
 

SINERGI Vol. 30, No. 1, February 2026: 173-184 
http://publikasi.mercubuana.ac.id/index.php/sinergi 

http://doi.org/10.22441/sinergi.2026.1.016 
 

 
 

R. P. Youlia et al., Towards enhanced acoustic fan booster damage detection: … 173 
 

Towards enhanced acoustic fan booster damage detection: 
a comparative study of feature-based and machine learning 
approaches 

 

 
Rikko Putra Youlia1, Dedik Romahadi1,2,*, Aberham Genetu Feleke2, Irfan Evi Nugroho1,  
Alina Alina3 
1Department of Mechanical Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia 
2School of Mechanical Engineering, Beijing Institute of Technology, China 
3Department of Information Systems, Universitas Terbuka, Indonesia 

 

Abstract  
Machine failure detection frequently uses non-destructive monitoring 
techniques such as vibration analysis. Although vibration analysis can 
identify machine degradation, the apparatus is often costly and 
necessitates specialist knowledge. Additionally, many existing 
methods in audio classification rely on characteristics represented as 
pictures or vectors, which increases computational complexity. In 
contrast, this research introduces a novel method that substitutes 
vibration data with a singular numerical feature derived from audio 
signals, addressing both cost and complexity issues. Our objective is 
to develop a rapid and precise audio-based method for detecting 
machine damage. The acoustic signals from the machine apparatus 
were classified into three categories: normal, belt damage, and 
combined belt and bearing defect. The data processing technique 
involved lowering the sample rate and segmenting the data to improve 
computational efficiency and classification performance. We use the 
Welch method and appropriate statistical techniques to analyze 
Power Spectral Density (PSD). The performance of seven classifier 
models, KNN, LDA, SVM, NB, ANN, RF, and DT, was evaluated using 
accuracy, precision, sensitivity, specificity, and F-score. LDA 
achieved the highest accuracy at 92.83%, followed by ANN (92.75%), 
NB (92.74%), and DT (92.34%). These models outperformed KNN 
(89.90%) and RF (89.40%), with SVM recording the lowest accuracy 
at 85.40%. LDA was highly effective, achieving the highest accuracy 
with a single average PSD-type feature, showcasing its robustness in 
machine defect diagnosis. Compared to previous methods, this 
approach simplifies feature extraction, reduces computational 
demands, and maintains high diagnostic performance, providing 
notable benefits in terms of effectiveness and precision.  
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INTRODUCTION 

Rotating machinery constitutes the 
foundation of the manufacturing industry. Any 
damage or malfunction in these components 
during operation might severely affect the 
system's performance [1]. Consequently, it is 
crucial to develop effective and accurate methods 
for diagnosing and categorizing problems to 

improve machine reliability and substantially 
decrease operational and maintenance costs [2], 
[3]. The Electric Power Research Institute reports 
that bearing components constitute an astonishing 
41% of failures in rotating machinery. 
Consequently, machines with rotating 
components have emerged as a significant focus 
of research, with an opportunity to employ artificial 
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intelligence methodologies for high-performance 
maintenance practices [4][5]. 

