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Abstract

Machine failure detection frequently uses non-destructive monitoring
techniques such as vibration analysis. Although vibration analysis can
identify machine degradation, the apparatus is often costly and
necessitates specialist knowledge. Additionally, many existing
methods in audio classification rely on characteristics represented as
pictures or vectors, which increases computational complexity. In
contrast, this research introduces a novel method that substitutes
vibration data with a singular numerical feature derived from audio
signals, addressing both cost and complexity issues. Our objective is
to develop a rapid and precise audio-based method for detecting
machine damage. The acoustic signals from the machine apparatus
were classified into three categories: normal, belt damage, and
combined belt and bearing defect. The data processing technique
involved lowering the sample rate and segmenting the data to improve
computational efficiency and classification performance. We use the
Welch method and appropriate statistical techniques to analyze
Power Spectral Density (PSD). The performance of seven classifier
models, KNN, LDA, SVM, NB, ANN, RF, and DT, was evaluated using
accuracy, precision, sensitivity, specificity, and F-score. LDA
achieved the highest accuracy at 92.83%, followed by ANN (92.75%),
NB (92.74%), and DT (92.34%). These models outperformed KNN
(89.90%) and RF (89.40%), with SVM recording the lowest accuracy
at 85.40%. LDA was highly effective, achieving the highest accuracy
with a single average PSD-type feature, showcasing its robustness in
machine defect diagnosis. Compared to previous methods, this
approach simplifies feature extraction, reduces computational
demands, and maintains high diagnostic performance, providing
notable benefits in terms of effectiveness and precision.
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INTRODUCTION
Rotating machinery  constitutes the

improve machine
decrease operational and maintenance costs [2],

reliability and substantially

foundation of the manufacturing industry. Any
damage or malfunction in these components
during operation might severely affect the
system's performance [1]. Consequently, it is
crucial to develop effective and accurate methods
for diagnosing and categorizing problems to

[3]. The Electric Power Research Institute reports
that bearing components constitute an astonishing
41% of failures in rotating machinery.
Consequently, machines with rotating
components have emerged as a significant focus
of research, with an opportunity to employ artificial
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intelligence methodologies for high-performance
maintenance practices [4][5].

Cost-effective maintenance of industrial
machinery often involves the use of spinning parts
to perform particular tasks. This system consists
of gears, rotor shafts, rotors linked by fasteners,
and bearings. Rolling bearings play a crucial role
in industrial machinery by enabling the rotation of
components with minimal friction. [6]. As a result,
previous studies have thoroughly explored rolling
bearings. The primary causes of problems are
generally localized wear on the inner race (BPFI),
the outer race (BPFO), or the balls (BSF) of the
bearing. Defects on the rolling surface may
include cracks, voids, and fragments. The most
common type of damage occurs when a ball
contacts a slight imperfection. A crash between a
rolling component and a flaw generates a bump
that causes high-frequency vibrations throughout
the structure [7]. According to Lou et al. [8], when
capacitive contact occurs, applying a voltage
exceeding 73% of the total breakdown voltage
causes metal erosion within the bearing and
damages its lubricating layer. As a result, the
capacitive contact transitions to a resistive
contact, which helps reduce electrical erosion
while accelerating oxidation.

The essential components of a condition
monitoring system are defect identification and
severity assessment [9]. This is vital, especially in
critical systems  necessitating  continuous
operation. Various approaches have been
proposed to track and assess rolling element
bearings, given their vital role in rotating
machinery and the severe consequences of

undetected damage [10]. Chen et al. [11]
emphasized that the sampling frequency
significantly influences fault diagnosis

