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Abstract  
In catfish farming, uniform seed size is crucial for ensuring balanced 
growth and minimizing competition for feed. Generally, size sorting is 

performed manually through visual observation and net separation, 
which is labor-intensive, time-consuming, and often causes stress or 
injury to fish. To address these limitations, this study aimed to 
develop and evaluate a real-time, low-cost automatic sorting system 

for live catfish seeds. The proposed system utilizes photodiode 
sensors and an Arduino-based microcontroller to detect variations in 
fish body length by interrupting a laser beam. Four photodiodes were 
arranged at specific distances to classify fish seeds into four size 

categories (<7 cm, 7–8 cm, 9–10 cm, and 11–12 cm). After 
classification, the system automatically directed each seed into the 
corresponding container. The results showed that the prototype 

successfully classified and sorted catfish seeds with an overall 
accuracy of 67.5%. In contrast, tests with PVC pipes under controlled 

conditions achieved 100% accuracy. These findings highlight the 
novelty of integrating size detection and direct sorting for live fish 
seeds, a feature not previously reported in the literature. Beyond its 
current limitations, this system provides a methodological framework 

for sensor-based aquaculture automation, offering potential for 
further improvements in accuracy, robustness, and application to 
other aquaculture species. 
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INTRODUCTION  

Catfish farming is one of the most promising 
freshwater fisheries sectors in Indonesia [1]. 
Based on data from the Ministry of Maritime Affairs 
and Fisheries of the Republic of Indonesia, in 

2023, catfish cultivation production will be 1.13 
million tons. With the increasing demand for 
catfish consumption, this cultivation activity is a 
promising economic opportunity for the 
community, especially in rural areas [2]. To 

maintain productivity and efficiency, paying 
attention to several technical aspects, such as fish 
growth, feed distribution, and efficiency in 
managing cultivation ponds, is necessary [3][4]. 

One of the significant challenges in catfish 

cultivation is the difference in the size of fish seeds 
or seedlings, which can cause larger individuals to 
dominate smaller individuals, thus creating an 
imbalance in the competition for food [5][6]. In 

addition, catfish also have cannibalistic traits, so 
differences in size can increase the chances of 
cannibalism and reduce cultivation productivity [7, 
8, 9] Therefore, periodically sorting catfish sizes is 
essential to maintain population uniformity and 

increase cultivation productivity [10]. 
The process of sorting catfish based on size 

commonly used today is still manual, using simple 
tools, such as trays that are given holes according 
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to the size of the catfish to be sorted. This sorting 
process has several weaknesses, including taking 
a long time, depending on the operator's 
expertise, and potentially causing stress to the fish 

due to repeated physical handling. Technological 
solutions that are more efficient and accurate and 
help reduce dependence on manual labor are 
necessary to increase cultivation productivity. 

Several researchers have reported various 
approaches to predict fish size using image 
processing and automatic fish counting. However, 
automatic fish seed classification technology, 
especially for catfish, is still very limited. [11] has 

reported an automatic fish sorting system based 
on machine vision equipped with a stereo camera 
to identify fish size in real time and direct the fish 
to the sorting gate at the end of the conveyor. [12] 

developed a weight-based fish sorting device 
using a strain gauge sensor and Arduino Uno to 
classify fish into three size groups. [13] Developing 
a fish mass estimation model using image analysis 
based on Principal Component Analysis-

Calibration Factor and artificial neural networks 
successfully applied a moment-invariant image 
processing algorithm to identify species and 
distinguish fish sizes in a polyculture system and 

showed a high correlation between digital images 
and fish mass and length. Meanwhile, [14] 
reported the development of an automatic tool for 
counting and classifying catfish seeds based on 
size using YOLOv8, MobileNetV2, and OpenMV 

camera. Although these methods show promising 
results, unfortunately in their development they 
require complex hardware, high costs, and 
controlled environmental testing, thus limiting their 

practicality in application and use for small-scale 
cultivation. Therefore, despite the availability of 
various advanced solutions, there is still a gap in 
the development of low-cost, real-time, and 

minimally invasive fish seed systems that are 
suitable for the needs of small and medium 
farmers. 

