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Abstract

Vehicle detection plays a key role in automating traffic analysis, a
field that continues to advance rapidly. Vision-based systems
identify vehicle types and sizes, but achieving high accuracy and
efficiency remains a challenge. Reliable real-world deployment
requires optimized models that balance performance and
computational cost. YOLOv10n, the most efficient version of the
YOLO family, offers a solid foundation for lightweight feature
extraction. To improve its detection performance, this study
proposes an enhanced version of YOLOv10n by incorporating a
scale-aware attention mechanism. We proposed the Expanded
Refinement Efficient Multi-Scale Attention (ER-EMA) module, which
enhances feature encoding by capturing vehicle characteristics
across multiple receptive fields. ER-EMA consists of two core
components: the Expanded Converted Inverted Block (ECIB) and
the Convolutional Refinement Block (CRB). These components use
diverse convolutional kernels to extract and refine multi-frequency
spatial features. Integrating ER-EMA into the YOLOv10n framework
produces a more compact and accurate detection model.
Experimental results show that the proposed model increases
mAP@50 by 1%, while reducing the number of parameters by 0.1M
and computation by 0.1 GFLOPS on the Vehicle-COCO dataset.
On the UA-DETRAC benchmark, it achieves a 4% improvement in
mAP@50:95, with a reduction of 0.2M in parameters and 0.4
GFLOPS in computational efficiency—outperforming the original
YOLOv10n and prior methods in both performance and
computational efficiency.
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INTRODUCTION transportation

systems.

Modern  detection

Urbanization and population growth have
significantly increased vehicle use in both urban
and rural areas, contributing to traffic congestion
and longer commuting times [1][2]. In 2024,
individuals around the world spent an estimated
88 hours annually, on average, stuck in traffic
congestion [3]. It is urgent to address these
challenges by developing accurate, efficient
vehicle detection systems that adapt to dynamic
road conditions and traffic scenarios.

Object detection, a subfield of Vision
Intelligence, becomes significant in intelligent

methods, primarily based on CNN frameworks,
have achieved considerable success by learning
discriminative features directly from visual data
[4, 5, 6]. In this context, the YOLO variant models
have gained prominence for adjusting detection
accuracy with computational efficiency. The
recent introduction of YOLOv10 offers
improvements over its predecessors through
strategies such as model pruning, architecture
simplification, and the novel “Consistent Dual
Assignment” mechanism, which excludes the
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need for
[71(8].

YOLOv10 includes various scaled
versions, with the YOLOv10n model tailored for
low latency and edge device deployment.
Although YOLOv10n is efficient, it may still
underperform in scenarios with scale variation,
partial occlusion, or cluttered scenes. To
enhance performance under these conditions,
attention mechanisms such as the Efficient Multi-
scale Attention (EMA) block have been
introduced to improve spatial feature
representation by capturing relationships across
different resolutions [9]. However, current EMA-
based approaches often lose essential fine-
grained details due to limited feature refinement
capabilities during extraction.

Recent studies highlight a growing interest
in optimizing YOLO-based architectures across
various application domains. For instance,
YOLOv8 variants have been adapted for
specialized tasks such as fish and sea turtle
detection in marine biology [10, 11, 12], as well
as tomato and wheat spike recognition in
agricultural environments [13][14]. In aerial
surveillance, BGF-YOLOv10 and LD-YOLOv10
have been developed to detect small objects
from unmanned aerial vehicles, focusing on
enhancing detection accuracy while maintaining
low computational cost [15][16]. Within the
transportation = domain, = YOLOv3-tiny and
YOLOv4-tiny have been applied to vehicle
detection tasks, including traffic violation
monitoring and autonomous driving systems
[17][18]. Other models, such as LittleYOLO-SPP,
ShortYOLO-SPP, YOLOv5-NAM, and YOLOv5-
IPA_MSSCR [19, 20, 21, 22], further illustrate
efforts to balance real-time performance with
detection robustness, particularly under
challenging conditions involving occlusion or
small objects.

