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Abstract  
Vehicle detection plays a key role in automating traffic analysis, a 
field that continues to advance rapidly. Vision-based systems 
identify vehicle types and sizes, but achieving high accuracy and 
efficiency remains a challenge. Reliable real-world deployment 
requires optimized models that balance performance and 
computational cost. YOLOv10n, the most efficient version of the 
YOLO family, offers a solid foundation for lightweight feature 
extraction. To improve its detection performance, this study 
proposes an enhanced version of YOLOv10n by incorporating a 
scale-aware attention mechanism. We proposed the Expanded 
Refinement Efficient Multi-Scale Attention (ER-EMA) module, which 
enhances feature encoding by capturing vehicle characteristics 
across multiple receptive fields. ER-EMA consists of two core 
components: the Expanded Converted Inverted Block (ECIB) and 
the Convolutional Refinement Block (CRB). These components use 
diverse convolutional kernels to extract and refine multi-frequency 
spatial features. Integrating ER-EMA into the YOLOv10n framework 
produces a more compact and accurate detection model. 
Experimental results show that the proposed model increases 
mAP@50 by 1%, while reducing the number of parameters by 0.1M 
and computation by 0.1 GFLOPS on the Vehicle-COCO dataset. 
On the UA-DETRAC benchmark, it achieves a 4% improvement in 
mAP@50:95, with a reduction of 0.2M in parameters and 0.4 
GFLOPS in computational efficiency—outperforming the original 
YOLOv10n and prior methods in both performance and 
computational efficiency. 
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INTRODUCTION  

Urbanization and population growth have 
significantly increased vehicle use in both urban 
and rural areas, contributing to traffic congestion 
and longer commuting times [1][2]. In 2024, 
individuals around the world spent an estimated 
88 hours annually, on average, stuck in traffic 
congestion [3]. It is urgent to address these 
challenges by developing accurate, efficient 
vehicle detection systems that adapt to dynamic 
road conditions and traffic scenarios. 

Object detection, a subfield of Vision 
Intelligence, becomes significant in intelligent 

transportation systems. Modern detection 
methods, primarily based on CNN frameworks, 
have achieved considerable success by learning 
discriminative features directly from visual data 
[4, 5, 6]. In this context, the YOLO variant models 
have gained prominence for adjusting detection 
accuracy with computational efficiency. The 
recent introduction of YOLOv10 offers 
improvements over its predecessors through 
strategies such as model pruning, architecture 
simplification, and the novel “Consistent Dual 
Assignment” mechanism, which excludes the 
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need for Non-Maximum Suppression (NMS) 
[7][8]. 

YOLOv10 includes various scaled 
versions, with the YOLOv10n model tailored for 
low latency and edge device deployment. 
Although YOLOv10n is efficient, it may still 
underperform in scenarios with scale variation, 
partial occlusion, or cluttered scenes. To 
enhance performance under these conditions, 
attention mechanisms such as the Efficient Multi-
scale Attention (EMA) block have been 
introduced to improve spatial feature 
representation by capturing relationships across 
different resolutions [9]. However, current EMA-
based approaches often lose essential fine-
grained details due to limited feature refinement 
capabilities during extraction. 

Recent studies highlight a growing interest 
in optimizing YOLO-based architectures across 
various application domains. For instance, 
YOLOv8 variants have been adapted for 
specialized tasks such as fish and sea turtle 
detection in marine biology [10, 11, 12], as well 
as tomato and wheat spike recognition in 
agricultural environments [13][14]. In aerial 
surveillance, BGF-YOLOv10 and LD-YOLOv10 
have been developed to detect small objects 
from unmanned aerial vehicles, focusing on 
enhancing detection accuracy while maintaining 
low computational cost [15][16]. Within the 
transportation domain, YOLOv3-tiny and 
YOLOv4-tiny have been applied to vehicle 
detection tasks, including traffic violation 
monitoring and autonomous driving systems 
[17][18]. Other models, such as LittleYOLO-SPP, 
ShortYOLO-SPP, YOLOv5-NAM, and YOLOv5-
IPA_MSSCR [19, 20, 21, 22], further illustrate 
efforts to balance real-time performance with 
detection robustness, particularly under 
challenging conditions involving occlusion or 
small objects. 