performance, underscoring the importance of
data-acquisition  settings. Most diagnostic
methods aim to identify faults and assess their
severity, essential for uninterrupted functioning in
critical systems [12][13]. The ball-passing
frequency, a typical defect frequency, arises from
periodic impacts determined by the bearing's
shape and rotational rate. Despite noise from
other components, which can obscure or distort
signals, researchers have consistently highlighted
the FFT's reliabilty and well-established
capabilities for diagnosing bearing faults [14].
While FFT-based analysis is robust, its
implementation can be costly due to the
specialized equipment required. To address this
limitation, a promising alternative is to substitute
vibration signals with audio signals captured by a
mobile phone. Vibration signals are typically
measured using specialized sensors such as
accelerometers or piezoelectric transducers,

which detect minute changes in the vibrations of
machine components. These signals are then
processed using signal conditioning equipment
and data-acquisition systems to extract
meaningful fault-diagnosis information.

Non-destructive monitoring techniques,
specifically vibration and acoustics, are the
predominant methods for diagnosing machine
failures [15]. Recent review studies have been
undertaken to elucidate common defects in rolling
bearings, and analytical methodologies, including
the research presented by [16]. Other reviews
focus on identifying the most reliable indicators to
improve defect-detection accuracy. Kuncan [17]
evaluated different machine learning techniques,
including Support Vector Machine (SVM), k-
nearest neighbors (KNN), Artificial Neural Network
(ANN), Linear Discriminant Analysis (LDA),
Logistic Regression (LR), and Gray Relational
Analysis (GRA), for detecting bearing faults. The
GRA approach achieved a 100% success rate
across the complete set of four signal datasets
used for bearing signal classification, while SVM
and LDA also yielded commendable classification
results. Hosseini et al. [18] proposed an algorithm
that emphasizes the benefits of employing a
Projection Recurrent Neural Network within an
SVM framework. The findings suggest that the
suggested model exceeds the recently developed
models in fault detection accuracy. An extensive
analysis of the most commonly utilized ML models
for bearing defect detection is provided to ensure
appropriate deployment [19].

Synthesizing this literature reveals that
while vibration and acoustics-based monitoring
combined with advanced machine learning (ML)
algorithms have shown promise in machine fault
detection, several key gaps persist. Many studies
either focus exclusively on a single signal type or
fail to thoroughly assess the effectiveness of
specific feature-extraction techniques, thereby
limiting their practical applicability. Additionally,
while significant research has been conducted on
the use of Power Spectral Density (PSD) features
and ML models for fault classification, these efforts
often rely on multiple features or complex models
like deep learning, which are computationally
intensive and not always optimal for real-time
applications. A notable gap in the literature is the
lack of studies on using a single, computationally
efficient PSD feature—particularly one derived
from the Welch method’s statistical value—to
identify and classify machine damage types. This
is significant because such a streamlined
approach simplifies feature extraction and enables
more efficient industrial deployment without
sacrificing diagnostic performance.
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Figure 1. The overview of the machine acoustic signal classification process

Furthermore, despite the increasing
popularity of deep learning models in the field,
simpler models such as LDA or SVM have shown
competitive or superior performance in many
cases, particularly when the dataset is limited or
the problem structure does not warrant the
complexity of deep networks. This suggests that
simpler, more efficient models can be as effective
in specific diagnostic tasks. Our research
addresses this gap by applying the Welch
method's statistical value as a single feature
extraction technique, evaluated using a 5-fold
cross-validation scheme to ensure robust system
performance. This approach leverages the
strengths of audio-based monitoring and the
proven power of simpler ML models, offering both
scientific and practical contributions to machine
fault diagnosis, with significant improvements in
computational efficiency and cost-effectiveness
over traditional vibration-based systems.

MATERIAL AND METHOD

Our research aimed to develop a robust
system for accurately categorizing various types
of machine damage using acoustic pattern
analysis. The procedure for identifying damage
typically includes five key steps: data collection,
sound preprocessing, feature extraction, feature
selection, and classification. The approach for
defect identification is shown in Figure 1. The
machine’s  acoustic data undergoes a
preprocessing step to reduce computational time
and ensure suitability for further analysis. During
the second stage, the data within each segment is
transformed into PSD using the Welch algorithm,
with adjustments made to account for statistical
variations. Next, the Synthetic Minority Over-
sampling Technique (SMOTE) is used to create
supplementary samples. The feature selection

process then minimizes the influence of
unnecessary factors. Since only a limited number
of features are available, each feature’s
contribution to the classification performance is
thoroughly evaluated.

