http://publikasi.mercubuana.ac.id/index.php/sinergi
http://doi.org/10.22441/sinergi.2026.1.018

# SINERGI

SINERGI Vol. 30, No. 1, February 2026: 197-208 -
v‘u‘ >

Development and performance evaluation of an automatic

size-sorting system for catfish seeds using photodiode

sensors

Irmansyah Irmansyah*, Rifqi Eka Saputra, Mahfuddin Zuhri, Heriyanto Syafutra

Applied Physics Division, Department of Physics, Faculty of Mathematics and Natural Science, IPB University, Indonesia

Abstract

In catfish farming, uniform seed size is crucial for ensuring balanced
growth and minimizing competition for feed. Generally, size sorting is
performed manually through visual observation and net separation,
which is labor-intensive, time-consuming, and often causes stress or
injury to fish. To address these limitations, this study aimed to
develop and evaluate a real-time, low-cost automatic sorting system
for live catfish seeds. The proposed system utilizes photodiode
sensors and an Arduino-based microcontroller to detect variations in
fish body length by interrupting a laser beam. Four photodiodes were
arranged at specific distances to classify fish seeds into four size
categories (<7 cm, 7-8 cm, 9-10 cm, and 11-12 cm). After
classification, the system automatically directed each seed into the
corresponding container. The results showed that the prototype
successfully classified and sorted catfish seeds with an overall
accuracy of 67.5%. In contrast, tests with PVC pipes under controlled
conditions achieved 100% accuracy. These findings highlight the
novelty of integrating size detection and direct sorting for live fish
seeds, a feature not previously reported in the literature. Beyond its
current limitations, this system provides a methodological framework
for sensor-based aquaculture automation, offering potential for
further improvements in accuracy, robustness, and application to
other aquaculture species.
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INTRODUCTION

Catfish farming is one of the most promising
freshwater fisheries sectors in Indonesia [1].
Based on data from the Ministry of Maritime Affairs
and Fisheries of the Republic of Indonesia, in
2023, catfish cultivation production will be 1.13
million tons. With the increasing demand for
catfish consumption, this cultivation activity is a
promising economic  opportunity for the
community, especially in rural areas [2]. To
maintain productivity and efficiency, paying
attention to several technical aspects, such as fish
growth, feed distribution, and efficiency in
managing cultivation ponds, is necessary [3][4].

One of the significant challenges in catfish
cultivation is the difference in the size of fish seeds
or seedlings, which can cause larger individuals to
dominate smaller individuals, thus creating an
imbalance in the competition for food [5][6]. In
addition, catfish also have cannibalistic traits, so
differences in size can increase the chances of
cannibalism and reduce cultivation productivity [7,
8, 9] Therefore, periodically sorting catfish sizes is
essential to maintain population uniformity and
increase cultivation productivity [10].

The process of sorting catfish based on size
commonly used today is still manual, using simple
tools, such as trays that are given holes according
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to the size of the catfish to be sorted. This sorting
process has several weaknesses, including taking
a long time, depending on the operator's
expertise, and potentially causing stress to the fish
due to repeated physical handling. Technological
solutions that are more efficient and accurate and
help reduce dependence on manual labor are
necessary to increase cultivation productivity.

Several researchers have reported various
approaches to predict fish size using image
processing and automatic fish counting. However,
automatic fish seed classification technology,
especially for catfish, is still very limited. [11] has
reported an automatic fish sorting system based
on machine vision equipped with a stereo camera
to identify fish size in real time and direct the fish
to the sorting gate at the end of the conveyor. [12]
developed a weight-based fish sorting device
using a strain gauge sensor and Arduino Uno to
classify fish into three size groups. [13] Developing
a fish mass estimation model using image analysis
based on Principal Component Analysis-
Calibration Factor and artificial neural networks
successfully applied a moment-invariant image
processing algorithm to identify species and
distinguish fish sizes in a polyculture system and
showed a high correlation between digital images
and fish mass and length. Meanwhile, [14]
reported the development of an automatic tool for
counting and classifying catfish seeds based on
size using YOLOvVS8, MobileNetV2, and OpenMV
camera. Although these methods show promising
results, unfortunately in their development they
require complex hardware, high costs, and
controlled environmental testing, thus limiting their
practicality in application and use for small-scale
cultivation. Therefore, despite the availability of
various advanced solutions, there is still a gap in
the development of low-cost, real-time, and
minimally invasive fish seed systems that are
suitable for the needs of small and medium
farmers.

