, and 

control determination for lifting 

activities. 

Provides an applicable HIRADC 
model for railway maintenance 

safety system improvement. 

6 Dynamic Simulation of Railway 

Locomotive and Detection of 

Electromechanical Equipment Based 
on Virtual Reality Technology [17] 

Matlab-Simulink for motion 

simulation; VR for visualization and 

training; CAD for disassembly 
simulations. 

Pioneers VR-integrated simulation in 

rail operations and training; 

improves realism and maintenance 
efficiency. 

7 Mechanical Analysis on the Frame of 

JC-17B Mobile Lifting Jack [18] 

Simulations using Pro/E and 

ANSYS; static analysis (stress and 
strain), buckling, and vibration 

frequency analysis. 

Provides a strong theoretical basis 

for future development of lifting jack 
frames and the prevention of 

structural resonance. 

8 A Predictive Safety and Maintenance 
Framework for Railway Locomotives: 

Integrating HAZOP, FMEA, and IoT-
Based Risk Mitigation (Present) 

Case study in Indonesian depot; 
identified risks with HAZOP & 

FMEA; developed IoT system 

Provides a replicable predictive 
framework for railway components; 

supports future smart maintenance 
using AI and digital twin. 
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While HAZOP and FMEA are both widely 
applied in industrial safety analysis, the literature 
reveals that their integration remains limited in 

scope, often confined to sequential or manual 
application without digital support. Most studies 
conduct HAZOP and FMEA separately or use 
them as static tools for pre-operational risk 
assessment, which lack adaptability in dynamic 

environments such as railway maintenance 
depots. For example, prior works often use 
HAZOP to identify hazards [7][19] and FMEA to 
prioritize them [12][20], yet fail to incorporate real-

time data or feedback loops to continuously 
update risk levels. Additionally, integrated 
HAZOP-FMEA frameworks [21][22] often overlook 
the potential of IoT-based data to enhance failure 

mode detection and risk prediction. This study 
addresses these limitations by introducing a fully 
integrated, real-time predictive system that fuses 
HAZOP and FMEA with IoT sensor data, enabling 
dynamic risk re-evaluation and early warning 

capabilities. This approach goes beyond static risk 
registers and offers a novel contribution to digital 
safety systems, particularly in high-risk 
environments such as locomotive maintenance. 

Despite the valuable contributions of 
previous studies, none have comprehensively 
integrated formal risk analysis methods such as 
HAZOP and FMEA with Internet of Things (IoT) 
technology into a real-time predictive system for 

monitoring the condition of locomotive lifting jacks. 
In fact, workplace accidents involving lifting 
equipment in railway depots still frequently occur 
due to undetected functional failures. Therefore, 

the present study is of particular importance as it 
offers a predictive safety and maintenance 
framework that combines structured risk 
assessment with digital transformation through 
IoT sensors. This approach is expected to 

enhance both efficiency and safety in 
maintenance activities, while also paving the way 
for the development of intelligent, data-driven 
maintenance systems in the future. 

The advancement of Internet of Things (IoT) 
technology presents new opportunities to 
implement sensor-based monitoring systems 
capable of detecting anomalies in lifting jack 
operations in real time. IoT enables direct data 

collection from operating equipment, transmitting 
information to monitoring systems that analyze 
failure patterns and provide early warnings  [23, 
24, 25]. Through this approach, maintenance 

practices can shift toward predictive maintenance 
systems, in which potential issues are identified 
and addressed proactively—before they disrupt 
operations. 

Although HAZOP and FMEA methods have been 
widely applied in industry, the integration of these 
approaches with IoT technology to develop an 

effective predictive maintenance system remains 
relatively rare. Currently, there is a lack of 
comprehensive frameworks that combine 
HAZOP-FMEA-based risk analysis with real-time 
IoT-based monitoring in the context of railway 

maintenance. Yet, such integration has the 
potential to deliver significant benefits in improving 
workplace safety and maintenance efficiency. 

This study aims to address this gap by first 

conducting a risk analysis of lifting jack failures 
before developing an IoT-based monitoring 
system. The system will employ a combination of 
sensors to continuously monitor the operational 

parameters of the lifting jack in real time. The 
collected data will be analyzed using the Risk 
Priority Number (RPN) method from FMEA to 
determine risk levels [10] and design more 
effective mitigation strategies. 