Audio Acquisition & Preprocessing

The data processing tasks were executed
on a personal computer powered by Windows 11
64-bit, equipped with an RTX 4080 Super graphics
card and a 14th-generation Intel Core 9
processor. In this experiment, the graphics card
was not utilized. The analysis was carried out in
MATLAB (version 2023b) [20], utilizing the Welch
method and classifiers from the MATLAB toolbox
to retrieve machine sound data from the dataset.
Table 1 summarizes the number of samples used
for classification. These numbers correspond to
the number of distinct chunks or segments
extracted from longer recordings. Each chunk
represents a specific portion of a continuous
recording, enabling more manageable, detailed
analysis during classification. The audio
recordings were captured using the built-in
recording function of a Vivo V21 mobile device at
a sampling rate of 48 kHz, with a maximum bitrate
of 127 kbps and support for stereo channels.
During data collection, the environment was
monitored for background noise, which was kept
to a minimum to ensure clear, accurate
recordings. However, occasional ambient sounds,
such as background chatter or environmental
noise, were present at low levels but were
considered negligible in the analysis. The
recordings were saved in the m4a format. The fan
booster apparatus used for these recordings is
shown in Figure 2, with its specifications provided
in Tables 2 and 3.
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Throughout the data collection stage, we
gathered sound samples from three different
machine scenarios involving fan boosters, which
were categorized as follows: (a) the vehicle belt is
in standard condition with properly adjusted
tension, (b) the van belt is loosely secured with
incorrect tension adjustment, and (c) the
serpentine belt is inadequately fastened, and the
bearings exhibit defects, that is a large bearing
clearance, which can lead to excessive play
between the bearing components. This increased
clearance can result in vibrations, noise, and

reduced load-carrying capacity, ultimately
affecting the performance and lifespan of the
machinery. Next, the audio data was

downsampled from 48 kHz to 22.05 kHz to
enhance computational efficiency. We also
converted the audio channel configuration from
stereo to mono. Initially, each category had over 3
hours of audio recordings. To manage this, we
segmented the audio into non-overlapping 5-
second sections. The audio data had a sampling
rate of 22.05 kHz, a bit rate of 22.05 kbps, was
recorded in a mono-channel configuration, and
was saved in the m4a format.

Audio Signal Feature Extraction & Selection

The Welch algorithm computes a modified
frequency-domain representation for each data
segment and then averages these representations
to estimate the PSD [21]. Constructed from PSD
estimates of different time-series segments, the
modified periodogram, produced using the Welch
method, provides an uncorrelated estimate of the
actual PSD. This averaging approach minimizes
fluctuations. This study aims to estimate the PSD
of machine audio signals using the Welch method.
The Welch method applies the Hann window
function to each data segment, which helps
reduce spectral leakage. By calculating an
adjusted periodogram for each segment and
averaging the results, the approach provides a
more accurate estimate of the PSD.

/ j ’
4Mobile Phone P

Fan Booster
V.

_

Table 1. Number of samples

Classes Number Percentage
Belt 2350 34.18
Belt-Bearing 2275 33.09
Normal 2250 32.73

Table 2. Specifications of the fan assembly

No. Description Specification
1 Brand Topindo Fan
2  Type RSH 500
3 Serial Number -
4 Fan Speed 1400 rpm
5  Power Supply 3 PH; 380/660 V; 50 Hz
6  Capacity 7800 m%h
7  Static Pressure 875 Pa (N/M?)
8  Fan belt Type V Belt B72
Table 3. Motor configuration
No. Description Specification
1 Type 1A1325-4
2 Serial Number -
3 Power 50 Hz; 5.5 Kw
4 Power Input 380/660 V 11.84 / 6.82 A ~ 440
VA 11.84 A
5 Speed 1440 rpm
6 Efficiency 85%
The overlap between adjacent segments

increases frequency resolution, while windowing
mitigates data loss at segment boundaries,
especially at edges.