Along with the development of sensor and
microcontroller technology, which is supported by
ease and affordability, opportunities have
emerged to automate various processes in
aquaculture [15, 16, 17] Low-cost components
such as photodiodes, laser diodes, and Arduino
are increasingly being explored in multiple
applications, such as water quality monitoring and
automatic feeding systems. With proper design
and adaptation to field conditions, this technology
can provide real solutions that are easy to
implement, especially for small-scale fish farmers.

This study proposes an innovative real-time
catfish seed sorting system based on photodiode
sensors and an Arduino microcontroller, utilizing

low-cost technology that minimizes human
involvement. Unlike most existing low-cost
approaches, which are limited to size estimation,
counting, or weight prediction and still require
manual transfer, the proposed system not only
determines the size of live catfish seed but also
directly and automatically sorts them into
designated size groups. Vision-based sensors,
while accurate, remain expensive and technically
demanding for small-scale farmers. Previous non-
vision studies rarely integrate direct sorting—
especially for live seed, where handling stress is
critical. To our knowledge, no prior research has
reported the integration of real-time size detection
and direct automated sorting specifically for live
catfish seed. This integration is crucial in
aquaculture because it reduces handling stress
and potential mortality, while increasing
operational efficiency.

In addition to practical implications, this
report also provides methodological contributions.
We propose a non-vision sensor framework that
integrates three sequential processes: (i) body
length detection via a laser-photodiode array (light
beam interruption), (ii) size-based classification,
and (iii) automated sorting directly into appropriate
holding tanks. We then compare performance
under controlled "ideal object" conditions using
PVC pipes sized to the target category (achieving
100% accuracy) and under live fish conditions
(overall accuracy of 67.5%). The differences
between these two methods provide insight into
how biological behaviour (swimming and irregular
body posture) affects sensor-based detection
accuracy and informs future refinements in
aquaculture automation.

This study aims to: (1) design and
implement a low-cost non-vision framework that
integrates detection, classification, and sorting for
live catfish seed; (2) evaluate the performance of
real-time classification and sorting under
controlled conditions (PVC) and live fish; (3)
assess operational implications for hatcheries
(reduced handling and post-sorting survival
monitoring); and  (4) articulate  design
considerations and ways to improve accuracy and
robustness for broader aquaculture adoption.

METHOD

The prototype uses photodiode and laser
diode sensors as a body length detection system
[18] for fish seeds. The signal from the photodiode
sensor was processed by Arduino Uno to control
the movement of the servo motor, directing the
path of fish seeds, whose length was already
known, to the container according to their size
category. This system was designed to sort the
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size of fish seeds into four categories: less than 7
cm, 7-8 cm, 9—-10 cm, and 11-12 cm.

Material

The electronic components needed make
this device readily available on the market in
Indonesia at a low cost. The list of electronic
components and their functions can be seen in
Table 1.

Methods

Figure 1(a) shows a block diagram of the
prototype of an automatic catfish seed sorter. This
diagram explains the system architecture,
consisting of three main parts: input, processor,
and output. In the input section, there is a laser
diode array and a photodiode array to detect the
body length of catfish seeds. The detection data is
sent to the processing unit (Arduino Uno), which
functions as a Central Processing Unit (CPU) to
run the classification algorithm to determine the
fish seeds' body length category. As an output
section, there is an LCD to display the
classification results and a servo motor to move
the sorting line to the container according to size.
All of these electronic components work with a
voltage of 5V.