Cost-effective maintenance of industrial 
machinery often involves the use of spinning parts 
to perform particular tasks. This system consists 
of gears, rotor shafts, rotors linked by fasteners, 
and bearings. Rolling bearings play a crucial role 
in industrial machinery by enabling the rotation of 
components with minimal friction. [6]. As a result, 
previous studies have thoroughly explored rolling 
bearings. The primary causes of problems are 
generally localized wear on the inner race (BPFI), 
the outer race (BPFO), or the balls (BSF) of the 
bearing. Defects on the rolling surface may 
include cracks, voids, and fragments. The most 
common type of damage occurs when a ball 
contacts a slight imperfection. A crash between a 
rolling component and a flaw generates a bump 
that causes high-frequency vibrations throughout 
the structure [7]. According to Lou et al. [8], when 
capacitive contact occurs, applying a voltage 
exceeding 73% of the total breakdown voltage 
causes metal erosion within the bearing and 
damages its lubricating layer. As a result, the 
capacitive contact transitions to a resistive 
contact, which helps reduce electrical erosion 
while accelerating oxidation. 
 The essential components of a condition 
monitoring system are defect identification and 
severity assessment [9]. This is vital, especially in 
critical systems necessitating continuous 
operation. Various approaches have been 
proposed to track and assess rolling element 
bearings, given their vital role in rotating 
machinery and the severe consequences of 
undetected damage [10]. Chen et al. [11] 
emphasized that the sampling frequency 
significantly influences fault diagnosis 
performance, underscoring the importance of 
data-acquisition settings. Most diagnostic 
methods aim to identify faults and assess their 
severity, essential for uninterrupted functioning in 
critical systems [12][13]. The ball-passing 
frequency, a typical defect frequency, arises from 
periodic impacts determined by the bearing's 
shape and rotational rate. Despite noise from 
other components, which can obscure or distort 
signals, researchers have consistently highlighted 
the FFT's reliability and well-established 
capabilities for diagnosing bearing faults [14]. 
While FFT-based analysis is robust, its 
implementation can be costly due to the 
specialized equipment required. To address this 
limitation, a promising alternative is to substitute 
vibration signals with audio signals captured by a 
mobile phone. Vibration signals are typically 
measured using specialized sensors such as 
accelerometers or piezoelectric transducers, 

which detect minute changes in the vibrations of 
machine components. These signals are then 
processed using signal conditioning equipment 
and data-acquisition systems to extract 
meaningful fault-diagnosis information. 
 Non-destructive monitoring techniques, 
specifically vibration and acoustics, are the 
predominant methods for diagnosing machine 
failures [15]. Recent review studies have been 
undertaken to elucidate common defects in rolling 
bearings, and analytical methodologies, including 
the research presented by [16]. Other reviews 
focus on identifying the most reliable indicators to 
improve defect-detection accuracy. Kuncan [17] 
evaluated different machine learning techniques, 
including Support Vector Machine (SVM), k-
nearest neighbors (KNN), Artificial Neural Network 
(ANN), Linear Discriminant Analysis (LDA), 
Logistic Regression (LR), and Gray Relational 
Analysis (GRA), for detecting bearing faults. The 
GRA approach achieved a 100% success rate 
across the complete set of four signal datasets 
used for bearing signal classification, while SVM 
and LDA also yielded commendable classification 
results. Hosseini et al. [18] proposed an algorithm 
that emphasizes the benefits of employing a 
Projection Recurrent Neural Network within an 
SVM framework. The findings suggest that the 
suggested model exceeds the recently developed 
models in fault detection accuracy. An extensive 
analysis of the most commonly utilized ML models 
for bearing defect detection is provided to ensure 
appropriate deployment [19]. 
 Synthesizing this literature reveals that 
while vibration and acoustics-based monitoring 
combined with advanced machine learning (ML) 
algorithms have shown promise in machine fault 
detection, several key gaps persist. Many studies 
either focus exclusively on a single signal type or 
fail to thoroughly assess the effectiveness of 
specific feature-extraction techniques, thereby 
limiting their practical applicability. Additionally, 
while significant research has been conducted on 
the use of Power Spectral Density (PSD) features 
and ML models for fault classification, these efforts 
often rely on multiple features or complex models 
like deep learning, which are computationally 
intensive and not always optimal for real-time 
applications. A notable gap in the literature is the 
lack of studies on using a single, computationally 
efficient PSD feature—particularly one derived 
from the Welch method’s statistical value—to 
identify and classify machine damage types. This 
is significant because such a streamlined 
approach simplifies feature extraction and enables 
more efficient industrial deployment without 
sacrificing diagnostic performance.
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Figure 1. The overview of the machine acoustic signal classification process 

 
Furthermore, despite the increasing 

popularity of deep learning models in the field, 
simpler models such as LDA or SVM have shown 
competitive or superior performance in many 
cases, particularly when the dataset is limited or 
the problem structure does not warrant the 
complexity of deep networks. This suggests that 
simpler, more efficient models can be as effective 
in specific diagnostic tasks. Our research 
addresses this gap by applying the Welch 
method's statistical value as a single feature 
extraction technique, evaluated using a 5-fold 
cross-validation scheme to ensure robust system 
performance. This approach leverages the 
strengths of audio-based monitoring and the 
proven power of simpler ML models, offering both 
scientific and practical contributions to machine 
fault diagnosis, with significant improvements in 
computational efficiency and cost-effectiveness 
over traditional vibration-based systems. 
 