The auditory data x and y, each comprising
N samples, are partitioned into blocks x®) and y®
of length L. The relevant blocks in the estimated

spectrum 5)({;‘) are presented in (1).

2-F (x(k) -w)-conj(F (y(k) w))

52w

The Fourier Transform F is applied to both
signals, with a window function w used to mitigate
edge effects and improve frequency resolution.
The term x* -w y* -windicates that the window
function is applied to the k-th data samples of the
signals before computing their respective Fourier
Transforms. The conjugate of the Fourier

Transform of y*', denoted as conj(F (y(k’ w)) is

(1)

SH(f)=

then multiplied by the Fourier Transform of x'*,
capturing the phase and amplitude relationships
between the two signals in the frequency domain.
The resulting product is divided by a normalization

factor, the sum of the squared weights w?, , which

accounts for the influence of the window function,
and by a scaling factor s, potentially related to the

Figure 2. Data acquisition on the fan booster signal length. The cross-spectrum is computed by
machine averaging the components in (2).
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A key reason for averaging the PSD over
multiple segments, as in the Welch method, is that
it reduces the variance of the periodogram. The
periodogram of a single segment often exhibits
high variance due to noise and short-duration
signals, leading to unreliable PSD estimates. By
averaging across overlapping segments, the
Welch method smooths out random fluctuations,
yielding a more consistent and statistically
significant estimate of the PSD. This approach
reduces bias arising from spectral leakage and
provides a more accurate representation of the
underlying signal's power distribution across
frequencies.

Following the Welch method, distinct 5-
second intervals of EEG data were analyzed
without overlap using a short-time Fourier
transform to compute the PSD properties. Seven
statistical measures, encompassing the mean,
median, mode, standard deviation, variance,
minimum, and maximum, were applied to
generate PSD attributes for each interval. The
most relevant feature was then identified by
evaluating the computational significance of these
measures and prioritizing outcomes based on the
analytical results derived from their statistical
properties.

x,'.=xi+r><(zl.j—xi) (3)

Equation 3 illustrates how the SMOTE
algorithm generates synthetic samples to address
class imbalance in sample sizes [22]. In this

method, a new synthetic sample x is created by

interpolating between an existing minority-class
samplex, and one of its randomly selected

neighbors z, . The interpolation is controlled by a

random factor r, which ranges from 0 to 1,
specifying the location of the updated sample

along the line segment linking x, z; and.

Classification

We obtained multiple enhanced features
after applying the SMOTE algorithm for data
balancing. We conducted experiments with seven
different models. These models were selected for
their simplicity, fast computation, and widespread
use in previous research.
1) k-nearest neighbors (KNN): In KNN, the
classification is based on the majority vote of the
k nearest neighbors to a data point [23]. The
decision rule is mathematically expressed as:

)A}:mOde(yhyz’“'ﬂyk) (4)

Where y, represents the class labels of the k
nearest neighbors of a point.