Figure 1(b) shows the electronic circuit of
the developed prototype. Four photodiodes are
connected to the Arduino digital pins, each on pins
2, 3, 4, and 5. This photodiode module likely uses
the PD204-6C type photodiode, which has the
following specifications: spectral range of 400-—
1100 nm, peak sensitivity at 940 nm, response
speed of 6 ns, and a maximum dark current of <
10 nA. This photodiode can detect laser light from
a laser diode module with a wavelength of 685 nm.

Meanwhile, the four laser diodes are only
connected to a 5V voltage source and ground
without going through the control pin of Arduino,

so the laser diodes will light up continuously as
long as the prototype is in active (ON) condition,
because it receives HIGH logic directly. Arduino
digital pin 7 is used to send control signals to the
servo motor to regulate rotational movement. The
2x16 character LCD module is equipped with an
I2C interface for efficient use of pins, so it only
requires a connection to analogue pins 4 and 5 on
the Arduino as a data communication path. All
components, including photodiodes, laser diodes,
motors, and LCDs, get their power supply directly
from an external 5V adapter, not from the Arduino
output. This configuration was chosen to ensure
that the current requirements of each component
are met without disrupting the power supply to the
microcontroller, so that system performance
remains optimal. Consistent with [19], we
employed dedicated external power supplies,
rather than the microcontroller's 5 V rail—for each
sensor, actuator, and display module, thereby
preserving 1/O integrity and maintaining stable
computational performance of the microcontroller.

The automatic sorting of catfish seeds
based on body length follows the logic flow shown
in Figure 2(a). When the fish enters the sorting
tube, the system starts monitoring the status of
four optical sensors consisting of laser diodes and
photodiode pairs. Each pair of laser diode and
photodiode is positioned transversely to the
direction of seed movement in the sorting tube, as
shown in Figure 2(b). The distance between the
laser-diode and photodiode pairs represents the
classification length of the seeds. The number of
photodiodes disturbed by the fish body is used to
estimate the catfish's length. The detection
process starts from photodiode-1; if the signal
from photodiode-1 is disconnected (OFF) because
catfish seeds block it, the system continues to
check the status of other photodiodes
sequentially.

Table 1. List components, and function of the developed prototype

Components Functions
Arduino Uno Central Processing Unit, controlling the flow of data and instructions
Laser diode KY-008 Light source to activate the photodiode.
Photodiode Sensor to detect the light from the photodiode.
16x2 Character LCD display Display notifications, status, or measurement results
Servomotor To direct the path of fish seeds
Power adaptor Voltage source to turn on the device
Project box Device casing with size (7.5 cm x 10 cm x 3.5 cm)
PVC Pipe Frame of developed prototype
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Figure 1. a) The block diagram, and b) the
electronic circuits of the automatic catfish seed
sorter prototype

The classification logic based on the
number of photodiodes that are dead (OFF) is as
follows:

e Only photodiode-2 is OFF (photodiodes-3 and
-4 remain ON); The length of the fish seeds is
around 7-8 cm

e Photodiodes-2 and -3 are OFF; The length of
the fish seed is around 9-10 cm

e Photodiodes-2, -3, and -4 are OFF; The length
of the fish seed is around 11-12 cm

o If only photodiode-1 is OFF (photodiodes-2, -3,
and -4 are ON); The length of the seed is <7
cm

After the length of the catfish is identified,
the system drives the servo motor to direct the fish
to the appropriate sorting channel. The rotation
angle of the servo motor based on the size
category of the seed length is as follows:

e 30°forsize<7cm

e 70° for size 7-8 cm

e 110° for size 9-10 cm

e 150° for size 11-12 cm

Because this study involves a multi-class
classification problem (classes A-D), TP, FP, FN,
and TN were defined in a one-vs-all manner for
each class.
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Figure 2. (a) Flowchart of catfish seed
classification process based on body length using
photodiode—laser diode sensor system and servo

motor. b) lllustration of catfish seed sorting tube

For example, for class A (length < 7 cm), the

definitions are:

e TP (True Positive): fish labeled as class A that
are sorted into container C1.

o FP (False Positive): fish not labeled as class A
but sorted into container C1.

o FN (False Negative): fish labeled as class A but
sorted into a different container.

o TN (True Negative): fish not labeled as class A
and not sorted into container C1.