While recent studies have demonstrated 
significant progress in adapting various YOLO-
based models, most of these works focus on 
lightweight optimization and domain-specific 
enhancements. However, these models often 
struggle to handle scale variation, occlusion, and 
dense object configurations. YOLOv10 
represents the latest evolution of the YOLO 
framework, introducing key innovations, namely 
the Consistent Dual Assignment strategy and 
improved architectural efficiency. Despite these 
advancements, limited research has explored the 
synthesis of refined multi-scale attention 
techniques within the YOLOv10 framework to 
enhance performance in complex environments, 
such as vehicle detection under dense traffic, 
across varying object scales, and under partial 

occlusion. This gap underscores the need to 
enhance YOLOv10 with attention-based modules 
further to improve its robustness in real-world, 
high-density detection tasks. 

To address this gap, this study proposes 
an enhanced vehicle detection framework that 
elevates YOLOv10n with a novel feature-
extraction module for lightweight detectors. The 
model integrates the ER-EMA module into the 
backbone, improves feature quality through 
better spatial representation, and scale 
adaptability. By doing so, it aims to achieve 
higher detection accuracy without compromising 
speed or resource efficiency. Designed for edge-
device compatibility, this method supports real-
time applications on low-budget hardware. The 
core contributions of this work are: 

• Introducing a novel vehicle detection framework 
to localize vehicles optimally using modified 
YOLOv10-nano, which achieves better 
performance and efficient cost. 

• Expanded Refinement of Efficient Multi-Scale 
Attention (ER-EMA) aims to enhance feature 
extraction performance while maintaining 
efficiency by combining it with the original EMA. 

• The Expanded Convolution Inverted Block 
(ECIB) increases channel capacity by 
incorporating normalization and activation 
functions, enabling more effective feature 
extraction.  

• Convolutional Refinement Block (CRB) to refine 
and optimize feature representations. 

• Comprehensive performance analysis, runtime 
efficiency, and ablation studies were conducted 
on the proposed architecture and compared 
against several efficient object detection models 
from previous work and attention modules. 

 

METHOD 
In this section, the proposed architecture is 

explained in detail. This section focuses on 
improving vehicle detection performance. The 
Pyramid-based Spatial Pooling in YOLOv10 is 
designed to expand the receptive field during 
feature extraction, enabling it to adapt to objects 
with diverse dimensions. Figure 1 shows the 
operation of spatial max pooling in 2D with 
different window sizes (5, 9, 13). The Partial Self-
Attention (PSA) block, adapted from the self-
attention mechanism, enhances global feature 
representation while maintaining computational 
efficiency, as illustrated in Figure 1. By focusing 
on a subset of feature channels, PSA captures 
global context with lower overhead than full self-
attention, balancing accuracy and efficiency. Both 
SPPF and PSA were modified by adding an ER-
EMA block at the end to enrich feature extraction.
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Figure 1. ER-EMA-YOLOv10n architecture with SPPF and PSA Block. It consists of a backbone, neck, 
and head to detect, distribute, and extract information using the ER-EMA on the SPPF and PSA block.
 

ER-EMA-YOLOv10n Architecture 
The backbone of the ER-EMA-YOLOv10n 

architecture serves as the core feature extractor, 
leveraging multi-kernel convolutional layers to 
learn object patterns through iterative weight 
updates during training. The Pyramid-based 
Spatial Pooling in YOLOv10 is designed to 
expand the receptive field during feature 
extraction, enabling it to adapt to objects with 
diverse dimensions. It operates on spatial max 
pooling in 2D with different window sizes (5, 9, 
13).  