The main contributions of this study include: 
1. The development of an IoT-based predictive 

maintenance framework that integrates 
HAZOP and FMEA methods for detecting lifting 

jack failures; 
2. The implementation of IoT sensors in a real-

time monitoring system, enabling earlier 
anomaly detection compared to conventional 
inspection methods; 

3. The optimization of risk mitigation strategies 
through a data-driven approach, thereby 
improving maintenance efficiency and 
reducing the likelihood of workplace accidents. 

Through this approach, the study aims to provide 
an innovative solution applicable to the railway 
industry, enhancing both workplace safety and 
maintenance effectiveness. 

This article is structured to provide a 

comprehensive overview of the conducted 
research. The Literature Review section 
discusses the fundamental concepts of locomotive 
maintenance, the application of HAZOP and 

FMEA in industrial risk management, and the 
utilization of IoT in predictive maintenance 
systems. The research methodology section 
describes the proposed framework, data 
collection, risk analysis, and the design of the IoT-

based monitoring system. The results and 
discussion section presents experimental 
outcomes and system evaluation, including the 
effectiveness of integrating HAZOP and FMEA 

with real-time monitoring. Finally, the conclusion 
and Recommendations section summarizes the 
key findings of the study and provides suggestions 
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for future developments in predictive maintenance 
systems within the railway industry. 
  

METHOD 

Research Framework 
This study was conducted at a railway 

company in Indonesia that operates a locomotive 
maintenance facility utilizing a lifting jack system 

as the primary tool for servicing the underframe of 
locomotives (see Figure 2). The research focuses 
on one of the main locomotive maintenance 
depots, where lifting jacks are routinely used to 
elevate locomotives for the inspection and repair 

of critical components such as traction systems, 
brakes, and suspension. This study proposes a 
predictive maintenance framework that integrates 
HAZOP, FMEA, and IoT technologies to enhance 

occupational safety in locomotive 
maintenance[26][27].  

The study begins by identifying potential 
hazards in lifting jack operations using the HAZOP 
method and assessing failure modes through 

FMEA. Once the risks are identified, IoT sensors 
are employed to collect real-time operational data 
to detect anomalies before failures occur, and the 
study begins with hazard identification using the 

HAZOP (Hazard and Operability Study) method, 
aimed at identifying potential operational 
deviations that could lead to accidents or system 
failures in the lifting jack. Once the hazards are 
identified, FMEA (Failure Modes and Effects 

Analysis) is applied to evaluate possible failure 
modes and their impacts on the system. The 
results of this analysis are used to determine the 
level of risk and prioritize the necessary mitigation 

actions. 
To enhance the reliability of predictive 

maintenance, IoT sensors are installed on the 
lifting jack to collect real-time operational data. 

The collected data includes information on the 
position, tilt, and stability of the lifting jack during 
operation.  

 
 

Figure 2. Lifting jacks for locomotive maintenance 

Ultrasonic and gyroscope sensors are used to 
ensure the stopper's position and detect potential 
imbalances. The collected data are analyzed 
using anomaly detection algorithms to identify 

deviations from normal conditions before failures 
occur. When operational parameters exceed safe 
limits, the system issues early warnings to enable 
preventive actions. 

The final stage of this study involves the 
implementation of an integrated framework 
combining risk analysis through HAZOP and 
FMEA, IoT-based data collection, and real-time 
monitoring with anomaly detection. Data from the 

IoT sensors is transmitted via an ESP32 
microcontroller to Google Firebase, enabling real-
time monitoring of the lifting jack’s condition. With 
this system in place, maintenance can be carried 

out predictively, thereby reducing the risk of 
equipment failure that could potentially lead to 
workplace accidents. Overall, the research 
methodology provides an innovative approach to 
IoT-based predictive maintenance by integrating 

risk analysis with real-time monitoring. The 
proposed system is expected to improve the lifting 
jack’s safety and efficiency, minimize unexpected 
failures, and ultimately enhance workplace safety. 

[28]. The overall research framework integrating 
HAZOP, FMEA, and IoT-based monitoring is 
illustrated in Figure 3. 