The standard evaluation metrics per class are

calculated using the equations in Table 2.

200 I. Irmansyah et al.,

Development and performance evaluation of an automatic size-sorting ...



p-ISSN: 1410-2331 e-ISSN: 2460-1217

Table 2. Equation for calculating standard metrics per class

Metrics

Equation Eq. No.

Recall/Accuracy
Precision

Specificity

(TP +FN)
(TP +FP)

(TN + FP)

TP
(1a)

TP
(1b)

TN (10)

2 X Precision X Recall

F1

(Precision + Recall)

(1d)

2
p+o
Cl — Wilson =

5(1 — B 2
4+, PA=P) z

4n? X

72

n

For a 95% confidence interval, z was set to 1.96

To illustrate overall performance, an
aggregation approach was used. The micro-
average (overall) was calculated by summing all
TP, FP, and FN values from all classes, and then
computing Recall, Precision, and F1 based on this
accumulation. The evaluation was conducted in a
single-label, multi-class scenario, in which each
sample had exactly one correct label and the
system produced exactly one class prediction. In
this scenario, micro-Precision, micro-Recall, and
micro-F1 are identically equal to overall accuracy,
since (X TP + X FP) = (X TP + X, FN) = N. Therefore,
we reported overall accuracy as a summary of the
micro-metrics. The macro-average was calculated
by averaging the scores per class, ensuring that
all classes received equal weight, regardless of
the number of samples.

For each proportion-based metric
(Precision, Recall, Specificity, and Accuracy), a
95% confidence interval was calculated using the
Wilson score interval method. These intervals
provide more accurate lower and upper bounds
than the normal approximation approach,
especially for relatively small sample sizes (n =10
per class). The C/l-Wilson was defined by (2).

The results of the TP, FP, FN, and TN
calculations for each class were presented in the
Confusion Metrics Table. The evaluation metrics
per class (along with confidence intervals) were
presented in the Per-Class Metrics Table. A
summary of the overall system performance was
shown in the Global Metrics Table.

RESULTS AND DISCUSSION

The prototype of an automatic sorting
system for catfish seeds using a photodiode—laser
diode sensor and Arduino control has been
successfully created. It can potentially replace the
manual sorting process. This system aims to
minimize human intervention to reduce stress on

, P=s @)

fish seeds during handling, while maintaining
classification accuracy. The performance of the
prototype was evaluated through a classification
test of catfish seeds with varying body lengths,
where its effectiveness was assessed based on its
accuracy in grouping seeds into containers
according to their respective size categories: <7
cm, 7-8 cm, 9—10 cm, and 11-12 cm [14].

Table 3 presents the confusion metrics
resulting from the sorting process, showing the
distribution of catfish fry across predicted classes
(C1-C4) compared to their actual size categories
(A-D). This metrics indicates that correct
classifications occurred predominantly along the
diagonal cells, while misclassifications were
concentrated  between  adjacent classes,
particularly from class B to A, class C to B, and
class D to C.

To further analyze the classification results,
Table 4 summarizes the TP, FP, FN, and TN
values for each class using the one-vs-all scheme.
The results show that class A (<7 cm) achieved
the highest number of TP (10) without FN, while
classes B, C, and D experienced FN errors,
indicating challenges in distinguishing fish near
the threshold length. The aggregate totals (27 TP,
13 FP, 13 FN, and 107 TN across all classes)
provided the basis for calculating the evaluation
metrics presented in Tables 5 and 6.