While recent studies have demonstrated
significant progress in adapting various YOLO-
based models, most of these works focus on
lightweight optimization and domain-specific
enhancements. However, these models often
struggle to handle scale variation, occlusion, and
dense object configurations. YOLOv10
represents the latest evolution of the YOLO
framework, introducing key innovations, namely
the Consistent Dual Assignment strategy and
improved architectural efficiency. Despite these
advancements, limited research has explored the
synthesis of refined multi-scale attention
techniques within the YOLOv10 framework to
enhance performance in complex environments,
such as vehicle detection under dense ftraffic,
across varying object scales, and under partial

Non-Maximum Suppression (NMS)

occlusion. This gap underscores the need to

enhance YOLOv10 with attention-based modules

further to improve its robustness in real-world,
high-density detection tasks.

To address this gap, this study proposes
an enhanced vehicle detection framework that
elevates YOLOv10n with a novel feature-
extraction module for lightweight detectors. The
model integrates the ER-EMA module into the
backbone, improves feature quality through
better spatial representation, and scale
adaptability. By doing so, it aims to achieve
higher detection accuracy without compromising
speed or resource efficiency. Designed for edge-
device compatibility, this method supports real-
time applications on low-budget hardware. The
core contributions of this work are:

o Introducing a novel vehicle detection framework
to localize vehicles optimally using modified
YOLOv10-nano, which  achieves better
performance and efficient cost.

o Expanded Refinement of Efficient Multi-Scale
Attention (ER-EMA) aims to enhance feature
extraction performance while maintaining
efficiency by combining it with the original EMA.

e The Expanded Convolution Inverted Block

(ECIB) increases channel capacity by
incorporating normalization and activation
functions, enabling more effective feature
extraction.

o Convolutional Refinement Block (CRB) to refine
and optimize feature representations.

o Comprehensive performance analysis, runtime
efficiency, and ablation studies were conducted
on the proposed architecture and compared
against several efficient object detection models
from previous work and attention modules.

METHOD

In this section, the proposed architecture is
explained in detail. This section focuses on
improving vehicle detection performance. The
Pyramid-based Spatial Pooling in YOLOv10 is
designed to expand the receptive field during
feature extraction, enabling it to adapt to objects
with diverse dimensions. Figure 1 shows the
operation of spatial max pooling in 2D with
different window sizes (5, 9, 13). The Partial Self-
Attention (PSA) block, adapted from the self-
attention mechanism, enhances global feature
representation while maintaining computational
efficiency, as illustrated in Figure 1. By focusing
on a subset of feature channels, PSA captures
global context with lower overhead than full self-
attention, balancing accuracy and efficiency. Both
SPPF and PSA were modified by adding an ER-
EMA block at the end to enrich feature extraction.
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Figure 1. ER-EMA-YOLOvV10n architecture with SPPF and PSA Block. It consists of a backbone, neck,
and head to detect, distribute, and extract information using the ER-EMA on the SPPF and PSA block.

ER-EMA-YOLOv10n Architecture

The backbone of the ER-EMA-YOLOv10n
architecture serves as the core feature extractor,
leveraging multi-kernel convolutional layers to
learn object patterns through iterative weight
updates during training. The Pyramid-based
Spatial Pooling in YOLOv10 is designed to
expand the receptive field during feature
extraction, enabling it to adapt to objects with
diverse dimensions. It operates on spatial max
pooling in 2D with different window sizes (5, 9,
13).

The Partial Self-Attention (PSA) block,
adapted from the self-attention mechanism,
enhances global feature representation while
maintaining computational efficiency. By focusing
attention on a subset of feature channels, PSA
effectively captures global context with lower
overhead than full self-attention, offering a
balance between accuracy and efficiency. Block
SPPF and PSA were both modified by adding an
ER-EMA block at the end to enrich the extraction
features.

The neck in the YOLOv10n architecture is
a crucial component that integrates features at
multiple levels and scales from the backbone,
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aligning the resolution between the head and the
backbone. The head module is designed to
classify each detected object and calculate the
probability for each object class. It is a regression
predicting each bounding box, including the One-
To-Many head that sustains the native form and
adjustment goal to produce a collection of
forecasts. The model also incorporates a One-to-
One head with an alignment-based label-
matching  strategy, ensuring a unique
correspondence between each ground-truth label
and a single prediction. It uses CloU loss to
measure  convergence between matched
prediction—ground-truth pairs, accounting for both
spatial overlap and aspect ratio [23].