 

IoT-Based Predictive Maintenance System 
This study proposes an IoT-based 

predictive maintenance system to enhance 
occupational safety in the maintenance of 
locomotive lifting jacks. The system is designed to 

monitor the condition of the lifting jack in real time 
by integrating various devices, sensors, and 
communication technologies. The system 
architecture consists of several key components, 

including sensor nodes, a router, a database, and 
a web- or mobile-based monitoring platform 
[29][30]. Figure 4 presents the overall architecture 
of the proposed IoT-based predictive maintenance 
system, including sensor nodes, communication 

modules, and the monitoring platform. 
 

 

Figure 3. Enhancing Workplace Safety in 
Locomotive Maintenance 
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Figure 4. IoT-Based Predictive Maintenance 

System 
The sensor node serves as the core unit of 

the system, responsible for collecting data from 
the lifting jack. It comprises a NodeMCU ESP32, 

which functions as the microcontroller and primary 
communication module [31][32]. The ESP32 
processes data from the sensors and transmits it 
to the server via the internet. The HC-SR04 sensor 

is used to measure the height or distance of the 
lifting jack stopper to ensure safe positioning 
during operation [33][34], while the MPU6050 
sensor functions as both an accelerometer [35] 
and a gyroscope to detect tilt or imbalance in the 

lifting jack [36]. The data collected by these 
sensors is processed by the ESP32 and 
transmitted to the internet through a router for 
further monitoring. 

The router acts as a communication bridge 
between the sensor node and the internet [37]. 
After the sensor node gathers operational data, 
the router sends the data to the cloud via an 
internet connection. The router ensures fast and 

real-time data transmission to the monitoring 
system. Once the data is sent online, it is stored in 
a cloud-based database such as Google Firebase 
or other web platforms. This database serves as 

the primary storage for all operational data, which 
can later be analyzed to detect anomalies or 
predict lifting jack failures. 

The system enables sensor data to be 
monitored from various devices, including 

computers at the data center and mobile devices. 
The data center functions as the monitoring hub, 
presenting sensor data in the form of graphs, 
trends, and advanced analytics, allowing 

operators or technicians to access this information 
for maintenance decision-making. Additionally, 
the data can be accessed via mobile devices 
through a web-based application or Firebase 
interface. If an anomaly is detected in the lifting 

jack’s operation, the system will issue a 
notification or alert to the user, enabling prompt 
preventive action. 

Overall, the system integrates sensor 

nodes, communication networks, cloud storage, 
and monitoring platforms to enable effective 

predictive maintenance. With real-time monitoring, 
the risk of lifting jack failure can be minimized, 
maintenance efficiency can be improved, and 

workplace safety can be better ensured. The 
implementation of this system will assist operators 
in maintaining the optimal condition of the lifting 
jack and preventing accidents caused by 
equipment failure.  

 

Sensor Data-Based Failure Prediction 
Algorithm 

The methods used in the completion of the 

research are written in this section. The method 
includes research chronologically, including 
research design, research procedure (in the form 
of algorithms, Pseudocode or other), instruments, 

and analysis techniques used in solving problems. 
In addition, the description of the course of 
research should be supported by references so 
that the explanation can be accepted scientifically. 

This code is designed to detect potential 

system failures in an IoT-based environment using 
the NodeMCU ESP32 as the main microcontroller. 
The system utilizes two types of sensors: the HC-
SR04 for distance measurement and the 

MPU6050 for detecting tilt angles and 
acceleration. During the initialization phase, the 
microcontroller is configured to read data from 
both sensors and connect the device to a WiFi 
network in order to transmit the data to Firebase 

for real-time monitoring. 
During data acquisition, the HC-SR04 

sensor measures distance using ultrasonic waves, 
while the MPU6050 reads acceleration and 

converts it into tilt angles. The system then 
analyzes both sensor inputs to detect anomalies, 
and if the distance change exceeds a predefined 
threshold, it is considered a potential mechanical 
failure. Likewise, if a significant change in tilt angle 

is detected, the system identifies a possible 
imbalance in the lifting jack that could affect its 
stability. In the event of an anomaly, a warning 
message is displayed through the Serial Monitor. 