The Partial Self-Attention (PSA) block, 
adapted from the self-attention mechanism, 
enhances global feature representation while 
maintaining computational efficiency. By focusing 
attention on a subset of feature channels, PSA 
effectively captures global context with lower 
overhead than full self-attention, offering a 
balance between accuracy and efficiency. Block 
SPPF and PSA were both modified by adding an 
ER-EMA block at the end to enrich the extraction 
features. 

The neck in the YOLOv10n architecture is 
a crucial component that integrates features at 
multiple levels and scales from the backbone, 

aligning the resolution between the head and the 
backbone. The head module is designed to 
classify each detected object and calculate the 
probability for each object class. It is a regression 
predicting each bounding box, including the One-
To-Many head that sustains the native form and 
adjustment goal to produce a collection of 
forecasts. The model also incorporates a One-to-
One head with an alignment-based label-
matching strategy, ensuring a unique 
correspondence between each ground-truth label 
and a single prediction. It uses CIoU loss to 
measure convergence between matched 
prediction–ground-truth pairs, accounting for both 
spatial overlap and aspect ratio [23]. 
 
Expanded Refinement of Efficient Multi-Scale 
Attention (ER-EMA) 

To create a robust detection model, 
simultaneous detection of multiple vehicle types 
is required. This module seeks to improve EMA 
(Efficient Multi-Scale Attention) by boosting 
performance and enhancing feature extraction 
across different scales. This module also 
enhances the network's ability to identify vehicles 
of varying sizes. ER-EMA module is located in 



SINERGI Vol. 30, No. 1, February 2026: 185-196 

 

188 I. Kutika et al., An effective and efficient vehicle detection using ER-EMA-YOLOv10n 

 

each block of the SPPF and PSA. This work 
includes several block components working 
together to relate features at different frequencies 
within the proposed method. 

ER-EMA consists of the EMA attention 
module as the context, and the ECIB and CRB 
blocks, as shown in Figure 2. EMA starts with 
feature grouping to partition X into G feature 
subsets spanning the stream dimensions 
direction for learning and extracting different 
semantics with G // C, learnt emphasis weight 
descriptor sets to strengthen the feature 
encoding of interest region in each subset as 
described as follows: 
 

       (1) 

Parallel subnetworks in EMA associate two 
features with the image height and share a 1×1 
convolution, without decreasing dimensionality in 
the 1×1 path stream, using a process resembling 
Coordinate Attention (CA). After the 1×1 
convolution, the feature map is split into two 
branch vectors, proceeding with the application of 
the Sigmoid activation function to model the 
binary distribution of the 2D convolutional output 

[24]. EMA enables distinctive trans-channel 
associations between the two symmetrical sub-
networks at the 1×1 branch, where the feature 
maps from both channels are combined element-
wise within the model architecture. Conversely, 
the 3⨯3 convolution branch acquires proximal 
trans-channel feature cross-talk, thereby 
expanding the representation. This module 
adjusts the magnitudes of diverse channels and 
maintains exact spatial data blocks within them.  

Cross-spatial learning is a strategy for 
encoding holistic context and modeling broad 
associations. The primary spatial attention 
representation is obtained by applying a matrix 
product to the synchronous times' outputs. 
Similarly, 2D holistic mean pooling is used in the 
section to extract holistic spatial data and 
generate a subsequent spatial weight 
representation that preserves spatial address 
details. Activation maps for clusters are 
calculated, combining the two-weight points. The 
2D holistic pooling operation is as follows: 

 

      (2)

  

Figure 2. The ER-EMA attention module is integrated into both the SPPF and PSA blocks within the 
ER-EMA-YOLOv10n, enhancing multi-scale feature extraction and expanding contextual 

representation
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This work introduces a new block in the 
new branch that provides a representation of the 
existing feature map, as shown in Figure 3. This 
block has strong potential to be further developed 
into a unified module that enhances performance 
while maintaining computational efficiency. The 
ECIB begins with the input features and applies 
3×3 depthwise convolutions, referred to as 
CDW1, as shown: 

     (3) 

                   (4) 