MATERIAL AND METHOD 
 Our research aimed to develop a robust 
system for accurately categorizing various types 
of machine damage using acoustic pattern 
analysis. The procedure for identifying damage 
typically includes five key steps: data collection, 
sound preprocessing, feature extraction, feature 
selection, and classification. The approach for 
defect identification is shown in Figure 1. The 
machine’s acoustic data undergoes a 
preprocessing step to reduce computational time 
and ensure suitability for further analysis. During 
the second stage, the data within each segment is 
transformed into PSD using the Welch algorithm, 
with adjustments made to account for statistical 
variations. Next, the Synthetic Minority Over-
sampling Technique (SMOTE) is used to create 
supplementary samples. The feature selection 

process then minimizes the influence of 
unnecessary factors. Since only a limited number 
of features are available, each feature’s 
contribution to the classification performance is 
thoroughly evaluated. 
 
Audio Acquisition & Preprocessing 

The data processing tasks were executed 
on a personal computer powered by Windows 11 
64-bit, equipped with an RTX 4080 Super graphics 
card and a 14th-generation Intel Core i9 
processor. In this experiment, the graphics card 
was not utilized. The analysis was carried out in 
MATLAB (version 2023b) [20], utilizing the Welch 
method and classifiers from the MATLAB toolbox 
to retrieve machine sound data from the dataset. 
Table 1 summarizes the number of samples used 
for classification. These numbers correspond to 
the number of distinct chunks or segments 
extracted from longer recordings. Each chunk 
represents a specific portion of a continuous 
recording, enabling more manageable, detailed 
analysis during classification. The audio 
recordings were captured using the built-in 
recording function of a Vivo V21 mobile device at 
a sampling rate of 48 kHz, with a maximum bitrate 
of 127 kbps and support for stereo channels. 
During data collection, the environment was 
monitored for background noise, which was kept 
to a minimum to ensure clear, accurate 
recordings. However, occasional ambient sounds, 
such as background chatter or environmental 
noise, were present at low levels but were 
considered negligible in the analysis. The 
recordings were saved in the m4a format. The fan 
booster apparatus used for these recordings is 
shown in Figure 2, with its specifications provided 
in Tables 2 and 3. 



SINERGI Vol. 30, No. 1, February 2026: 173-184 

 

176 R. P. Youlia et al., Towards enhanced acoustic fan booster damage detection: … 
 

Throughout the data collection stage, we 
gathered sound samples from three different 
machine scenarios involving fan boosters, which 
were categorized as follows: (a) the vehicle belt is 
in standard condition with properly adjusted 
tension, (b) the van belt is loosely secured with 
incorrect tension adjustment, and (c) the 
serpentine belt is inadequately fastened, and the 
bearings exhibit defects, that is a large bearing 
clearance, which can lead to excessive play 
between the bearing components. This increased 
clearance can result in vibrations, noise, and 
reduced load-carrying capacity, ultimately 
affecting the performance and lifespan of the 
machinery. Next, the audio data was 
downsampled from 48 kHz to 22.05 kHz to 
enhance computational efficiency. We also 
converted the audio channel configuration from 
stereo to mono. Initially, each category had over 3 
hours of audio recordings. To manage this, we 
segmented the audio into non-overlapping 5-
second sections. The audio data had a sampling 
rate of 22.05 kHz, a bit rate of 22.05 kbps, was 
recorded in a mono-channel configuration, and 
was saved in the m4a format. 
 
Audio Signal Feature Extraction & Selection 
 The Welch algorithm computes a modified 
frequency-domain representation for each data 
segment and then averages these representations 
to estimate the PSD [21]. Constructed from PSD 
estimates of different time-series segments, the 
modified periodogram, produced using the Welch 
method, provides an uncorrelated estimate of the 
actual PSD. This averaging approach minimizes 
fluctuations. This study aims to estimate the PSD 
of machine audio signals using the Welch method. 
The Welch method applies the Hann window 
function to each data segment, which helps 
reduce spectral leakage. By calculating an 
adjusted periodogram for each segment and 
averaging the results, the approach provides a 
more accurate estimate of the PSD. 
 