To ensure the data can be accessed and further 
analyzed, the system transmits sensor data to 
Firebase every five seconds, including distance, 
tilt angle, and anomaly status. Firebase serves as 
a cloud storage platform that enables users to 

monitor the data in real time via computer or 
mobile devices. With each iteration of the loop, 
new data is updated and compared to the previous 
data to improve the accuracy of failure pattern 

detection. The workflow of the sensor data-based 
failure prediction algorithm is illustrated in Figure 
5. 
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Figure 5. Sensor Data-Based Failure Prediction 

Algorithm 

 
RESULTS AND DISCUSSION 

Risk Assessment Results Using HAZOP-FMEA 
To carry out the HAZOP and FMEA 

analyses in a structured and credible manner, a 

multidisciplinary brainstorming team was formed 
at the PT KAI UPT locomotive maintenance depot. 
The team consisted of seven members with varied 
roles and expertise, ensuring comprehensive risk 

identification and evaluation. Table 2 presents the 
composition of the team, including field operators, 
an engineer, a supervisor, and a safety officer, 
each contributing to different aspects of the 

analysis process. 
The HAZOP (Hazard and Operability Study) 

method was applied to systematically identify 
potential hazards in the operation of lifting jacks 
used for locomotive maintenance. This analysis 

focused on deviations from normal operating 
conditions that could lead to workplace accidents 
or equipment failures. Each deviation was 
categorized based on possible causes, associated 

risks, and suggested preventive actions. Table 3 
presents the results of this analysis. 

The HAZOP analysis identified three critical 
deviations (see Table 3): jack wheel instability, 
stopper malfunction, and unstable electrical 

supply. These issues pose significant operational 
and safety risks, potentially leading to accidents or 
system failures. Mitigation measures such as 
automatic sensor integration, electrical system 

reinforcement, and additional safety locks were 
proposed to enhance system reliability. 

Table 2. Brainstorming Team Composition 
No Division Position Role in the Analysis Years of Experience 

1 Operator Mechanic Field Expert (Lifting Jack Ops) 7 years 
2 Operator Mechanic Field Expert (Maintenance) 6 years 
3 Operator Mechanic Field Expert (Operation) 5 years 
4 Operator Mechanic Recorder 4 years 
5 Engineering Maintenance 

Engineer 
Technical Expert (System Design) 8 years 

6 Safety 
Department 

Safety Officer Safety Advisor (K3 Compliance) 9 years 

7 Supervision Supervisor Facilitator (SOP & Coordination) 10 years 

Table 3. HAZOP Worksheet. 
No Process 

Identified 
Issues 

Possible 
Consequences 

Risk Matrix 
(L, C, R) 

Safeguards Recommendations 

1 Preparing the 

jack 

Jack's wheel 

detaches 
from the axle 

The jack may tilt 

or fall 

3, 2, M None Add a locking nut on 

the wheels 

2 The lifting 

process starts 

The stopper 

does not rise 
and does not 

push the load 
support 

Load support 

does not move 
up, motor 

overheats, and 
locomotive tilts 

5, 4, E None Perform testing 

before use, add an 
automatic sensor on 

the motor, and install 
additional safety 

nuts on the stopper 

3 Holding the 
locomotive 

Voltage 
below 220V 

The jack cannot 
sustain the load 

for long, sudden 

drops, and 
reduced motor 

power 

3, 4, H None Replace cables 
between jacks, and 

improve the 

electrical power 
distribution system 
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Building upon the findings from HAZOP, a 
Failure Modes and Effects Analysis (FMEA) was 
conducted to assess potential failure modes, their 

severity, occurrence likelihood, and detection 
capability. The Risk Priority Number (RPN) was 
calculated to rank failure risks and prioritize 
mitigation strategies. Table 4 presents the results 
of the FMEA analysis. 

As shown in Table 4, two failure modes, 
stopper malfunction and motor overheating, 
received the highest RPN score of 512, indicating 
that they are high-risk failure modes that require 

immediate mitigation. These failures are closely 
linked, as the failure of the stopper to rise places 
additional strain on the motor, leading to 
overheating. Meanwhile, the third failure mode, 

uneven jack height (tilting), has an RPN of 504, 
which is also considered critical. Although slightly 
lower, it poses a significant safety hazard due to 
the risk of locomotive instability during lifting 
operations. To address these risks, appropriate 

control measures such as pre-operation testing, 
routine component maintenance, and the 
installation of calibration sensors were proposed. 
These controls aim to reduce the likelihood and 

impact of failure modes while improving detection 
capability. 