In the subsequent step, Group 
Normalization (GN) [25] is applied to the input 
data, producing more stable feature 
representations and facilitating faster training 
following the convolution operation. GELU 
(Gaussian Error Linear Unit) is applied, providing 
a smoother representation and preserving 
information by offering more stable gradients for 
complex learning [26]. The process continues 
with 1⨯1 convolution as C2, as shown: 

        (5) 

  (6) 

REP is a REPVGGDW block that performs 
depthwise convolutions with 3⨯3 and 7⨯7 
kernels to obtain a broad feature representation 
with SILU (Sigmoid Linear Unit), improving the 

smoothness of gradient flow, preventing the loss 
of features. After REP, the process continues on 
GN and GELU activation, resulting in C3. Then, 
on C4, following a similar process on C2. It 
continues and concludes at CDW5, which applies 
a 3×3 convolution followed directly by GELU 
activation, as shown: 

                     (7)                           

      (8)                              

       (9) 

CRB begins by performing a 3×3 
convolution, which effectively captures fine 
details such as the edges and textures of small 
shapes. This process continues with batch 
normalization to maintain convergence on data 
features. The sigmoid function is used as the 
activation to determine the probability values of 
the generated feature map as follows: 

.           (10)  

In Figure 3, the process ends with a 1×1 
convolution that mixes the features to produce a 
better representation. The result will be 
concatenated with EMA modules to improve ER-
EMA performance. 

 
Figure 3. ECIB and CRB block on the ER-EMA attention module
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RESULTS AND DISCUSSION 
Training Configuration 

Table 1 outlines the proposed research 
using a high-specification computer for deep 
learning experiments. Training data is processed 
on an NVIDIA Colorful GPU with 12 GB of RAM, 
which is well-suited for training complex models. 
The feed graphic is resized to 640 ⨯ 640 for 
efficiency, without sacrificing spatial information 
accuracy. 

Training was conducted for 300 epochs on 
the Vehicle-COCO dataset, then for 100 epochs 
on the UA-DETRACT dataset, with the exact 
requirements applied to both. Training data using 
a batch size of 16 to ensure stable training. The 
Stochastic Gradient Descent (SGD) solver was 
used owing to its robustness in handling large 
datasets. The learning rate was set at 0.01 to 
achieve a reach fitting rate. These configurations 
help achieve optimal results in vehicle detection. 
The method and evaluation are executed on the 
CPU, as shown in the inference stage in Table 2. 
This setup allows for evaluating the architecture's 
competence under limited computational 
resources. 

 
Evaluation of the Dataset 

The dataset is part of the MS COCO 
dataset family and contains 18,998 images, with 
13,300 for training and 3,788 for validation, as 
shown in Table 3. The images are labelled into 
four classes: car, bus, truck, and motorcycle. This 
dataset was used in previous research by 
Chauduri, as shown in Figure 4(a) [17]. 

 

Another dataset used in this work is UA-
DETRACT. It consists of 100 surveillance traffic-
tracking videos collected from 24 locations under 
various weather conditions. It was partitioned into 
60 group timelines for the training phase and 40 
for validation [27], as detailed in Table 4. It 
annotates four vehicle types: car, bus, van, and 
others, as shown in Figure 4(b). This dataset was 
used in previous research by Yuhai Wang et al. 
[22]. The Vehicle-COCO dataset provides a 
diverse set of vehicle types and complex scenes 
for general object detection. UA-DETRAC 
represents real-world traffic scenarios. Together, 
they demonstrate the robustness across varied 
scenes, backgrounds, and viewpoints. 

The dataset evaluation demonstrates the 
model's accuracy and reliability across various 
road conditions and highlights its robustness in 
detecting vehicles. The ablation study is an 
important phase for specifically evaluating the 
model's development by analyzing each 
component of the architecture. This allows for 
confirming which changes contributed to the 
performance improvements. 