2) Linear Discriminant Analysis (LDA): LDA is a
method used for dimensionality reduction and
classification [24]. It seeks to find a linear
combination of features that best separates two or
more classes. For each class i, the mean vector is
defined as:

1
= X.
mEN ZL ) (5)
Where N, is the number of data points in class C,,
,andx; are the data points in class C, . The within-

class scatter matrix measures the variance within
each class:

s T
S = Z}: Z; (3= a1,)(x, ~ 1) (6)
Where k is the number of classes, and g, ¢ is the
mean of the class C,. The between-class scatter

matrix measures the variance between the class
means and the overall mean:

Sy = 2N (1= 40) st )’ @

Where u is the overall mean of all data points, and
N, represents the quantity of data points in class
C, . To find the optimal projection:

S, Sv=Av (8)

Wherev is the eigenvector andA is the
corresponding eigenvalue. The discriminant
function that LDA uses to classify a new sample x
is:

y = argmax (u,-TSJV‘x —%u,-TS{V‘/A» +log P(C,-)J (9)

Where P(C,) is the initial probability of the class C,

, and the other terms relate to the class-specific
means and scatter matrices. The decision rule
assigns the sample to the class with the highest
value.

3) Support Vector Machine (SVM): SVM
constructs a hyperplane to separate classes with
the maximum margin [25]. The decision function is
expressed as:
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@)=Y ayKrs) b (10)

Where ¢, are the Lagrange multipliers, y, are the
class labels, K(x,x,)is the kernel function, and b
is the bias term.

4) Naive Bayes (NB): In Naive Bayes, the
classification relies on Bayes' theorem, assuming
that the features are conditionally independent
given the class [26]. The rule is:

Pl Y)P(y)
P(x)
Where P(y| x) is the posterior probability, P(x| y)
is the likelihood, and P(y) is the prior probability.

P(yl x) = (11)

5) Artificial Neural Network (ANN): The output of
an ANN is calculated using the weights and biases
of the network and an activation function [27]. It is
mathematically represented as:

y=f(Wx+b) (12)
Where W represents the weights, x is the input
vector, b is the bias term, and f is the activation
function. The ANN is a medium-sized neural
network with 25 units per hidden layer and ReLU
activation. The parameter Lambda is set to 0,
indicating that no regularization is applied to
prevent overfitting. The lteration limit is set to
1000, specifying the maximum number of
iterations the network will perform during training.
Additionally, the standardize option is enabled,
meaning the input data is standardized to have a
mean of zero and a standard deviation of one.
These models were used to assess how well
various attributes identified damage to the fan
booster.

6) Random Forest (RF): Random Forest builds an
ensemble of decision trees and uses majority
voting to make predictions [28]. The decision rule
is given by:

¥ = mode(T,(x), T,(x).....T,,(x))

Where T,,(x) represents the prediction of the m-th

decision tree, and the mode is the majority vote
from all trees.

(13)

7) Decision Tree (DT): In a decision ftree,
decisions are made by splitting the dataset based
on feature thresholds [29]. The classification rule
can be represented as:

y=1(x)

Where f(x) corresponds to a series of conditional

checks based on the features of the input data.

The tests utilized optimal PSD features
extracted from the recorded acoustic data. To
ensure the reliability of the outcomes, we
performed both training and cross-validation by
splitting the dataset into five parts. Figure 3 shows
the training and testing process in one iteration.
SMOTE is applied only in the training phase. The
selection of the best features is also done only in
the training stage. The trained model is tested with
one type of PSD feature. The type of feature used
is obtained from information during training. It is
ensured that the data used in the testing phase
differs from that used during training. The outcome
is determined by assessing the model's accuracy
during testing. The highest-performing PSD
parameters for each class are stochastically
partitioned into two distinct groups: a model-
training cohort and an evaluation cohort.
Predictive reliability is assessed using criteria
such as F-score (a measure of precision and
sensitivity),  classification accuracy, actual
negative rate (specificity), detection rate (recall),
and overall correctness.

(14)

Calculation of Model Performance

Assessment is conducted within the
supervised learning framework [30]. The
confusion matrix structure assigns rows to

represent the correct class labels and columns to
denote the model-predicted classifications.

To refine error analysis, especially when
distinct groups are mapped to the same
categories, it is suggested to invert rows and
columns in confusion matrices, placing predicted
outcomes in rows and actual labels in columns.
This provides a clearer view of misclassification
patterns and enables more targeted
improvements in model performance.