 
Figure 2. Data acquisition on the fan booster 

machine 

Table 1. Number of samples 

Classes Number Percentage 

Belt 2350 34.18 

Belt-Bearing 2275 33.09 

Normal 2250 32.73 

 
Table 2. Specifications of the fan assembly 

No. Description Specification 

1 Brand Topindo Fan 
2 Type RSH 500 
3 Serial Number - 
4 Fan Speed 1400 rpm 
5 Power Supply 3 PH; 380/660 V; 50 Hz 
6 Capacity 7800 m3/h 
7 Static Pressure 875 Pa (N/M2) 
8 Fan belt Type V Belt B72 

 
Table 3. Motor configuration 

No. Description Specification 

1 Type 1A1325-4 
2 Serial Number - 
3 Power 50 Hz; 5.5 Kw 
4 Power Input 380/660 V 11.84 / 6.82 A ~ 440 

VA 11.84 A 
5 Speed 1440 rpm 
6 Efficiency 85% 

 
The overlap between adjacent segments 
increases frequency resolution, while windowing 
mitigates data loss at segment boundaries, 
especially at edges. 
 The auditory data 𝑥 and 𝑦, each comprising 

𝑁 samples, are partitioned into blocks x(k) and y(k) 

of length 𝐿. The relevant blocks in the estimated 

spectrum ( )ˆ k

xy
S  are presented in (1). 

 

( ) ( )( )( ) ( )

( )

2

2
ˆ ( )

k k

k

xy

i

x w conj y w
S f

fs w

   
=



F F
 (1) 

 
The Fourier Transform F is applied to both 

signals, with a window function w  used to mitigate 

edge effects and improve frequency resolution. 

The term ( )kx w
( )ky w indicates that the window 

function is applied to the k-th data samples of the 
signals before computing their respective Fourier 
Transforms. The conjugate of the Fourier 

Transform of
( )ky , denoted as ( )( )( )kconj y wF , is 

then multiplied by the Fourier Transform of ( )kx , 

capturing the phase and amplitude relationships 
between the two signals in the frequency domain. 
The resulting product is divided by a normalization 

factor, the sum of the squared weights
2 ,iw , which 

accounts for the influence of the window function, 
and by a scaling factor 𝑠, potentially related to the 
signal length. The cross-spectrum is computed by 
averaging the components in (2). 
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 A key reason for averaging the PSD over 
multiple segments, as in the Welch method, is that 
it reduces the variance of the periodogram. The 
periodogram of a single segment often exhibits 
high variance due to noise and short-duration 
signals, leading to unreliable PSD estimates. By 
averaging across overlapping segments, the 
Welch method smooths out random fluctuations, 
yielding a more consistent and statistically 
significant estimate of the PSD. This approach 
reduces bias arising from spectral leakage and 
provides a more accurate representation of the 
underlying signal's power distribution across 
frequencies. 
 Following the Welch method, distinct 5-
second intervals of EEG data were analyzed 
without overlap using a short-time Fourier 
transform to compute the PSD properties. Seven 
statistical measures, encompassing the mean, 
median, mode, standard deviation, variance, 
minimum, and maximum, were applied to 
generate PSD attributes for each interval. The 
most relevant feature was then identified by 
evaluating the computational significance of these 
measures and prioritizing outcomes based on the 
analytical results derived from their statistical 
properties. 

( )'

i i ij ix x r z x= +  −  (3) 

Equation 3 illustrates how the SMOTE 
algorithm generates synthetic samples to address 
class imbalance in sample sizes [22]. In this 

method, a new synthetic sample
'

ix  is created by 

interpolating between an existing minority-class 

sample ix  and one of its randomly selected 

neighbors ijz . The interpolation is controlled by a 

random factor 𝑟, which ranges from 0 to 1, 
specifying the location of the updated sample 

along the line segment linking ix ijz and. 

 
Classification 

We obtained multiple enhanced features 
after applying the SMOTE algorithm for data 
balancing. We conducted experiments with seven 
different models. These models were selected for 
their simplicity, fast computation, and widespread 
use in previous research.  
1) k-nearest neighbors (KNN): In KNN, the 
classification is based on the majority vote of the 
𝑘 nearest neighbors to a data point [23]. The 
decision rule is mathematically expressed as: 
 

1 2
ˆ mode( , , , )ky y y y=  (4) 

Where iy  represents the class labels of the 𝑘 

nearest neighbors of a point. 
 