Table 5 compares the ER-EMA-YOLOv10n 

architecture with previous methods. The outcome 

demonstrates that the designed framework 
delivers enhanced accuracy along with efficiency. 
Specifically, ER-EMA-YOLOv10n exhibits 
enhanced capability in detecting various vehicle 
types, outperforming other frameworks in terms of 
precision, comparison, and resource usage. 
Compared to ShortYOLO-CSP, the framework 
increases mAP@50 by 0.8% while reducing the 
parameter count by 6.1 million and lowering the 
computational load by 4.6 GFLOPS. 

Table 1. Training and Evaluation Setup 
Properties Deployment 

Device AMD Ryzen 5 3500 6-Core 
GPU NVIDIA RTX Colorful 12 GB 
Image Size 640 ⨯ 640 pixels 

Epochs 
300(Vehicle-COCO),  
100 (UA-DETRACT) 

Batch Size 16 
Optimizer SGD 
Learning Rate 0.01 

 
Table 2. Inference Setup 

Properties Deployment 

System Software Ubuntu 
Compiler Python 3.9.20 
Framework  Pytorch 2.0 

CPU 
AMD Ryzen 5 3500 6-
Core 

Visual Dimension 640 ⨯ 640 pixels 

 
 
 

Table 3. Vehicle-Coco Dataset properties 
Properties Visual data 

Training Data 13,300 
Validation Data 3,788 

 
Table 4. UA-DETRACT Dataset properties 

Properties Visual data 

Training Data 83,791 
Validation Data 56,340 

  
Table 5. Evaluation of the proposed architecture 

versus other models on the Vehicle-COCO 
dataset 

Model GFLOPS 
Para 
Meter 

(M) 

mAP 
50 
% 

mAP 
50:95 

% 

YOLOv3-tiny [19] 12.9 8.7 46.1 - 
LittleYOLO-SPP [19] 12.9 8.7 52.9 - 
ShortYOLO-CSP [20] 12.9 8.7 63.3 - 
YOLOv5-NAM [21] 16.0 7.0 56.1 - 
ER-EMA-YOLOv10n 8.3 2.6 64.5 45.2 

 



p-ISSN: 1410-2331  e-ISSN: 2460-1217 

 

I. Kutika et al., An effective and efficient vehicle detection using ER-EMA-YOLOv10n 191 

 

 
Figure 4. (a) Vehicle COCO Dataset, (b) UA-DETRACT Dataset 

 
Table 6 highlights the architecture's 

performance in classifying and distinguishing the 
diversity of vehicles on the traffic road. ER-EMA-
YOLOv10n demonstrates superior performance in 
detecting various vehicle types, outperforming 
other models in both accuracy and resource 
usage. It performs better than previous works 
such as YOLOv5-IPA-MSCCR, achieving an 
improvement of 8.4% in mAP@50. In addition, this 
model reduces the parameter count by 3.9 million 
and decreases the computational cost by 7.3 
GFLOPS, making it more efficient. 

Table 7 presents the comparison of the 
proposed model with several attention modules 
used in the YOLOv10n. In this experiment, 
YOLOv10n was augmented with various attention 
modules under identical conditions and tested on 
a 20-second video, with inference spanning 420 
frames. This demonstrates that the proposed 
model outperforms other attention-based variants 
in both accuracy and efficiency, with only a 
minimal compromise in inference speed. 

The slight decrease in average FPS is 
attributed to the inclusion of proposed blocks, 
which introduce an additional processing branch, 
thereby affecting detection speed. Compared to 
CBAM, the proposed model achieves superior 

accuracy: 64.5% mAP@50 vs. 63.7%, and 45.2% 
mAP@50:95 vs. 44.4%. In terms of computational 
efficiency, the proposed model also maintains a 
more favorable balance between accuracy and 
computational cost, with 0.1 GFLOPS less and 0.1 
M fewer parameters than the original YOLOv10n.   

In terms of detection comparison, Figure 5 
(a) shows that the original YOLOv10 encounters 
difficulties in detecting vehicle objects with 
precision across different types, with some 
vehicles not detected in (a). Conversely, Figure 
5(b) shows higher accuracy and consistent object 
detection, enabling the capture of even small 
vehicle objects.  