Root Cause Analysis Using 5W+1H 
To further understand the underlying 

causes of stopper failures, a 5W+1H (What, Who, 

Why, When, Where, How) analysis was 
conducted. This method helps pinpoint failure root 
causes and determine targeted solutions. 

The 5W+1H analysis confirmed that the 
primary causes of stopper failure were loose 

locking mechanisms, excessive motor runtime, 
and inconsistencies in jack height adjustment (see 
Table 5). To prevent recurrence, locking nuts, 
automatic shutdown sensors, and jack height 

sensors were recommended as key solutions. 
 

IoT System Performance Evaluation 
The evaluation of the IoT system 

performance aims to assess the accuracy, 
stability, and responsiveness of the sensors in 
monitoring the condition of the lifting jack in real 
time. The sensor node used in this system 
consists of an ESP32 microcontroller, an 

MPU6050 gyroscope, and an HC-SR04 ultrasonic 
sensor. These components work together to 
detect changes in the tilt angle and height of the 
lifting jack and transmit the data to a web-based 

platform. 

Table 4. Failure Mode Identification Using FMEA  
Component & 

Function 
Material 

Failure 
Mode 

Effect of Failure 
Cause of 
Failure 

S O D RPN 
Control 

Detection 

Stopper 
(support to hold 
load movement) 

Steel Stopper 
does not 
rise 

Load support 
does not move 
up, locomotive 
remains 
stationary 

The stopper 
nut becomes 
loose 

8 8 8 512 Perform pre-
operation testing 

Drive motor – Motor 
overheats 

Potential motor 
damage, failure 
to lift load 

The stopper 
does not move 
up, causing the 
motor to keep 
running 

8 8 8 512 Conduct periodic 
maintenance on 
stopper 
components 

Lifting jack 
system (multi-
point stopper 
align) 

– Uneven 
jack height 
(tilting) 

Locomotive 
becomes 
unstable and tilts 

Height 
deviation 
among 
stoppers on 
each jack 

9 7 8 504 Calibrate each 
jack, install height 
sensors for 
leveling 

Table 5. 5W+1H Failure Analysis of Stopper Component  

What Who Why When Where How 
Potential 
Solution 

The stopper 

does not rise 
and fails to 

push the load 
support 

Operator Loose stopper 

nut 

During the jack 

operation 

Worksite Monthly check Install locking 

nut and 
automatic 

sensor 

Motor 

overheating 

Operator Stopper failure 

causes the 
motor to keep 

running 

During the jack 

operation 

Worksite Monthly check Install 

automatic 
switch-off 

sensor 
Locomotive 

tilts 

Operator Uneven jack 

height 

During jack 

operation 

Worksite Monthly check Install height 

sensors to 

standardize 
jack height 
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The sensor node used in this system plays 
a crucial role in the monitoring process. Figure 6 
illustrates the sensor node configuration, which 
consists of several main components: the ESP32 

microcontroller, responsible for processing data 
and transmitting it to the IoT platform; the 
MPU6050 gyroscope, which measures the tilt of 
the lifting jack to detect its stability; and the HC-

SR04 ultrasonic sensor, which measures the 
distance between the lifting jack and the surface 
to monitor lifting height. In addition, the system 
uses a 9V battery as the main power source, 
allowing the device to operate independently. 

The graph in Figure 7 presents a 
comparison of distance measurements between 
the HC-SR04 sensor and manual measurements 
using a measuring tape across ten consecutive 

trials. The graph indicates that the results from 
both methods are very close, with nearly identical 
trend lines. This demonstrates that the HC-SR04 
sensor possesses a high degree of accuracy in 
measuring vertical distance within the lifting jack 

system. The difference—illustrated by the gray 
line—remains close to zero at each measurement 
point, indicating that the deviation between the 
sensor readings and manual measurements is 

minimal and consistent.  
 