Along with the development of sensor and 
microcontroller technology, which is supported by 

ease and affordability, opportunities have 
emerged to automate various processes in 
aquaculture [15, 16, 17] Low-cost components 
such as photodiodes, laser diodes, and Arduino 

are increasingly being explored in multiple 
applications, such as water quality monitoring and 
automatic feeding systems. With proper design 
and adaptation to field conditions, this technology 
can provide real solutions that are easy to 

implement, especially for small-scale fish farmers. 
This study proposes an innovative real-time 

catfish seed sorting system based on photodiode 
sensors and an Arduino microcontroller, utilizing 

low-cost technology that minimizes human 
involvement. Unlike most existing low-cost 
approaches, which are limited to size estimation, 
counting, or weight prediction and still require 

manual transfer, the proposed system not only 
determines the size of live catfish seed but also 
directly and automatically sorts them into 
designated size groups. Vision-based sensors, 

while accurate, remain expensive and technically 
demanding for small-scale farmers. Previous non-
vision studies rarely integrate direct sorting—
especially for live seed, where handling stress is 
critical. To our knowledge, no prior research has 

reported the integration of real-time size detection 
and direct automated sorting specifically for live 
catfish seed. This integration is crucial in 
aquaculture because it reduces handling stress 

and potential mortality, while increasing 
operational efficiency. 

In addition to practical implications, this 
report also provides methodological contributions. 
We propose a non-vision sensor framework that 

integrates three sequential processes: (i) body 
length detection via a laser-photodiode array (light 
beam interruption), (ii) size-based classification, 
and (iii) automated sorting directly into appropriate 

holding tanks. We then compare performance 
under controlled "ideal object" conditions using 
PVC pipes sized to the target category (achieving 
100% accuracy) and under live fish conditions 
(overall accuracy of 67.5%). The differences 

between these two methods provide insight into 
how biological behaviour (swimming and irregular 
body posture) affects sensor-based detection 
accuracy and informs future refinements in 

aquaculture automation. 
This study aims to: (1) design and 

implement a low-cost non-vision framework that 
integrates detection, classification, and sorting for 

live catfish seed; (2) evaluate the performance of 
real-time classification and sorting under 
controlled conditions (PVC) and live fish; (3) 
assess operational implications for hatcheries 
(reduced handling and post-sorting survival 

monitoring); and (4) articulate design 
considerations and ways to improve accuracy and 
robustness for broader aquaculture adoption.  
 

METHOD 
The prototype uses photodiode and laser 

diode sensors as a body length detection system 
[18] for fish seeds. The signal from the photodiode 
sensor was processed by Arduino Uno to control 

the movement of the servo motor, directing the 
path of fish seeds, whose length was already 
known, to the container according to their size 
category. This system was designed to sort the 
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size of fish seeds into four categories: less than 7 
cm, 7–8 cm, 9–10 cm, and 11–12 cm. 
 

Material 
The electronic components needed make 

this device readily available on the market in 
Indonesia at a low cost. The list of electronic 
components and their functions can be seen in 

Table 1. 
 

Methods 
Figure 1(a) shows a block diagram of the 

prototype of an automatic catfish seed sorter. This 
diagram explains the system architecture, 
consisting of three main parts: input, processor, 
and output. In the input section, there is a laser 

diode array and a photodiode array to detect the 
body length of catfish seeds. The detection data is 
sent to the processing unit (Arduino Uno), which 
functions as a Central Processing Unit (CPU) to 
run the classification algorithm to determine the 

fish seeds' body length category. As an output 
section, there is an LCD to display the 
classification results and a servo motor to move 
the sorting line to the container according to size. 

All of these electronic components work with a 
voltage of 5V.  