Table 5 shows the per-class evaluation
metrics derived from the confusion values in Table
4. The system successfully classified all
individuals in the <7 cm size category, with Recall
= 1.00 [0.72-1.00] and F1 = 0.80, although the
Precision value was slightly lower (0.67 [0.42—
0.85]) due to the presence of fish from larger
classes that were incorrectly assigned to this
category. This finding indicated that the beam-
break logic was reliable when only the first
photodiode was blocked and the other three
remained unblocked.
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Performance decreased in adjacent
categories. For the 7-8 cm group, Recall dropped
to 0.50 [0.24-0.76] and F1 to 0.56, with Precision
0.63 [0.31-0.86]. For the 9—-10 cm group, Recall
was 0.70 [0.40-0.89], Precision was 0.58 [0.32—
0.81], and F1 was 0.64. The 11-12 cm group
exhibited high Precision (1.00 [0.57-1.00]) and
Specificity (1.00 [0.89-1.00]), but Recall remained
low (0.50 [0.24-0.76]), resulting in an F1 of 0.67.
This concentration of misclassification around the
boundaries between categories was consistent
with the limited spatial resolution of the four-beam
geometry relative to class width, as well as the
variability in posture/orientation and swimming
speed as fish passed through the tube.

In the one-vs-all scheme, Specificity per
class remained high (0.83—-1.00), indicating that
the system rarely assigned fish from other classes
to a particular class. However, accuracy per class
varied between 0.80 and 0.88, reflecting errors
primarily at class boundaries.

In aggregate, the prototype achieved an
overall accuracy of 67.5% [0.52—0.80], which was
identical to the micro-Precision, micro-Recall, and
micro-F1 values in this single-label multiclass
scenario. The macro-averaged scores across all
classes were Precision = 0.72, Recall = 0.68,
Specificity = 0.89, and F1 = 0.67, which confirmed
consistent though not perfect performance across
all classes.

To better isolate sensing/sorting
performance from biological factors, we
benchmarked the system using PVC pipes sized
to the target categories. We obtained 100%
accuracy, confirming that the photodiode-based
detection and actuation mechanism functions
reliably under behaviour-free conditions. The
reduced accuracy in live trials is therefore
attributed mainly to variability in swimming motion
and body posture, rather than sensor limitations.
This work is positioned as a low-cost feasibility
study: we deliberately adopt an interpretable, on-
device thresholding scheme compatible with
Arduino-class hardware and  small-holder
constraints. In practice, the device can serve as a
pre-sorting stage, reducing labor and fish stress,
with brief manual refinement if necessary.
Channel design adjustments and decision rule

refinements are planned for future work to improve
live-fish accuracy further.

As a benchmark against previously
reported studies, we compare the photodiode
beam-break approach with two families of
solutions: camera-based machine vision/learning
(MV/ML) and non-MV/ML systems (load-
cell/strain-gauge or simple optics). Table 7
(MV/ML) and Table 8 (non-MV/ML) summarize
representative  studies, detection targets,
detection methods, hardware components, and
reported performance. MV/ML systems achieve
higher accuracy under controlled optical
conditions. However, they require cameras,
lighting, and computation; by contrast, non-MV/ML
systems offer low-cost options for mass
measurement/counting but do not measure length
directly.

Compared with MV/ML systems, the
developed photodiode—laser  (beam-break)
system is positioned as an affordable, low-stress
baseline for catfish seed, with minimal, low-cost
hardware, a simple workflow, and end-to-end
automation (detection — classification — routing).
This system not only determines size but also
separates fish directly based on size and can
certainly be scaled up to count individuals within
each size classification category. Unlike reported
systems that only measure size, count, or estimate
weight, this system integrates a separation
mechanism as a critical follow-up measure in fish
farming. The achieved overall accuracy of 67.5%
[0.52-0.80] (for four length classes) is indeed
lower than MV/ML, but the trade-offs—cost, ease
of adoption, and seed safety—make it a relevant
solution for small- to medium-scale catfish
aquaculture.