TRAINING PHASE

Feature Classifier
{ 75% SMOTE ]i»{ Selectlon (5- fold)
Select Feature with |
The Best Accuracy

Provides informationon |/

the types of features /
\ used during testing.

V.d
259% Select one Trained Report
0 Feature Classifier Metrics
TESTING PHASE

Figure 3. One iteration overview of the training
and testing process.

Accuracy }

Dataset
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Each cell in the matrix captures a specific pairing
of real-world and algorithmic classifications.
Correct identifications (TP) arise when predictions
align with positive ground truths. Correct
rejections (TN) occur when both actual and
predicted labels are negative. Misclassifications
include false alarms (FP), in which negatives are
incorrectly flagged as positives, and misses (FN),
in which positives are incorrectly dismissed as
negatives.

TP+TN
TP+TN+FP+FN

Evaluating model performance metrics: (15) can
assess the accuracy of the model's predictions.
Equation 5 is used to assess the model's
performance, focusing on recall (sensitivity).

TP
+FN

To compute how precise the model is in
pinpointing the exact nature of the machine
damage, as shown in (16).

Accuracy = (15)

Sensitivity = 16
3% o (16)

TP
TP+ FP

Precision =

(17)

Equation 17 is applied to calculate the specificity
parameter.

Specificity = 7 N (18)

N+ FP
The F-score parameter is computed using (18).

2TP

F-score=—————
2TP+ FP+FN

(19)

RESULTS
Preprocessing and Feature Extraction Results
Before beginning feature extraction, it is
important to preprocess and examine the data to
ensure  smooth  implementation of the
classification process. Figure 4 depicts machine
sounds in the temporal domain. We randomly
chose three machine noise samples from each
category recorded in the same session. In the time
domain, signals show similar magnitudes and
distributions. Therefore, it is crucial to identify
unique features to highlight pattern differences
across various classes. To streamline
computational demands, dimensionality reduction
is achieved through feature selection. Figure 5
demonstrates the application of the Welch
algorithm for spectral estimation, enabling
bidirectional conversion between the temporal
waveforms and frequency-domain
representations of audio signals. This method
optimizes the analysis of signal energy distribution
across spectral bands.
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Figure 4. Machine audio in the time domain
R. P. Youlia et al., Towards enhanced acoustic fan booster damage detection: ... 179



SINERGI Vol. 30, No. 1, February 2026: 173-184

NORMAL BELT BELT & BEARING
x10™ x10™ %107
1 : %
5 6 4 g
L 4 2 4
> e
g _x10* x10™ x10™
a O 15
he)
4
5 10
@ 2 2 5
g ] Al
&  x10™ %10 x107
o 6 15
4 10
2 5
W e N i by

4 6 8 0 2 4 6 8

Frequency (kHz)
Figure 5. Power spectral density

Each fault state exhibits unique PSD
signatures. Broadly, dominant energy
concentration typically spans the 0—1 kHz spectral
band. A loose van belt condition manifests a
marked amplification of spectral energy below 1
kHz and near 7 kHz. Conversely, combined belt
instability and bearing degradation reveal
intensified energy within the 0—1 kHz range, with
a distinct maximum near 0.3 kHz. This contrast
highlights how mechanical faults alter frequency-
specific energy distributions. Using PSD can help
identify unique patterns specific to each category.
Since the PSD dataset contains a large number of
series, many of which are not helpful for
classification, we used seven statistical equations
as described in the classification chapter. To
isolate the most relevant PSD features. This
approach simplifies the workflow and boosts
classification effectiveness.