2) Linear Discriminant Analysis (LDA): LDA is a 
method used for dimensionality reduction and 
classification [24]. It seeks to find a linear 
combination of features that best separates two or 
more classes. For each class 𝑖, the mean vector is 
defined as: 

1

j i

i j

x Ci

x
N




=   (5) 

Where iN  is the number of data points in class ,iC

, and jx  are the data points in class iC . The within-

class scatter matrix measures the variance within 
each class: 

( )( )
1 j i

k
T

W j i j i

i x C

S x x 
= 

= − −   (6) 

Where 𝑘 is the number of classes, and i 𝜀 is the 

mean of the class iC . The between-class scatter 

matrix measures the variance between the class 
means and the overall mean: 

( )( )
1

k
T

B i i i

i

S N    
=

= − −  (7) 

Where  is the overall mean of all data points, and

iN  represents the quantity of data points in class

iC . To find the optimal projection: 

1

W BS S  − =  (8) 

Where  is the eigenvector and   is the 

corresponding eigenvalue. The discriminant 
function that LDA uses to classify a new sample 𝑥 
is: 

1 11
argmax log ( )

2

T T

i W i W i i
i

y S x S P C  − − 
= − + 

 
 (9) 

Where ( )iP C  is the initial probability of the class iC

, and the other terms relate to the class-specific 
means and scatter matrices. The decision rule 
assigns the sample to the class with the highest 
value. 
 
3) Support Vector Machine (SVM): SVM 
constructs a hyperplane to separate classes with 
the maximum margin [25]. The decision function is 
expressed as: 
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1

( ) ( , )
N

i i i

i

f x y K x x b
=

= +  (10) 

Where i  are the Lagrange multipliers, iy  are the 

class labels, ( , )iK x x is the kernel function, and 𝑏 

is the bias term. 
 
4) Naive Bayes (NB): In Naive Bayes, the 
classification relies on Bayes' theorem, assuming 
that the features are conditionally independent 
given the class [26]. The rule is: 

( ) ( )
( )

( )

P x y P y
P y x

P x
=

∣
∣  (11) 

Where ( )P y x∣  is the posterior probability, ( )P x y∣  

is the likelihood, and ( )P y  is the prior probability. 

 
5) Artificial Neural Network (ANN): The output of 
an ANN is calculated using the weights and biases 
of the network and an activation function [27]. It is 
mathematically represented as: 

( )f Wx by = +  (12) 

Where 𝑊 represents the weights, 𝑥 is the input 
vector, 𝑏 is the bias term, and 𝑓 is the activation 
function. The ANN is a medium-sized neural 
network with 25 units per hidden layer and ReLU 
activation. The parameter Lambda is set to 0, 
indicating that no regularization is applied to 
prevent overfitting. The Iteration limit is set to 
1000, specifying the maximum number of 
iterations the network will perform during training. 
Additionally, the standardize option is enabled, 
meaning the input data is standardized to have a 
mean of zero and a standard deviation of one. 
These models were used to assess how well 
various attributes identified damage to the fan 
booster. 
 
6) Random Forest (RF): Random Forest builds an 
ensemble of decision trees and uses majority 
voting to make predictions [28]. The decision rule 
is given by: 

1 2( ( ) ( ), , ( )), My mode T x T x T x=   (13) 

Where ( )MT x  represents the prediction of the 𝑚-th 

decision tree, and the mode is the majority vote 
from all trees. 
 
 7) Decision Tree (DT): In a decision tree, 
decisions are made by splitting the dataset based 
on feature thresholds [29]. The classification rule 
can be represented as: 
 

( )y f x=  (14) 

Where ( )f x  corresponds to a series of conditional 

checks based on the features of the input data. 
The tests utilized optimal PSD features 

extracted from the recorded acoustic data. To 
ensure the reliability of the outcomes, we 
performed both training and cross-validation by 
splitting the dataset into five parts. Figure 3 shows 
the training and testing process in one iteration. 
SMOTE is applied only in the training phase. The 
selection of the best features is also done only in 
the training stage. The trained model is tested with 
one type of PSD feature. The type of feature used 
is obtained from information during training. It is 
ensured that the data used in the testing phase 
differs from that used during training. The outcome 
is determined by assessing the model's accuracy 
during testing. The highest-performing PSD 
parameters for each class are stochastically 
partitioned into two distinct groups: a model-
training cohort and an evaluation cohort. 
Predictive reliability is assessed using criteria 
such as F-score (a measure of precision and 
sensitivity), classification accuracy, actual 
negative rate (specificity), detection rate (recall), 
and overall correctness. 
 