The evaluation results for the proposed 
architecture, tested on the UA-DETRACT 
validation subset datasets, are shown in Figure 6. 
It demonstrates significant upgrades in precision 
and efficiency compared to the YOLOv10n 
variant. Figure 6(a) shows that the original 
YOLOv10n version has difficulty detecting 
vehicles with high precision across different types. 
In contrast, Figure 6(b) shows improved precision 
with consistent object detection, yielding accurate 
bounding boxes that improve recognition. 
 

 
Table 6. Evaluation of the proposed architecture 

with another framework on UA-DETRACT 

Model GFLOPS 
Para 
Meter 
(M) 

mAP 
50 % 

mAP 
50:95
% 

YOLOv3-tiny-FPGA 
[18] 

5444 8.7 62.5 - 

YOLOv5-NAM [21] 16.0 7.0 51.2 - 
YOLOv6n [22] 11.3 4.6 53.6 - 
YOLOv7-tiny [22] 13.0 6.0 47.2 - 
YOLOv5-IPA-MSCCR 
[22] 

15.6 6.4 56.5 - 

ER-EMA-YOLOv10n 8.3 2.5 64.1 48.2 

 

Table 7. Evaluation of the novel model alongside 
other attention modules on the Vehicle-COCO 

dataset 

Model GFLOPS 
Para 
Meter 
(M) 

mAP 
50 % 

mAP 
50:95 

% 

Avg.  
FPS 

YOLOv10n 8.4 2.7 63.7 44.2 23.1 
YOLOv10n-EMA 7.7 1.9 63.8 44.3 22.4 
YOLOv10n-CA 7.7 1.9 63.8 44.6 24.3 
YOLOv10n-ECA 7.7 1.9 63.5 44.6 23.7 
YOLOv10n-ELA 7.7 1.9 63.8 44.6 22.6 
YOLOv10n-SE 7.7 1.9 63.6 44.6 24.2 
YOLOv10n-CBAM 8.2 2.5 63.7 44.6 22.2 
ER-EMA-
YOLOv10n 

8.3 2.6 64.5 45.2 20.8 
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Figure 5. Comparisons on Vehicle-COCO dataset: (a) YOLOv10n, (b) ER-EMA-YOLOv10n 

 

 
Figure 6. Comparison on UA-DETRAC dataset: (a) YOLOv10n original, (b) ER-EMA-YOLOv10-n 

 
Heatmap results of the ER-EMA-YOLOv10n 

model on the COCO dataset, focusing on the 
detection of different vehicle types with varying 
scale features in Figure 7(a). Moderate-activation 
areas (green, yellow, and red) contribute to 
general object recognition, while low-activation 
areas (dark blue) represent backgrounds and 
irrelevant regions. The proposed model improves 
detection accuracy compared to the YOLOv10n 
base model. When compared, the metrics show 
mAP@50 is 64.5% versus 63.7%, and mAP@50-
95% is 45.2% versus 44.2%. Accuracy gained 07 
– 1%. 

On Figure 7(b), the heatmap of the ER-
EMA-YOLOv10n model on the UA-DETRACT 
dataset, focusing on the detection of different 
vehicle types on the road traffic. Moderate-

activation areas (green, yellow, and red) 
contribute to general object recognition, while low-
activation areas (dark blue) represent 
backgrounds and irrelevant regions. The proposed 
model improves performance over the original, 
reducing background noise. The accuracy shows 
improvement, indicated by mAP@50-95% of 
48.2%, compared to the original mAP@50-95% of 
44.2%. These evaluations show that ER-EMA-
YOLOv10n performs better at feature extraction, 
improves accuracy, and offers greater 
computational efficiency than the original 
YOLOv10n. Because it focuses on important 
visual features while ignoring less relevant areas, 
it makes it a more robust and optimized vehicle 
detection.  
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Figure 7. (a) Heatmaps on various vehicle types in Vehicle-COCO dataset, (b) Heatmap on traffic 
condition in UA-DETRACT dataset. 