Feature Selection Results

In machine learning and statistics, feature
selection is the process of identifying and retaining
only the most important features from a larger
dataset. We calculate accuracy to determine
seven essential parameters that improve the
model's precision in classifying machine audio.
Consequently, we identified the paramount
characteristic of the categorization process. This
pattern suggests that the classification model will
have difficulty precisely discriminating between
classes based on the given attributes. The first
feature, along with any features derived from the
mean of PSD, exhibits the highest accuracy
across several classifiers, as illustrated in Figure
6. Feature 1 is the principal attribute used for
categorization. The results demonstrate that the

average PSD type feature exerts the most
significant influence in differentiating among the
various class types.

Based on the feature selection results, we use the
average PSD feature across all categories during
testing. Using fewer features in machine learning
has several significant advantages. Models are
more straightforward to understand, which
improves interpretability. Models with fewer
features tend to be faster to train and run, as they
require fewer calculations and computational
resources. Using many features in machine
learning or deep learning classification can cause
several problems. One of the main issues is
overfitting, where the model becomes overly
tailored to the training data, resulting in high
accuracy on the training data but poor
performance on new, unseen test data. In
addition, the curse of dimensionality phenomenon
arises: the more features, the sparser the data
becomes, making it difficult for the model to find
clear patterns. On the other hand, multicollinearity
among correlated features can lead to redundancy
in the information the model learns, distorting
coefficient estimates and making interpretation
difficult.

Classifier Performance

This is due to the difference in the number
of remaining samples. We employ the SMOTE
algorithm to impute missing samples. The average
performance metrics shown in Figure 7 are used
to evaluate the classification model's efficacy.
Removing all attributes except the average PSD
does not diminish the accuracy of each classifier
model.
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Misclassification most commonly occurs within the
regular class. The performance comparison of
seven classifier models, KNN, LDA, SVM, NB,
ANN, RF, and DT, across five evaluation metrics:
accuracy, precision, sensitivity, specificity, and F-
score. Among these models, LDA achieved the
highest accuracy at 92.83%, followed closely by
NB at 92.74%, ANN at 92.75%, and DT at 92.34%.
These four models outperform KNN (89.90%) and
RF (89.40%), which showed relatively lower
accuracy. SVM had the lowest accuracy of
85.40%, indicating weaker overall performance.
Notably, the specificity of most models, especially
LDA, NB, ANN, and DT, is notably high, exceeding
95%, suggesting strong performance in
distinguishing between true negatives. While
precision and sensitivity showed moderate
variation, the F-score generally aligned well with
accuracy, indicating balanced performance across
the models.

£

I Accuracy
I Precision
[Isensitivity
Il specificity
I F-Score

L1 L1
NB ANN RF DT
CLASSIFIER MODEL

Figure 7. Each classifier model's performance in the testing phase

However, LDA is very efficient in accurately
detecting each machine condition with just one
feature. The model achieves the highest accuracy
across classes when classifying average PSD
features. The average PSD precision was
92.79%, sensitivity was 92.79%, specificity was
96.42%, and the F-score was 92.78%. The results
substantiate the effectiveness of our proposed
methodology for detecting different types of
machine failures by analyzing sound data.

DISCUSSION

The results presented in this study provide
a compelling narrative of the effectiveness of the
proposed approach for classifying machine faults
from audio data. Figure 5 highlights the distinctive
differences in the PSDs of machine sounds across
various fault classes, providing a basis for robust
feature extraction. Figure 6 clearly demonstrates
that the average PSD consistently achieves the
highest classification accuracy, validating its
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strong discriminatory power. Furthermore, Figure
7 shows that using only the average PSD feature
does not compromise classifier performance,
particularly with the LDA model, which achieves
an accuracy of 92.83%.

The logical progression from data
inspection to feature extraction and selection
underscores the robustness of the methodology.
Initially, the raw time-domain signals exhibit
similar magnitudes and distributions as shown in
Figure 4, suggesting minimal distinguishing
information. The transformation to the frequency
domain reveals class-dependent patterns that are
more pronounced. Recognizing the computational
and interpretive challenges of high-dimensional
data, we employed seven statistical equations, as
written in the classification section, to extract the
most salient features, ultimately identifying the
average PSD as the most informative.