Moreover, there is room to improve
accuracy without sacrificing simplicity, namely: (i)
increasing the number and optimizing the
geometry of beams to enhance length-threshold
resolution, (ii) optical calibration/alignment and
anti-overlap guards in the channel, (iii) when
needed, light hybridization (e.g., adding a low-cost
camera module for auxiliary verification) to close
accuracy gaps under certain conditions.

Table 3. Confusion Metrics (Actual vs. Predicted)

Actual \ Prediction C1/A C2/B C3/C C4/D
A (<7 cm) 10 0 0 0
B (7-8 cm) 5 5 0 0
C (9-10 cm) 0 3 7 0
D (11-12 cm) 0 0 5 5
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Table 4. Confusion (TP, FP, FN, TN) per Class

Class TP FP FN TN Total Samples
A (<7 cm) 10 5 0 25 40
B (7-8 cm) 5 3 5 27 40
C (9-10 cm) 7 5 3 25 40
D (11-12 cm) 5 0 5 30 40

Total (one-vs-all,
aggregate)
Notes: Each class was calculated using the one-vs-all scheme. The row “Total (one-vs-all, aggregate)” represents the sum of
TP, FP, FN, and TN across classes (not a single confusion metrics.

27 13 13 107 160

Table 5. Per-Class Metrics (Value [Cl Wilson 95%])

Class Recall / Accuracy Precision Specificity F1 Per-class Accuracy (1-vs-all)
A (<7 om) 072240000 (04170848  [06sao0s2r 08 (0.736- 0,045
B (7-8 cm) [0.22%5—%(.)763] [0.386%?863] [0.74(1)4%%(.)965] 0.556 [O.Ggéfi%%%]
C (8-10cm) [0.38%7—%(.)892] [0.33(.)5—%?807] [o.egﬁ%?sazn 0.636 [0.650£%(.)895]
D (1112 cm) [0.23%5—%?763] [0.52682(.)000] [0.851622(.)000] 0.667 [0.735%5-5945]

Note: Formula descriptions (for each class, one-vs-all scheme):
Precision = TP/ (TP + FP); Recall = TP/ (TP + FN); Specificity = TN/ (TN + FP); Per-class Accuracy = (TP + TN) / Total.

Table 6. Aggregate metrics (values [95% Wilson CI])

Aggregate Precision Recall Specificity F1 Overall Accuracy
. 0.675 0.675 0.892
Micro / Overall [0.520.0.799] [0.520.0.799] [0.823.0,936] 0.675 0.675 [0.520-0.799]
Macro (class 0.719 [NA] 0.675 [NA] 0.892 [NA] 0.665 —

average)
Note: The macro-average represents the mean across classes; therefore, the Wilson Cl cannot be applied.

Table 7. Literature-based comparison of camera-based machine vision/learning (MV/ML) approaches
for fish size estimation and grading, methods, hardware, and performance.

. . . Components Summary of
Reference Species/Setting Method (Algorithm) (Hardware) and Cost  results/findings and Metrics
. . Hardware: Automatic seeds-counting
Albuquerque . . . CIaSS'.CaI cv: .bIOb Video camera, PC system; validated on real
Fingerling (Pintado),  detection + Mixture of ;
etal., 2019 h ) videos.
counting Gaussians + Kalman . .
[20] filter Cost estimate:
275 USD Metrics: accuracy 97,4 %
Jayasundara Multi-species (Indian Deep Learning: Camera, computer Automated grading; high
i : rfi test datasets.
etal., 2023 Sardinellaandthe oo NFroT performance on test datasets

[21]

Tonachella et
al., 2022 [22]

Sung et al.,
2020 [23]

Marrable et
al., 2023 [24]

Yellowfin Tuna);
quality grading

Seabream; sea
cages (smart buoy)

Flatfish; sorting
conveyor

Multi-species; stereo
BRUVS

architecture (CNN)

CV + Al; stereo
photogrammetry

Classical image
processing for
length—actuator control

Deep Learning for
head-tail detection +
stereo calibration

Cost Estimate
300 USD

Stereo camera on
buoy, edge computing

Cost Estimate
4000 USD

Low-cost webcam,
conveyor, actuators

Cost Estimate

400 USD

Stereo camera,
workstation

Metrics: accuracy 68,3 %

Non-invasive length/weight
estimation in open sea.