Calculation of Model Performance 

Assessment is conducted within the 
supervised learning framework [30]. The 
confusion matrix structure assigns rows to 
represent the correct class labels and columns to 
denote the model-predicted classifications. 

To refine error analysis, especially when 
distinct groups are mapped to the same 
categories, it is suggested to invert rows and 
columns in confusion matrices, placing predicted 
outcomes in rows and actual labels in columns. 
This provides a clearer view of misclassification 
patterns and enables more targeted 
improvements in model performance. 

 

Dataset

75%

25%

SMOTE
Feature 

Selection
Classifier
(5-fold)

Accuracy

Trained 
Classifier

Report 
Metrics

TRAINING PHASE

TESTING PHASE

Select Feature with 
The Best Accuracy

Select one 
Feature

Provides information on 
the types of features 
used during testing.

 
Figure 3. One iteration overview of the training 

and testing process. 
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Each cell in the matrix captures a specific pairing 
of real-world and algorithmic classifications. 
Correct identifications (TP) arise when predictions 
align with positive ground truths. Correct 
rejections (TN) occur when both actual and 
predicted labels are negative. Misclassifications 
include false alarms (FP), in which negatives are 
incorrectly flagged as positives, and misses (FN), 
in which positives are incorrectly dismissed as 
negatives. 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +  
(15) 

Evaluating model performance metrics: (15) can 
assess the accuracy of the model's predictions. 
Equation 5 is used to assess the model's 
performance, focusing on recall (sensitivity). 

TP
Sensitivity

TP FN
=

+  
(16) 

To compute how precise the model is in 
pinpointing the exact nature of the machine 
damage, as shown in (16). 

TP
Precision

TP FP
=

+  
(17) 

Equation 17 is applied to calculate the specificity 
parameter. 
 

TN
Specificity

TN FP
=

+  
(18) 

The F-score parameter is computed using (18). 

2
F-

2

TP
score

TP FP FN
=

+ +  
(19) 

RESULTS 
Preprocessing and Feature Extraction Results 

Before beginning feature extraction, it is 
important to preprocess and examine the data to 
ensure smooth implementation of the 
classification process. Figure 4 depicts machine 
sounds in the temporal domain. We randomly 
chose three machine noise samples from each 
category recorded in the same session. In the time 
domain, signals show similar magnitudes and 
distributions. Therefore, it is crucial to identify 
unique features to highlight pattern differences 
across various classes. To streamline 
computational demands, dimensionality reduction 
is achieved through feature selection. Figure 5 
demonstrates the application of the Welch 
algorithm for spectral estimation, enabling 
bidirectional conversion between the temporal 
waveforms and frequency-domain 
representations of audio signals. This method 
optimizes the analysis of signal energy distribution 
across spectral bands. 

 

 
Figure 4. Machine audio in the time domain  
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Figure 5. Power spectral density 

 
Each fault state exhibits unique PSD 

signatures. Broadly, dominant energy 
concentration typically spans the 0–1 kHz spectral 
band. A loose van belt condition manifests a 
marked amplification of spectral energy below 1 
kHz and near 7 kHz. Conversely, combined belt 
instability and bearing degradation reveal 
intensified energy within the 0–1 kHz range, with 
a distinct maximum near 0.3 kHz. This contrast 
highlights how mechanical faults alter frequency-
specific energy distributions. Using PSD can help 
identify unique patterns specific to each category. 
Since the PSD dataset contains a large number of 
series, many of which are not helpful for 
classification, we used seven statistical equations 
as described in the classification chapter. To 
isolate the most relevant PSD features. This 
approach simplifies the workflow and boosts 
classification effectiveness. 
 