Expanded Refinement of Efficient Multi-Scale
Attention (ER-EMA)

To create a robust detection model,
simultaneous detection of multiple vehicle types
is required. This module seeks to improve EMA
(Efficient Multi-Scale Attention) by boosting
performance and enhancing feature extraction
across different scales. This module also
enhances the network's ability to identify vehicles
of varying sizes. ER-EMA module is located in
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each block of the SPPF and PSA. This work
includes several block components working
together to relate features at different frequencies
within the proposed method.

ER-EMA consists of the EMA attention
module as the context, and the ECIB and CRB
blocks, as shown in Figure 2. EMA starts with
feature grouping to partition X into G feature
subsets spanning the stream dimensions
direction for learning and extracting different
semantics with G // C, learnt emphasis weight
descriptor sets to strengthen the feature
encoding of interest region in each subset as
described as follows:

X = [Xg. X XX, € RENGXHXW (1)

Parallel subnetworks in EMA associate two
features with the image height and share a 1x1
convolution, without decreasing dimensionality in
the 1x1 path stream, using a process resembling
Coordinate Attention (CA). After the 1x1
convolution, the feature map is split into two
branch vectors, proceeding with the application of
the Sigmoid activation function to model the
binary distribution of the 2D convolutional output
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e
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[24]. EMA enables distinctive trans-channel
associations between the two symmetrical sub-
networks at the 1x1 branch, where the feature
maps from both channels are combined element-
wise within the model architecture. Conversely,
the 3x3 convolution branch acquires proximal
trans-channel  feature  cross-talk, thereby
expanding the representation. This module
adjusts the magnitudes of diverse channels and
maintains exact spatial data blocks within them.

Cross-spatial learning is a strategy for
encoding holistic context and modeling broad
associations. The primary spatial attention
representation is obtained by applying a matrix
product to the synchronous times' outputs.
Similarly, 2D holistic mean pooling is used in the
section to extract holistic spatial data and
generate a  subsequent spatial weight
representation that preserves spatial address
details. Activation maps for clusters are
calculated, combining the two-weight points. The
2D holistic pooling operation is as follows:

1
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Figure 2. The ER-EMA attention module is integrated into both the SPPF and PSA blocks within the
ER-EMA-YOLOv10n, enhancing multi-scale feature extraction and expanding contextual
representation
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This work introduces a new block in the
new branch that provides a representation of the
existing feature map, as shown in Figure 3. This
block has strong potential to be further developed
into a unified module that enhances performance
while maintaining computational efficiency. The
ECIB begins with the input features and applies
3x3 depthwise convolutions, referred to as
CDWH1, as shown:

ECIB = CDW5(C,( CDW;(Co(CDW, (1)), (3)
CDW; = GELU (GN (Cnuf(gxa;.(x))) (4)

In the subsequent step, Group
Normalization (GN) [25] is applied to the input
data, producing more stable feature
representations and facilitating faster training
following the convolution operation. GELU
(Gaussian Error Linear Unit) is applied, providing
a smoother representation and preserving
information by offering more stable gradients for
complex learning [26]. The process continues
with 1x1 convolution as C2, as shown:

C; = GELU (GN (Ci1x1y(CDWL))).  (5)

REP = SILU( ( Cpyax3(C2)) + ( Courrxz(C2))). (6)

REP is a REPVGGDW block that performs
depthwise convolutions with 3x3 and 7x7
kernels to obtain a broad feature representation
with SILU (Sigmoid Linear Unit), improving the

_________________________________________________________

Conv (Depthwise)
K =3, s=1, g=c_in, d=2

=

hxwxc in

RepVGGDW

hxwxc out

GroupNorm

smoothness of gradient flow, preventing the loss
of features. After REP, the process continues on
GN and GELU activation, resulting in C3. Then,
on C4, following a similar process on C2. It
continues and concludes at CDWS5, which applies
a 3x3 convolution followed directly by GELU
activation, as shown:

CDW, = GELU (GN (REP)). (7)
Cy= GELU (GN ( Ciyuyy(CDWS))).  (8)

CDW5 = GELU (GN(C91V(BKB:|(C4)))' (9)

CRB begins by performing a 3x3
convolution, which effectively captures fine
details such as the edges and textures of small
shapes. This process continues with batch
normalization to maintain convergence on data
features. The sigmoid function is used as the
activation to determine the probability values of
the generated feature map as follows:

=a [BN [C(gxa:. (x)))

In Figure 3, the process ends with a 1x1
convolution that mixes the features to produce a
better representation. The result will be
concatenated with EMA modules to improve ER-
EMA performance.
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Figure 3. ECIB and CRB block on the ER-EMA attention module
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RESULTS AND DISCUSSION
Training Configuration

Table 1 outlines the proposed research
using a high-specification computer for deep
learning experiments. Training data is processed
on an NVIDIA Colorful GPU with 12 GB of RAM,
which is well-suited for training complex models.
The feed graphic is resized to 640 x 640 for
efficiency, without sacrificing spatial information
accuracy.

Training was conducted for 300 epochs on
the Vehicle-COCO dataset, then for 100 epochs
on the UA-DETRACT dataset, with the exact
requirements applied to both. Training data using
a batch size of 16 to ensure stable training. The
Stochastic Gradient Descent (SGD) solver was
used owing to its robustness in handling large
datasets. The learning rate was set at 0.01 to
achieve a reach fitting rate. These configurations
help achieve optimal results in vehicle detection.
The method and evaluation are executed on the
CPU, as shown in the inference stage in Table 2.
This setup allows for evaluating the architecture's
competence under limited computational
resources.

Evaluation of the Dataset

The dataset is part of the MS COCO
dataset family and contains 18,998 images, with
13,300 for training and 3,788 for validation, as
shown in Table 3. The images are labelled into
four classes: car, bus, truck, and motorcycle. This
dataset was used in previous research by
Chauduri, as shown in Figure 4(a) [17].

Table 1. Training and Evaluation Setup

Another dataset used in this work is UA-
DETRACT. It consists of 100 surveillance traffic-
tracking videos collected from 24 locations under
various weather conditions. It was partitioned into
60 group timelines for the training phase and 40
for validation [27], as detailed in Table 4. It
annotates four vehicle types: car, bus, van, and
others, as shown in Figure 4(b). This dataset was
used in previous research by Yuhai Wang et al.
[22]. The Vehicle-COCO dataset provides a
diverse set of vehicle types and complex scenes
for general object detection. UA-DETRAC
represents real-world traffic scenarios. Together,
they demonstrate the robustness across varied
scenes, backgrounds, and viewpoints.

The dataset evaluation demonstrates the
model's accuracy and reliability across various
road conditions and highlights its robustness in
detecting vehicles. The ablation study is an
important phase for specifically evaluating the
model's development by analyzing each
component of the architecture. This allows for
confirming which changes contributed to the
performance improvements.

Table 5 compares the ER-EMA-YOLOv10n
architecture with previous methods. The outcome
demonstrates that the designed framework
delivers enhanced accuracy along with efficiency.
Specifically, ER-EMA-YOLOv10n exhibits
enhanced capability in detecting various vehicle
types, outperforming other frameworks in terms of
precision, comparison, and resource usage.
Compared to ShortYOLO-CSP, the framework
increases mMAP@50 by 0.8% while reducing the
parameter count by 6.1 million and lowering the
computational load by 4.6 GFLOPS.

Table 3. Vehicle-Coco Dataset properties

Properties Deployment Properties Visual data

Device AMD Ryzen 5 3500 6-Core Training Data 13,300

GPU NVIDIA RTX Colorful 12 GB Validation Data 3,788

Image Size 640 x 640 pixels

Epochs 300(vehicle-COCO), Table 4. UA-DETRACT Dataset properties
100 (UA-DETRACT) - -

Batch Size 16 Properties Visual data

Optimizer SGD Training Data 83,791

Learning Rate 0.01 Validation Data 56,340

Table 2. Inference Setup

Properties Deployment

System Software Ubuntu

Compiler Python 3.9.20

Framework Pytorch 2.0

CPU éMD Ryzen 5 3500 6-
ore

Visual Dimension 640 x 640 pixels

Table 5. Evaluation of the proposed architecture
versus other models on the Vehicle-COCO

dataset

Para mAP mAP

Model GFLOPS Meter 50 50:95
(M) % %
YOLOv3-tiny [19] 12.9 8.7 46.1 -
LittleYOLO-SPP [19] 12.9 8.7 52.9 -
ShortYOLO-CSP [20] 12.9 8.7 63.3 -
YOLOV5-NAM [21] 16.0 7.0 56.1 -