 
Ablation Study 

Both datasets were evaluated and analyzed 
in ablation studies. The ablation study focuses on 
the impact of each component of the model 
architecture and its contribution to improved 
performance. The dataset evaluation 
demonstrates the accuracy and reliability of the 
vehicle detection model across various road 
conditions and highlights its robustness in 
addressing the challenges of vehicle detection. 
The ablation study is a crucial phase for 
specifically evaluating model developments by 
analyzing each component of the architecture. It 
allows for confirming which changes contributed to 
the performance improvements. 

Table 8 presents the results of the ablation 
study conducted across various modifications of 
the YOLOv10n model. It examines the individual 
contributions of the ECIB and CRB components, 
as well as their combined effect. It highlights the 
performance improvements enabled by integrating 
these modules while maintaining computational 
efficiency. The proposed module combination 
yields a 1% increase in mAP@50:95, indicating a 
notable enhancement in detection performance. In 
terms of model efficiency, the approach reduces 
the number of parameters by 0.1 million and the 
computational cost by 0.1 GFLOPs. 

Table 9 presents the ablation study 
comparing the baseline YOLOv10n, combined 

EMA-YOLOv10n, and the ER-EMA-YOLOv10n. 
The proposed method demonstrates a significant 
performance improvement, achieving a 4% 
increase in mAP@50:95. In terms of 
computational efficiency, the framework also 
reduces the parameter count by 0.2 million and 
the computational load by 0.4 GFLOPs. As a note, 
experiments conducted on the UA-DETRAC 
architecture were slightly modified by discarding 
the CRB block and using only the ECIB block. To 
further optimize the receptive field, the ECIB block 
was adapted with a dilation factor of 2, effectively 
enlarging it without increasing the parameter 
count or computational complexity. This 
adjustment is important given the nature of the 
UA-DETRAC dataset, which consists of extensive 
video footage captured from road surveillance, 
resulting in a high volume of similar or near-
identical images. 

 
Runtime Efficiency 

Runtime efficiency is a critical metric in 
evaluating the usability of vehicle objects. It 
measures model efficiency in terms of speed, 
parameter efficiency, and computational demand. 
It provides a comparative analysis of the runtime 
between YOLOv10n and ER-EMA-YOLOv10n 
using a CPU. 

 
Table 8. Ablation study about the proposed model 

on the Vehicle-COCO dataset 

Model 
GFLOPS Para 

Meter 
(M) 

mAP 
50 % 

mAP 
50:95 

% 

YOLOv10n 8.4 2.7 63.7 44.2  
YOLOv10n_EMA 8.5 2.7 64.1 44.9  
YOLOv10n_EMA_ECIB 8.0 2.6 63.5 44.1  
YOLOv10n_EMA_CRB 8.0 2.6 63.8 44.7  
ER-EMA-YOLOv10n 8.3 2.6 64.5 45.2  

 

Table 9. Ablation study about the proposed model 
on the UA-DETRACT dataset 

Model 
GFLOPS Para 

Meter 
(M) 

mAP 
50 % 

mAP 
50:95 % 

YOLOv10n 8.4 2.7 58.9 44.2  
EMA-YOLOv10n 8.5 2.7 59.3 44.3  
ER-EMA-YOLOv10-n 8.0 2.5 64.1 48.2  
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As shown in Table 7, the ER-EMA-
YOLOv10n model shows a significant 
improvement in runtime efficiency. There is a 
decrease of 0.1 M in the number of parameters 
on the Vehicle-COCO dataset and 0.2 M in the 
UA-DETRACT dataset. There is also an 
efficiency of 0.1 GFLOPS in the Vehicle-COCO 
dataset and 0.4 GFLOPS in the UA-DETRACT 
dataset. These improvements can be attributed 
to the depthwise technique and to pruning the 
number of channels in the backbone, resulting in 
a more efficient architecture.  