Metrics: accuracy 70 %

Low-cost camera-based real-
time grader.

Metrics: NA

Semi-automated length
measurement with near-
human accuracy.

Metrics: accuracy 73.51%
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Reference

Species/Setting

Method (Algorithm)

Components

(Hardware) and Cost

Summary of
results/findings and Metrics

Lépez-Tejeida
et al., 2023
[25]

Aquaculture; weight
estimation

ML/CV (Haar cascade +
regression model)

NIR camera,
computer

Cost Estimate
329 USD

Non-intrusive weight
estimation using NIR
imaging.

Metrics: accuracy 92 %

Table 8. Literature-based comparison of non-ML systems (load-cell/strain-gauge and simple optical)
for fish sorting/counting, methods, hardware, and performance

. . . Components Summary of
Reference Species/Setting Method (Algorithm) (Hardware) and cost results/findings and metrics
Classification based Photodiode + Arduino gfttgrigtsisael(lj s;argesdogtsd
This Work on length (beam- Laser beam-break and lenath Y
break), catfish seed photodiode Cost estimate: gth.
sorting 25Usb Metrics: accuracy 65 %
Load cell (strain . .
o gauge), HX711/ADC, Compare dynamic vs. static
Rossi et al., Seabream juveniles; Dynamlc_: signal Arduino, Bluetooth \t/)v_elght, low-cost platform for
2021 [26] dynamic weighing processing . lomass.
(filtering/compensation) ) ]
%’SJ Se;tlmate. Metrics: accuracy 80 %
Load cell + HX711, Complete
Arduino, sorting design/implementation
Basyir et al., Weight-based sorter Rule-based by weight; mechanics equipped conveyor.
2024 [27] prototype conveyor automation
Cost estimate: Metrics: accuracy 99 %
80 USD
Non-imaging optical Real-time counting system
i ithout ; reliable &
Zhang et al., Ornamental fish; real-  Threshold/transit time (IR) + single detector glm;I: 2 comers, felane
2018 [28] time counting (non-ML) i

Fuentes-Pérez
et al., 2025
[29]

Fishway; traffic
monitoring

Event detection +
silhouette
reconstruction

Cost estimate:
100 USD

IR beam-break
curtain (LED +
photodiode),
RPI/ESP32
Cost estimate:
400 USD

Metrics: accuracy 70 %

Design & initial validation of a
flexible, open-source IR
counter.

Metrics: accuracy 70 %

There are still misclassifications, thought to
be caused by various factors related to the
limitations of the classification system and
biological variations in the behavior of catfish
seeds [30]. Body position is crucial in determining
whether the fish seeds properly block the laser
beam [31]. As is known, seeds do not always swim
straight and can rotate or tilt when passing through
the sorting tube. This behaviour will disturb the
laser beam break pattern so that the photodiode
status conditions may become inconsistent,
leading to incorrect body length estimation.
Another essential aspect that affects the detection
process is the tilt of the selection tube of about 20°
to the horizontal. This tilt is intended to help the
movement of the seeds downward following

gravity so that they can pass through the detection
path at a relatively stable speed without additional
mechanical propulsion. However, this tilt can also
affect the accuracy if the seeds slide too fast or are
not perpendicular to the sensor. The position of
the fish that is tilted or not parallel to the sensor
plane causes the laser beam to be blocked, which
does not correlate with the actual length of the
seeds, resulting in inaccurate classification. To
mitigate these issues, several strategies can be
applied in future development. Hardware
refinements such as optimizing the tilt angle,
adding pre-alignment channels, or increasing the
number of sensor pairs.