ER-EMA-YOLOv10n 8.3 2.6 64.5 45.2
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(a)
Figure 4. (a) Vehicle COCO Dataset, (b) UA-DETRACT Dataset

Table 6 highlights the architecture's
performance in classifying and distinguishing the
diversity of vehicles on the traffic road. ER-EMA-
YOLOv10n demonstrates superior performance in
detecting various vehicle types, outperforming
other models in both accuracy and resource
usage. It performs better than previous works
such as YOLOv5-IPA-MSCCR, achieving an
improvement of 8.4% in mMAP@50. In addition, this
model reduces the parameter count by 3.9 million
and decreases the computational cost by 7.3
GFLOPS, making it more efficient.

Table 7 presents the comparison of the
proposed model with several attention modules
used in the YOLOv10n. In this experiment,
YOLOv10n was augmented with various attention
modules under identical conditions and tested on
a 20-second video, with inference spanning 420
frames. This demonstrates that the proposed
model outperforms other attention-based variants
in both accuracy and efficiency, with only a
minimal compromise in inference speed.

The slight decrease in average FPS is
attributed to the inclusion of proposed blocks,
which introduce an additional processing branch,
thereby affecting detection speed. Compared to
CBAM, the proposed model achieves superior

Table 6. Evaluation of the proposed architecture

(b)

accuracy: 64.5% mAP@50 vs. 63.7%, and 45.2%
MAP@50:95 vs. 44.4%. In terms of computational
efficiency, the proposed model also maintains a
more favorable balance between accuracy and
computational cost, with 0.1 GFLOPS less and 0.1
M fewer parameters than the original YOLOv10n.

In terms of detection comparison, Figure 5
(a) shows that the original YOLOv10 encounters
difficulties in detecting vehicle objects with
precision across different types, with some
vehicles not detected in (a). Conversely, Figure
5(b) shows higher accuracy and consistent object
detection, enabling the capture of even small
vehicle objects.

The evaluation results for the proposed
architecture, tested on the UA-DETRACT
validation subset datasets, are shown in Figure 6.
It demonstrates significant upgrades in precision
and efficiency compared to the YOLOv10n
variant. Figure 6(a) shows that the original
YOLOv10n version has difficulty detecting
vehicles with high precision across different types.
In contrast, Figure 6(b) shows improved precision
with consistent object detection, yielding accurate
bounding boxes that improve recognition.

Table 7. Evaluation of the novel model alongside
other attention modules on the Vehicle-COCO

with another framework on UA-DETRACT dataset
Para mAP mAP Para mAP mAP Avg.
Model GFLOPS Meter  50%  50:95 Model GFLOPS Meter 50% 50:95 FPS
(M) % m) %
(18] YOLOV10n-EMA 77 19 638 443 224
YOLOVS-NAM[21] 160 7.0 51.2 - YOLOV10n-CA 77 19 638 446 243
YOLOv6n [22] 113 46 53.6 - YOLOV10n-ECA 77 19 635 446 237
YOLOv7-tiny [22] 130 6.0 47.2 - YOLOV10n-ELA 77 19 638 446 226
E;%'—O"f"'PA'MSCCR 156 64 56.5 © YOLOv10n-SE 77 19 636 446 242
ER-EMA-YOLOV10n 83 25 641 482 ng,&,’ ;?"'CBAM g:g g:g g,‘:’:; 2::2 §§;§
YOLOV10n
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(a)

i &l
(@)

Heatmap results of the ER-EMA-YOLOv10n
model on the COCO dataset, focusing on the
detection of different vehicle types with varying
scale features in Figure 7(a). Moderate-activation
areas (green, yellow, and red) contribute to
general object recognition, while low-activation
areas (dark blue) represent backgrounds and
irrelevant regions. The proposed model improves
detection accuracy compared to the YOLOv10n
base model. When compared, the metrics show
MAP@50 is 64.5% versus 63.7%, and mAP@50-
95% is 45.2% versus 44.2%. Accuracy gained 07
- 1%.