The ER-EMA module shows a slight 
decrease in inference speed due to the additional 
branch introduced by the ECIB and ERB blocks, 
which increases memory access and 
computational overhead. Although depthwise 
convolutions reduce the number of parameters, 
they also increase CPU memory usage. As a 
result, the ER-EMA-YOLOv10n achieves 2.3 FPS 
lower performance compared to the original 
YOLOv10n. 

Real-World Application 
Real-world application testing demonstrates 

the model's performance on embedded systems. 
The Jetson Nano served as the deployment 
platform, with the setup detailed in Table 10. 

The proposed ER-EMA-YOLOv10n model 
exhibits a slight reduction in inference speed, 
with a decrease of 0.87 FPS on the Vehicle-
COCO dataset and 3.03 FPS on the UA-
DETRAC dataset, as shown in Table 11. This 
decline is primarily attributed to the additional 
computations introduced by the ER-EMA module. 
As illustrated in Figure 8, the model was 
deployed in a real-world system, demonstrating 
improved vehicle detection performance. Despite 
the trade-off in speed, the improvement in 
detection accuracy and robustness justifies the 
added complexity, rendering the model suitable 
for real-time applications, including those in 
resource-constrained environments. 

 
Table 10. Real-time Setup on Embedded System 

Properties Deployment 

Device NVIDIA Jetson Nano B-01 4 GB 

CPU  
Quad-Core ARM ® Cortex ®-A57 MPCore 
Processor 

GPU 128-core NVIDIA Maxwell™ architecture 

 

Table 11. Comparison of FPS between the 
proposed model and the original on a real-world 

application 
Model Dataset FPS  

YOLOv10n   Vehicle-COCO 7.69 
ER-EMA-YOLOv10n Vehicle-COCO 6.82 
YOLOv10n   UA-DETRACT 9.02 
ER-EMA-YOLOv10n UA-DETRACT 5.99 

 

 
Figure 8. Real-World application on vehicle detection. (a) YOLOv10n, (b) ER-EMA-YOLOv10n
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CONCLUSION 
This research presents approaches to 

improving the performance of vehicle detection 
models, first by introducing ER-EMA-YOLOv10n 
models that use YOLOv10n as the main 
architecture and ER-EMA, a cutting-edge 
attention module. ER-EMA consists of two novel 
blocks: the Expanded Convolution Inverted Block 
(ECIB) and the Convolutional Refinement Block 
(CRB). This model is trained on two datasets: 
Vehicle-COCO and UA-DETRACT. Our method 
significantly improves performance over the 
baseline model and previous work. The ER-EMA-
YOLOv10n version achieves 64.5% mAP 50% 
accuracy, surpassing the original model by 0.7%, 
and 45.2% mAP 50-95% accuracy, exceeding 
the original by 1% on the Vehicle-COCO dataset.  

Significant performance improvement is 
also demonstrated on the UA-DETRACT dataset. 
It produces a mAP of 50% (64.1%), surpassing 
the original by 5.2%, and a mAP of 50-95% 
(48.2%), exceeding the original by 4%. In 
addition, our model reduces the parameter count 
and GFLOPS, improving compute resource 
efficiency. On the Vehicle-COCO dataset, the 
model has 2,646,552 parameters, 62,032 fewer 
than the original model, and 8.3 GFLOPS, which 
is 0.1 more efficient than the original model. 
Similar efficiency is observed on the UA-
DETRACT dataset, with 2,572,040 parameters, 
136,644 fewer than the original model, and 8.0 
GFLOPS, which is 0.4 more efficient than the 
original. These findings demonstrate that ER-
EMA-YOLOv10n offers a balanced improvement 
in both precision and computational efficiency, 
making it more robust for vehicle detection. 

Future work plans could focus on elevating 
the performance of the YOLOv10n architecture 
by adapting and deploying the proposed model in 
real-world applications, such as vehicle counting 
for intelligent traffic management systems. Plans 
will focus on improving runtime efficiency, as the 
current model performs more slowly than 
previous work, and will also direct further efforts 
toward real-world application deployment. 
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