Feature Selection Results 

In machine learning and statistics, feature 
selection is the process of identifying and retaining 
only the most important features from a larger 
dataset. We calculate accuracy to determine 
seven essential parameters that improve the 
model's precision in classifying machine audio. 
Consequently, we identified the paramount 
characteristic of the categorization process. This 
pattern suggests that the classification model will 
have difficulty precisely discriminating between 
classes based on the given attributes. The first 
feature, along with any features derived from the 
mean of PSD, exhibits the highest accuracy 
across several classifiers, as illustrated in Figure 
6. Feature 1 is the principal attribute used for 
categorization. The results demonstrate that the 

average PSD type feature exerts the most 
significant influence in differentiating among the 
various class types. 
Based on the feature selection results, we use the 
average PSD feature across all categories during 
testing. Using fewer features in machine learning 
has several significant advantages. Models are 
more straightforward to understand, which 
improves interpretability. Models with fewer 
features tend to be faster to train and run, as they 
require fewer calculations and computational 
resources. Using many features in machine 
learning or deep learning classification can cause 
several problems. One of the main issues is 
overfitting, where the model becomes overly 
tailored to the training data, resulting in high 
accuracy on the training data but poor 
performance on new, unseen test data. In 
addition, the curse of dimensionality phenomenon 
arises: the more features, the sparser the data 
becomes, making it difficult for the model to find 
clear patterns. On the other hand, multicollinearity 
among correlated features can lead to redundancy 
in the information the model learns, distorting 
coefficient estimates and making interpretation 
difficult. 
 
Classifier Performance 

This is due to the difference in the number 
of remaining samples. We employ the SMOTE 
algorithm to impute missing samples. The average 
performance metrics shown in Figure 7 are used 
to evaluate the classification model's efficacy. 
Removing all attributes except the average PSD 
does not diminish the accuracy of each classifier 
model.  
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Figure 6. Each feature type's performance in the training phase 

 

 
Figure 7. Each classifier model's performance in the testing phase 

 
Misclassification most commonly occurs within the 
regular class. The performance comparison of 
seven classifier models, KNN, LDA, SVM, NB, 
ANN, RF, and DT, across five evaluation metrics: 
accuracy, precision, sensitivity, specificity, and F-
score. Among these models, LDA achieved the 
highest accuracy at 92.83%, followed closely by 
NB at 92.74%, ANN at 92.75%, and DT at 92.34%. 
These four models outperform KNN (89.90%) and 
RF (89.40%), which showed relatively lower 
accuracy. SVM had the lowest accuracy of 
85.40%, indicating weaker overall performance. 
Notably, the specificity of most models, especially 
LDA, NB, ANN, and DT, is notably high, exceeding 
95%, suggesting strong performance in 
distinguishing between true negatives. While 
precision and sensitivity showed moderate 
variation, the F-score generally aligned well with 
accuracy, indicating balanced performance across 
the models. 

However, LDA is very efficient in accurately 
detecting each machine condition with just one 
feature. The model achieves the highest accuracy 
across classes when classifying average PSD 
features. The average PSD precision was 
92.79%, sensitivity was 92.79%, specificity was 
96.42%, and the F-score was 92.78%. The results 
substantiate the effectiveness of our proposed 
methodology for detecting different types of 
machine failures by analyzing sound data. 
 
DISCUSSION 

The results presented in this study provide 
a compelling narrative of the effectiveness of the 
proposed approach for classifying machine faults 
from audio data. Figure 5 highlights the distinctive 
differences in the PSDs of machine sounds across 
various fault classes, providing a basis for robust 
feature extraction. Figure 6 clearly demonstrates 
that the average PSD consistently achieves the 
highest classification accuracy, validating its 
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strong discriminatory power. Furthermore, Figure 
7 shows that using only the average PSD feature 
does not compromise classifier performance, 
particularly with the LDA model, which achieves 
an accuracy of 92.83%. 

The logical progression from data 
inspection to feature extraction and selection 
underscores the robustness of the methodology. 
Initially, the raw time-domain signals exhibit 
similar magnitudes and distributions as shown in 
Figure 4, suggesting minimal distinguishing 
information. The transformation to the frequency 
domain reveals class-dependent patterns that are 
more pronounced. Recognizing the computational 
and interpretive challenges of high-dimensional 
data, we employed seven statistical equations, as 
written in the classification section, to extract the 
most salient features, ultimately identifying the 
average PSD as the most informative. 