On Figure 7(b), the heatmap of the ER-
EMA-YOLOv10n model on the UA-DETRACT
dataset, focusing on the detection of different
vehicle types on the road traffic. Moderate-

(®)
Figure 5. Comparisons on Vehicle-COCO dataset: (a) YOLOv10n, (b) ER-EMA-YOLOv10n

(b)

Figure 6. Comparison on UA-DETRAC dataset: (a) YOLOv10n original, (b) ER-EMA-YOLOv10-n

activation areas (green, vyellow, and red)
contribute to general object recognition, while low-
activation  areas (dark  blue) represent
backgrounds and irrelevant regions. The proposed
model improves performance over the original,
reducing background noise. The accuracy shows
improvement, indicated by mAP@50-95% of
48.2%, compared to the original MAP@50-95% of
44.2%. These evaluations show that ER-EMA-
YOLOv10n performs better at feature extraction,

improves  accuracy, and offers greater
computational efficiency than the original
YOLOv10n. Because it focuses on important

visual features while ignoring less relevant areas,
it makes it a more robust and optimized vehicle
detection.
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Ablation Study

Both datasets were evaluated and analyzed
in ablation studies. The ablation study focuses on
the impact of each component of the model
architecture and its contribution to improved
performance. The dataset evaluation
demonstrates the accuracy and reliability of the
vehicle detection model across various road
conditions and highlights its robustness in
addressing the challenges of vehicle detection.
The ablation study is a crucial phase for
specifically evaluating model developments by
analyzing each component of the architecture. It
allows for confirming which changes contributed to
the performance improvements.

Table 8 presents the results of the ablation
study conducted across various modifications of
the YOLOv10n model. It examines the individual
contributions of the ECIB and CRB components,
as well as their combined effect. It highlights the
performance improvements enabled by integrating
these modules while maintaining computational
efficiency. The proposed module combination
yields a 1% increase in mAP@?50:95, indicating a
notable enhancement in detection performance. In
terms of model efficiency, the approach reduces
the number of parameters by 0.1 million and the
computational cost by 0.1 GFLOPs.

Table 9 presents the ablation study
comparing the baseline YOLOv10n, combined

Table 8. Ablation study about the proposed model

(b)
Figure 7. (a) Heatmaps on various vehicle types in Vehicle-COCO dataset, (b) Heatmap on traffic
condition in UA-DETRACT dataset.

EMA-YOLOv10n, and the ER-EMA-YOLOv10n.
The proposed method demonstrates a significant

performance improvement, achieving a 4%
increase in  mMAP@50:95. In terms of
computational efficiency, the framework also

reduces the parameter count by 0.2 million and
the computational load by 0.4 GFLOPs. As a note,
experiments conducted on the UA-DETRAC
architecture were slightly modified by discarding
the CRB block and using only the ECIB block. To
further optimize the receptive field, the ECIB block
was adapted with a dilation factor of 2, effectively
enlarging it without increasing the parameter
count or computational complexity. This
adjustment is important given the nature of the
UA-DETRAC dataset, which consists of extensive
video footage captured from road surveillance,
resulting in a high volume of similar or near-
identical images.

Runtime Efficiency

Runtime efficiency is a critical metric in
evaluating the usability of vehicle objects. It
measures model efficiency in terms of speed,
parameter efficiency, and computational demand.
It provides a comparative analysis of the runtime
between YOLOv10n and ER-EMA-YOLOv10n
using a CPU.

Table 9. Ablation study about the proposed model
on the UA-DETRACT dataset

on the Vehicle-COCO dataset GFLOPS Para mAP  mAP
GFLOPS Para mAP mAP Model Meter 50 % 50:95 %
Model Meter 50 % 50:95 (M)
M) % YOLOv10n 8.4 27 589 442
$8t8V18n EMA g-g g; gg-z 33-3 EMA-YOLOv10n 8.5 27 593 443
v10n . . . . K _ _
YOLOv10n:EMA_ECIB 8.0 2.6 63.5 441 ER-EMA-YOLOv10-n 8.0 25 64.1 48.2
YOLOv10n_EMA_CRB 8.0 26 63.8 447
ER-EMA-YOLOv10n 8.3 2.6 64.5 45.2
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As shown in Table 7, the ER-EMA-
YOLOv10On model shows a significant
improvement in runtime efficiency. There is a
decrease of 0.1 M in the number of parameters
on the Vehicle-COCO dataset and 0.2 M in the
UA-DETRACT dataset. There is also an
efficiency of 0.1 GFLOPS in the Vehicle-COCO
dataset and 0.4 GFLOPS in the UA-DETRACT
dataset. These improvements can be attributed
to the depthwise technique and to pruning the
number of channels in the backbone, resulting in
a more efficient architecture.