This finding demonstrates a direct causal
relationship to the success of the final model:
reducing the dimensionality of the feature space
by selecting the average PSD not only accelerates
computation but also mitigates the risk of
overfitting and redundancy. The exceptional
performance of the LDA classifier, achieving
above 90% in all performance metrics,
underscores the effectiveness of this feature
selection strategy. The superior performance of
LDA can be attributed to several factors,
particularly its ability to handle linearly separable
data. By projecting the data onto a lower-
dimensional space where class distributions are
well-separated, LDA excels when the assumption
of linearity holds, making it particularly well-suited
to the reduced, more focused feature set after
dimensionality reduction.

This outcome also addresses concerns
such as the "curse of dimensionality" and
multicollinearity, which often arise in high-
dimensional feature sets. In contrast, SVM and
Random Forests RF may not perform as well in
this context due to their more complex, non-linear
decision boundaries and higher sensitivity to noise
and overfitting when the feature space is ample.
While SVM and RF are robust classifiers, they
may struggle with increased dimensionality and
inter-feature correlations, leading to less stable
performance than LDA in this particular setup.
Therefore, the combination of reduced
dimensionality and LDA's assumption of linear
separability provides a more reliable and
computationally efficient model.

Compared with previous studies, our
findings align with and extend the existing
knowledge base. Prior work, such as that by Li et
al. [2] and Wang et al. [10], employed vibration-
and audio-based features and applied them to

deep learning models for machine fault diagnosis.
These studies reported high accuracy rates, often
exceeding 90%, but relied on multiple features
and complex architectures. Our  work
demonstrates that by leveraging a single well-
chosen feature and a simpler classifier, we can
achieve high accuracy levels. However, it is
important to note that the current method was not
tested on data from the previously mentioned
works, nor was their model evaluated on our
dataset. As a result, a direct comparison between
the two approaches using the same data is not
available. This outcome suggests that simpler
models can rival more complex ones when the
most informative feature is used, reinforcing the
notion that model complexity does not always
equate to better performance.

Moreover, our results challenge the
prevailing reliance on deep learning models for
audio classification in machine condition
monitoring. Unlike these approaches, our
methodology is faster, more interpretable, and
requires  significantly fewer computational
resources. This directly supports arguments in
recent literature advocating for more resource-
efficient models in industrial settings [31][32]. Our
findings thus offer a practical alternative for
scenarios with constrained resources or real-time
monitoring needs.

To summarize, our work contributes to the
field by demonstrating that a single feature, the
average PSD, can achieve high classification
accuracy, challenging the assumption that
complex feature sets are always necessary. LDA
can outperform more computationally intensive
models, suggesting that simpler models can be
more robust when the features are highly
discriminative. Sound-based monitoring can be a
viable alternative to vibration-based approaches,

offering a low-cost, accessible solution for
machine health monitoring. These insights
strengthen the argument for lightweight,

interpretable models in industrial diagnostics,
especially in settings where simplicity, speed, and
cost-effectiveness are critical.

CONCLUSION

Using a cellphone, we successfully
detected damage to the fan booster machine by
carefully analyzing captured audio signals. Each
machine state had recordings that extended
beyond 3 hours. The architecture of the fan
booster defect identification system was built
through sequential phases: acoustic signal
acquisition, preprocessing (including noise
filtering and amplitude normalization), Welch-
algorithm-driven spectral feature extraction, and
evaluative refinement of discriminative attributes
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using validation metrics. This methodology
prioritizes computational efficiency while isolating
fault-specific spectral patterns and comparing the
results of seven different classification models.
Among these models, the LDA classifier
demonstrated the best performance, achieving
92.83% accuracy in classifying the average PSD
feature. Notably, the minimum performance
across all evaluated parameters consistently
remained above 92%, indicating the approach's
strength and reliability.
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