Variations in the swimming or falling speed
of the seeds also contribute to misclassification.
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Faster-moving seeds may not trigger the sensors
in the expected sequence. In such cases, the
sensors only receive partial or unstable
interference signals, which makes the detection
logic prone to errors due to the threshold-based
decision-making algorithm. This logic is quite
compelling for basic classification, but it cannot
handle cases of ambiguity or smooth size
transitions. The use of Advanced decision-making
methods such as fuzzy logic, probabilistic
classifiers, or adaptive rules can provide greater
tolerance to ambiguous occlusion patterns and
narrow class boundaries [32, 33, 34].
Implementing such algorithms will reduce
classification errors, especially between adjacent
categories, and enhance the system's robustness
under real-world aquaculture conditions.

From a functional standpoint, simple
threshold-based logic allowed the Arduino to
easily make decisions about which servo motors
to drive to the correct outlets. Each input from the
photodiode was processed in real time and
mapped to one of four angular states of the servo
motor rotation based on the combination of sensor
states. The use of dedicated digital pins to read
the status of the photodiode sensor and an
external 5V power supply separate from the
Arduino 5V output can maintain the stability of
system operation and minimize current
fluctuations, which often occur in microcontroller
systems when several components are active
simultaneously [19, 32, 35] This power supply
configuration  contributes to measurement
consistency [36][37].

In addition to the things discussed above,
the system's accuracy can be affected by external
factors such as environmental lighting [19] and
water turbidity in the sorting tube [38]. In real
conditions in the field (cultivation location), these
factors can vary more than in the laboratory
environment, reducing detection accuracy.
Therefore, the system's next version can consider
optical protection or sensor calibration to ambient
light intensity.

Despite its limitations, this prototype
provides an automatic and non-contact method for
classification. This system offers significant
advantages over manual sorting, which is more
time-consuming, requires more effort, and may
damage seeds due to direct handling. Thus, the
survival and growth of seeds after sorting can be
improved [39][40]. The physical photo of the
prototype in Figure 3 shows that this system can
be built with cheap and readily available materials,
such as PVC pipes. Thus, this technology can be
adopted on a small to medium scale.

¥

Sorting tube

Rotatable for
the right container

Figure 3. The photograph of the developed
catfish seed sorting prototype

Several approaches can be pursued to
improve classification accuracy in future
development. One is to increase the number of
sensor pairs, thereby refining size-detection
resolution and reducing ambiguity at class
boundaries. Another is to incorporate shape and
orientation recognition by integrating optical
sensors with image-based recognition systems,
such as camera-based computer vision and
OpenCV algorithms [41]. With recent advances in
edge computing and the availability of low-cost
microcontroller modules equipped with cameras
or Raspberry Pi camera modules, this integration
is increasingly feasible [42]. In addition, accuracy
can be improved by adopting more advanced
decision algorithms such as fuzzy logic,
probabilistic classifiers, and adaptive rules. Such
algorithms are expected to enhance system
robustness under live-fish conditions. Ultimately,
this technology provides a foundation for
developing more precise and adaptive intelligent
sorting systems for aquaculture. The system is
also flexible, making it readily adoptable or
customizable for other fish-seed species.

CONCLUSION

In conclusion, this study demonstrated a
low-cost, non-vision-based framework that
integrated real-time size detection, classification,
and automated sorting for live catfish seed. To our
knowledge, this was the first report to apply a
laser—photodiode interruption scheme directly to
live fish seed. This provided a methodological
contribution in the form of a readily
understandable workflow that was implemented
on a microcontroller: beam interruption, size
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classification, and servo-driven sorting. The
prototype was validated through both ideal object
and live trials. This approach separated
sensor/actuator  reliability = from  biological
variability, offering a reproducible evaluation
protocol for future intelligent sorting systems.

In practice, this prototype could serve as a
pre-sorting tool for small- to medium-scale
aquaculture. It helped reduce labor requirements
and handle stress, while improving operational
efficiency. Future refinements to the channel
geometry, adaptive decision rules, and hybrid
sensing approach are expected to transform this
proof-of-concept into a more precise and scalable
intelligent sorting system, supporting precision
aquaculture.
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