 
Figure 6. Overview Sensor Node IoT 

 

 
Figure 7. Distance Measurement Comparison 

Between the HC-SR04 Sensor and Measuring 
Tape 

 

This proves that the HC-SR04 ultrasonic sensor is 
capable of providing data nearly equivalent to that 
obtained through conventional measurement 
methods, making it suitable for use in IoT-based 

monitoring systems. The consistency of these 
results also shows that the sensor performs stably 
across various distance ranges, from short to long, 
without showing significant deviations. Therefore, 

the use of the HC-SR04 sensor in this system 
enhances the efficiency and effectiveness of real-
time lifting height monitoring without 
compromising data accuracy. 

The graph above (Figure 8) presents a 

comparison of tilt angle measurements between 
the MPU6050 sensor and a manual measurement 
reference using an inclinometer. The results from 
ten trials show that both devices exhibit a nearly 

identical trend pattern, with angle values steadily 
increasing throughout the trials. The difference 
line, depicted by the gray curve, indicates that the 
deviation between MPU6050 and inclinometer 
readings remains very small and stable, reflecting 

minimal deviation.  
This indicates that the MPU6050 sensor 

shows high accuracy and precision in detecting tilt 
angle changes. Its performance suggests that the 

gyroscope-accelerometer technology is reliable 
enough to replace conventional instruments, 
particularly in IoT-based angle monitoring systems 
requiring real-time accuracy and stability. With its 
low deviation and high accuracy, integrating the 

MPU6050 into the lifting jack system can 
significantly improve position monitoring and 
enhance operational safety. To statistically 
validate the accuracy of the HC-SR04 and 

MPU6050 sensors, a paired t-test was conducted 
comparing sensor measurements with manual 
reference values (using a measuring tape and 
inclinometer, respectively) across ten trials.  

 

 
Figure 8. Comparison of Tilt Angle 

Measurements Between MPU6050 Sensor and 
Inclinometer 
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The null hypothesis assumed no significant 
difference between the two measurement 
methods. For distance measurement (HC-SR04 

vs. measuring tape), the t-test yielded a p-value of 
0.421 (α = 0.05), indicating that there is no 
statistically significant difference between sensor 
and manual readings. Similarly, for tilt angle 
measurement (MPU6050 vs. inclinometer), the p-

value was 0.389, also exceeding the 0.05 
threshold. These results support the conclusion 
that both sensors provide measurements that are 
statistically equivalent to conventional tools, 

thereby confirming their reliability for use in 
predictive monitoring systems. The inclusion of 
this statistical test reinforces the accuracy claims 
presented earlier in the graphical comparisons 

(Figures 7 and 8), offering a more robust 
justification for the adoption of IoT-based 
measurements in critical maintenance tasks. 

The graph above (see Figure 9) illustrates 
the number of sensor data transmissions to the 

database over a 10-day period, from May 6 to May 
15, 2024. Four key indicators are presented in this 
graph: the number of actual data successfully 
transmitted (Number of Data), the ideal number of 

data that should have been transmitted (Ideal), the 
number of lost data points (Loss Data), and the 
percentage of data loss (% Loss Data). Overall, 
the number of actual data received is slightly lower 
than the ideal number each day, indicating some 

data loss during the transmission process. 
However, both the absolute and percentage 
values of data loss remain low and relatively 
consistent on a daily basis, which reflects the 

stability of the IoT data communication system. 
The system's performance in transmitting sensor 
data to the database can be considered reliable, 
given the minimal data loss observed.  The losses 
are likely caused by external factors such as 

network disturbances, brief power interruptions, or 
server latency.  

 

 
Figure 9. Measurement of Sensor Data 

Transmission to the Database 

Therefore, the IoT system used in this study 
demonstrates high reliability and is suitable for 
continuous long-term monitoring applications. 

Figure 10 displays the web interface of the 
Lifting Jack monitoring system, accessible via a 
browser on a PC or laptop. This interface shows 
two key parameters from the sensor readings in 
real time: distance and inclination. The detected 
distance is 5.68 cm, measured by the HCSR-04 
ultrasonic sensor. Meanwhile, the inclination 
values along three axes (X, Y, and Z) are recorded 
by the MPU6050 sensor, with results of X: -0.01 
rad, Y: -0.03 rad, and Z: 0.30 rad, respectively. 
This information is crucial for accurately 
monitoring the condition and stability of the lifting 
jack, especially to ensure that the lifting process 
occurs within safe inclination limits. The interface 
is designed to be simple yet informative, 
facilitating quick user comprehension of the tool’s 
condition and enhancing the effectiveness of 
remote monitoring within the implemented IoT 
system. 