The ER-EMA module shows a slight
decrease in inference speed due to the additional
branch introduced by the ECIB and ERB blocks,
which  increases memory access and
computational overhead. Although depthwise
convolutions reduce the number of parameters,
they also increase CPU memory usage. As a
result, the ER-EMA-YOLOv10n achieves 2.3 FPS
lower performance compared to the original
YOLOv10n.

Table 10. Real-time Setup on Embedded System

Properties  Deployment
Device NVIDIA Jetson Nano B-01 4 GB
Quad-Core ARM ® Cortex ®-A57 MPCore
CPU
Processor
GPU 128-core NVIDIA Maxwell™ architecture

Real-World Application

Real-world application testing demonstrates
the model's performance on embedded systems.
The Jetson Nano served as the deployment
platform, with the setup detailed in Table 10.

The proposed ER-EMA-YOLOv10n model
exhibits a slight reduction in inference speed,
with a decrease of 0.87 FPS on the Vehicle-
COCO dataset and 3.03 FPS on the UA-
DETRAC dataset, as shown in Table 11. This
decline is primarily attributed to the additional
computations introduced by the ER-EMA module.
As llustrated in Figure 8, the model was
deployed in a real-world system, demonstrating
improved vehicle detection performance. Despite
the trade-off in speed, the improvement in
detection accuracy and robustness justifies the
added complexity, rendering the model suitable
for real-time applications, including those in
resource-constrained environments.

Table 11. Comparison of FPS between the
proposed model and the original on a real-world

application
Model Dataset FPS
YOLOv10n Vehicle-COCO 7.69
ER-EMA-YOLOv10n Vehicle-COCO 6.82
YOLOv10n UA-DETRACT 9.02
ER-EMA-YOLOv10n UA-DETRACT 5.99

(b)
Figure 8. Real-World application on vehicle detection. (a) YOLOv10n, (b) ER-EMA-YOLOv10n
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CONCLUSION

This research presents approaches to
improving the performance of vehicle detection
models, first by introducing ER-EMA-YOLOv10n
models that use YOLOv10n as the main
architecture and ER-EMA, a cutting-edge
attention module. ER-EMA consists of two novel
blocks: the Expanded Convolution Inverted Block
(ECIB) and the Convolutional Refinement Block
(CRB). This model is trained on two datasets:
Vehicle-COCO and UA-DETRACT. Our method
significantly improves performance over the
baseline model and previous work. The ER-EMA-
YOLOv10n version achieves 64.5% mAP 50%
accuracy, surpassing the original model by 0.7%,
and 45.2% mAP 50-95% accuracy, exceeding
the original by 1% on the Vehicle-COCO dataset.

Significant performance improvement is
also demonstrated on the UA-DETRACT dataset.
It produces a mAP of 50% (64.1%), surpassing
the original by 5.2%, and a mAP of 50-95%
(48.2%), exceeding the original by 4%. In
addition, our model reduces the parameter count
and GFLOPS, improving compute resource
efficiency. On the Vehicle-COCO dataset, the
model has 2,646,552 parameters, 62,032 fewer
than the original model, and 8.3 GFLOPS, which
is 0.1 more efficient than the original model.
Similar efficiency is observed on the UA-
DETRACT dataset, with 2,572,040 parameters,
136,644 fewer than the original model, and 8.0
GFLOPS, which is 0.4 more efficient than the
original. These findings demonstrate that ER-
EMA-YOLOv10n offers a balanced improvement
in both precision and computational efficiency,
making it more robust for vehicle detection.

Future work plans could focus on elevating
the performance of the YOLOv10n architecture
by adapting and deploying the proposed model in
real-world applications, such as vehicle counting
for intelligent traffic management systems. Plans
will focus on improving runtime efficiency, as the
current model performs more slowly than
previous work, and will also direct further efforts
toward real-world application deployment.
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