This finding demonstrates a direct causal 
relationship to the success of the final model: 
reducing the dimensionality of the feature space 
by selecting the average PSD not only accelerates 
computation but also mitigates the risk of 
overfitting and redundancy. The exceptional 
performance of the LDA classifier, achieving 
above 90% in all performance metrics, 
underscores the effectiveness of this feature 
selection strategy. The superior performance of 
LDA can be attributed to several factors, 
particularly its ability to handle linearly separable 
data. By projecting the data onto a lower-
dimensional space where class distributions are 
well-separated, LDA excels when the assumption 
of linearity holds, making it particularly well-suited 
to the reduced, more focused feature set after 
dimensionality reduction. 

This outcome also addresses concerns 
such as the "curse of dimensionality" and 
multicollinearity, which often arise in high-
dimensional feature sets. In contrast, SVM and 
Random Forests RF may not perform as well in 
this context due to their more complex, non-linear 
decision boundaries and higher sensitivity to noise 
and overfitting when the feature space is ample. 
While SVM and RF are robust classifiers, they 
may struggle with increased dimensionality and 
inter-feature correlations, leading to less stable 
performance than LDA in this particular setup. 
Therefore, the combination of reduced 
dimensionality and LDA's assumption of linear 
separability provides a more reliable and 
computationally efficient model.  

Compared with previous studies, our 
findings align with and extend the existing 
knowledge base. Prior work, such as that by Li et 
al. [2] and Wang et al. [10], employed vibration- 
and audio-based features and applied them to 

deep learning models for machine fault diagnosis. 
These studies reported high accuracy rates, often 
exceeding 90%, but relied on multiple features 
and complex architectures. Our work 
demonstrates that by leveraging a single well-
chosen feature and a simpler classifier, we can 
achieve high accuracy levels. However, it is 
important to note that the current method was not 
tested on data from the previously mentioned 
works, nor was their model evaluated on our 
dataset. As a result, a direct comparison between 
the two approaches using the same data is not 
available. This outcome suggests that simpler 
models can rival more complex ones when the 
most informative feature is used, reinforcing the 
notion that model complexity does not always 
equate to better performance. 

Moreover, our results challenge the 
prevailing reliance on deep learning models for 
audio classification in machine condition 
monitoring. Unlike these approaches, our 
methodology is faster, more interpretable, and 
requires significantly fewer computational 
resources. This directly supports arguments in 
recent literature advocating for more resource-
efficient models in industrial settings [31][32]. Our 
findings thus offer a practical alternative for 
scenarios with constrained resources or real-time 
monitoring needs. 

To summarize, our work contributes to the 
field by demonstrating that a single feature, the 
average PSD, can achieve high classification 
accuracy, challenging the assumption that 
complex feature sets are always necessary. LDA 
can outperform more computationally intensive 
models, suggesting that simpler models can be 
more robust when the features are highly 
discriminative. Sound-based monitoring can be a 
viable alternative to vibration-based approaches, 
offering a low-cost, accessible solution for 
machine health monitoring. These insights 
strengthen the argument for lightweight, 
interpretable models in industrial diagnostics, 
especially in settings where simplicity, speed, and 
cost-effectiveness are critical. 

 
CONCLUSION 

Using a cellphone, we successfully 
detected damage to the fan booster machine by 
carefully analyzing captured audio signals. Each 
machine state had recordings that extended 
beyond 3 hours. The architecture of the fan 
booster defect identification system was built 
through sequential phases: acoustic signal 
acquisition, preprocessing (including noise 
filtering and amplitude normalization), Welch-
algorithm-driven spectral feature extraction, and 
evaluative refinement of discriminative attributes 
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using validation metrics. This methodology 
prioritizes computational efficiency while isolating 
fault-specific spectral patterns and comparing the 
results of seven different classification models. 
Among these models, the LDA classifier 
demonstrated the best performance, achieving 
92.83% accuracy in classifying the average PSD 
feature. Notably, the minimum performance 
across all evaluated parameters consistently 
remained above 92%, indicating the approach's 
strength and reliability. 
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