Figure 11 illustrates the real-world 
implementation of the sensor monitoring system at 
a locomotive maintenance company, carried out 
by a field technical team.  

 

 
Figure 10. Web Interface of the Lifting Jack 

Monitoring System 
 

 
Figure 11. System Implementation in a 

Locomotive Maintenance Company 
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The image shows two main activities during 
the installation and testing process: on the left 
side, the team is seen installing or calibrating the 
sensor on the structure of the lifting jack, which is 
used to elevate the locomotive body for 
maintenance or inspection purposes. On the right 
side of the image, the team is testing sensor 
readings beneath the locomotive, likely validating 
distance or inclination measurements directly 
using a mobile device and minicomputer. The 
presence of personal protective equipment (such 
as safety helmets and work uniforms) indicates 
that the activity is conducted following 
occupational safety procedures. This 
documentation demonstrates that the developed 
system is not limited to simulations or laboratory 
setups but has been successfully deployed in a 
real industrial environment. It forms part of the 
ongoing digitalization of locomotive maintenance 
processes through the application of IoT 
technology. 

Compared to previous studies (see Table 1) 
that mostly focused on structural analysis, 
technical simulations, or static risk evaluation 
models, this research offers a new contribution by 
integrating HAZOP and FMEA methods into an 
IoT-based sensor system. This approach makes 
risk analysis more dynamic and adaptive through 
real-time data support, providing a significant 
improvement in risk mitigation effectiveness and 
opening opportunities for the development of 
intelligent maintenance systems in the future. 

Implications for the Railway Industry  

Cost Efficiency & Enhanced Work Safety 

through Predictive Maintenance 
The implementation of IoT-based predictive 

maintenance in the railway industry offers two 
major benefits: cost efficiency and improved work 

safety. By enabling early detection of potential 
equipment failures, this system helps reduce 
downtime, extend equipment lifespan, and lower 
maintenance costs by up to 30–40% compared to 
time-based maintenance [38]. To support the cost-

efficiency claim, a simplified estimation was 
conducted by comparing traditional time-based 
maintenance with an IoT-based predictive 
maintenance system applied to locomotive lifting 

jacks. In a conventional system, the total annual 
cost, including routine inspections and unplanned 
repairs, can reach approximately IDR 136 million 
per lifting jack unit. This is primarily due to frequent 
breakdowns and rigid maintenance schedules. In 

contrast, an IoT-enabled predictive approach by 
reducing failure frequency, minimizing scheduled 
inspections, and providing real-time monitoring 
can lower annual costs to around IDR 49 million, 

including both sensor deployment and system 

maintenance. This results in an estimated cost 
saving of over 60%, validating the significant 
economic benefit of integrating IoT in 
maintenance operations. In this study, the use of 

HC-SR04 and MPU6050 sensors allows real-time 
monitoring of distance and inclination on lifting 
jacks, providing early warnings of deviations that 
may indicate failure risks. 

 

Potential Application of IoT in Other Railway 
Maintenance Systems 

The success of this predictive maintenance 
system demonstrates the broader potential of IoT 

implementation in other critical railway 
components, such as braking systems, 
suspension, bearings, and traction motor cooling 
systems. IoT excels at integrating sensor data 

collection, real-time transmission, and predictive 
analytics to identify wear or anomalies before they 
escalate [39]. Recent comprehensive reviews [40] 
have highlighted the rapid integration of IoT 
technologies into railway systems, emphasizing 

their capabilities in real-time data acquisition, 
embedded decision-making, and adaptable 
network infrastructures. These technological 
advancements strongly support the predictive 

maintenance framework proposed in this study, 
confirming the feasibility of extending IoT 
applications beyond lifting jacks to broader areas 
of railway asset monitoring and operational 
optimization. 

Using the same system architecture—
comprising sensor nodes, microcontrollers, 
wireless communication, and cloud storage—
railway companies can replicate this framework 

for various maintenance tasks in depots or 
onboard trains. Furthermore, predictive 
maintenance strategies enabled by IoT not only 
improve technical reliability but also contribute to 

reducing work-related accidents. As shown by 
[41], workplace accidents often correlate with the 
absence of preventive safety systems and poor 
policy enforcement, both of which can be 
addressed through automated early warning 

systems. 
This leads to the development of an 

interconnected maintenance system, where the 
condition of all major components is monitored 

centrally via digital platforms. Maintenance can 
thus shift toward a condition-based approach 
rather than relying solely on mileage or fixed 
intervals, enhancing flexibility and operational 
efficiency [42]. 

Furthermore, broad IoT adoption supports 
the realization of a smart railway system, where all 
assets—static and dynamic—are digitally 
connected for automated monitoring and control. 
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For example, traction motor cooling systems 
equipped with temperature and airflow sensors 
can self-regulate cooling intensity and issue 

warnings in case of overheating, preventing 
system failures. 

In this way, IoT evolves from a mere 
technical tool into a foundational element for the 
digital transformation and automation of railway 

maintenance. Companies that have successfully 
applied IoT to lifting jacks can leverage this 
advantage to expand its use, improving 
infrastructure integrity, reducing system failure 

risks, and fostering safer, more efficient, and 
modern railway operations. 
 

Future Research Directions 
While the predictive maintenance 

framework based on HAZOP-FMEA and IoT 
developed in this study has demonstrated high 
effectiveness in monitoring lifting jack systems, 
several promising avenues remain open for future 

research. One of the most strategic directions is 
the integration of Artificial Intelligence (AI) and 
Machine Learning (ML) into the predictive 
analytics system. The current anomaly detection 

approach, which relies on threshold-based 
parameters, works well for known failure patterns 
but is limited in identifying novel or complex 
anomalies. By utilizing ML algorithms such as 
decision trees, support vector machines, or deep 

learning, the system could be trained on historical 
data to detect early signs of failure with greater 
adaptability and precision. As suggested by [43], 
ML-driven fault detection systems in rolling stock 

offer significant improvements in accuracy and 
responsiveness [44][45]. 

Further research can also explore the 
application of this framework to other critical 
railway components, such as braking systems, 

axle bearings, and traction motors. A multi-sensor 
approach—integrating vibration, temperature, 
pressure, and current sensors—could provide 
more comprehensive insights into the condition of 

these subsystems. This also opens the 
opportunity to develop a Digital Twin, a dynamic 
digital representation of physical assets that 
enables real-time simulation, diagnostics, and 
optimization. According to [46], Digital Twins play 

a pivotal role in Industry 4.0 by facilitating more 
informed and context-aware maintenance 
decisions in intelligent transportation systems. 

Another important direction involves the 

integration of IoT-based monitoring systems with 
enterprise-level management tools, including 
Enterprise Resource Planning (ERP) and 
Computerized Maintenance Management 

Systems (CMMS). Such integration would ensure 
that sensor-generated data not only serves 
technical diagnostics but also supports 

operational workflows, such as spare part 
inventory management, technician scheduling, 
and safety auditing, leading to a fully digitized and 
streamlined maintenance ecosystem. In addition, 
longitudinal studies are needed to evaluate the 

real-world performance of the IoT system, 
particularly its hardware durability in harsh 
environments and data transmission stability 
under varying network conditions. This includes 

assessing long-term energy efficiency and 
ensuring the system's compatibility with daily 
operational requirements in railway maintenance 
contexts. 

 

CONCLUSION 
This study proposed an IoT-based 

predictive maintenance framework by integrating 
HAZOP and FMEA methods to improve the safety 

and reliability of locomotive lifting jacks. The 
significant results show that the developed IoT 
system can detect anomalies in real time with high 
accuracy and low data loss, while also identifying 

critical failure points in the stopper and drive motor 
with RPN values reaching 512. Statistical testing 
further confirmed that sensor measurements were 
not significantly different from manual references, 
validating the system’s reliability in operational 

monitoring. The main finding of this research is the 
transformation of traditional risk analysis into a 
dynamic, data-driven framework. Its contribution 
lies in strengthening the empirical aspect through 

field validation, the theoretical aspect by 
advancing an adaptive HAZOP-FMEA model, and 
the scientific aspect by providing clear evidence of 
the superiority of IoT integration over conventional 
methods, while also paving the way for future 

applications of artificial intelligence and digital 
twins in smart maintenance strategies.  
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