Figure 1(b) shows the electronic circuit of 
the developed prototype. Four photodiodes are 
connected to the Arduino digital pins, each on pins 

2, 3, 4, and 5. This photodiode module likely uses 
the PD204-6C type photodiode, which has the 
following specifications: spectral range of 400–
1100 nm, peak sensitivity at 940 nm, response 

speed of 6 ns, and a maximum dark current of < 
10 nA. This photodiode can detect laser light from 
a laser diode module with a wavelength of 685 nm. 

Meanwhile, the four laser diodes are only 
connected to a 5V voltage source and ground 

without going through the control pin of Arduino, 

so the laser diodes will light up continuously as 
long as the prototype is in active (ON) condition, 
because it receives HIGH logic directly. Arduino 

digital pin 7 is used to send control signals to the 
servo motor to regulate rotational movement. The 
2x16 character LCD module is equipped with an 
I2C interface for efficient use of pins, so it only 
requires a connection to analogue pins 4 and 5 on 

the Arduino as a data communication path. All 
components, including photodiodes, laser diodes, 
motors, and LCDs, get their power supply directly 
from an external 5V adapter, not from the Arduino 

output. This configuration was chosen to ensure 
that the current requirements of each component 
are met without disrupting the power supply to the 
microcontroller, so that system performance 

remains optimal. Consistent with [19], we 
employed dedicated external power supplies, 
rather than the microcontroller’s 5 V rail—for each 
sensor, actuator, and display module, thereby 
preserving I/O integrity and maintaining stable 

computational performance of the microcontroller. 
The automatic sorting of catfish seeds 

based on body length follows the logic flow shown 
in Figure 2(a). When the fish enters the sorting 

tube, the system starts monitoring the status of 
four optical sensors consisting of laser diodes and 
photodiode pairs. Each pair of laser diode and 
photodiode is positioned transversely to the 
direction of seed movement in the sorting tube, as 

shown in Figure 2(b). The distance between the 
laser-diode and photodiode pairs represents the 
classification length of the seeds. The number of 
photodiodes disturbed by the fish body is used to 

estimate the catfish's length. The detection 
process starts from photodiode-1; if the signal 
from photodiode-1 is disconnected (OFF) because 
catfish seeds block it, the system continues to 
check the status of other photodiodes 

sequentially. 

 

Table 1. List components, and function of the developed prototype 
Components Functions 

Arduino Uno Central Processing Unit, controlling the flow of data and instructions 

Laser diode KY-008  Light source to activate the photodiode.  

Photodiode Sensor to detect the light from the photodiode.  

16x2 Character LCD display Display notifications, status, or measurement results 

Servomotor To direct the path of fish seeds 

Power adaptor Voltage source to turn on the device 

Project box  Device casing with size (7.5 cm x 10 cm x 3.5 cm) 

PVC Pipe Frame of developed prototype 
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Figure 1. a) The block diagram, and b) the 
electronic circuits of the automatic catfish seed 

sorter prototype 

 
The classification logic based on the 

number of photodiodes that are dead (OFF) is as 
follows: 

• Only photodiode-2 is OFF (photodiodes-3 and 

-4 remain ON); The length of the fish seeds is 
around 7–8 cm 

• Photodiodes-2 and -3 are OFF; The length of 
the fish seed is around 9–10 cm 

• Photodiodes-2, -3, and -4 are OFF; The length 
of the fish seed is around 11–12 cm 

• If only photodiode-1 is OFF (photodiodes-2, -3, 
and -4 are ON); The length of the seed is <7 

cm 
After the length of the catfish is identified, 

the system drives the servo motor to direct the fish 
to the appropriate sorting channel. The rotation 
angle of the servo motor based on the size 

category of the seed length is as follows: 

• 30° for size < 7 cm 

• 70° for size 7–8 cm 

• 110° for size 9–10 cm 

• 150° for size 11–12 cm 
Because this study involves a multi-class 

classification problem (classes A–D), TP, FP, FN, 
and TN were defined in a one-vs-all manner for 
each class. 

 

Figure 2. (a) Flowchart of catfish seed 
classification process based on body length using 

photodiode–laser diode sensor system and servo 
motor. b) Illustration of catfish seed sorting tube 

 
For example, for class A (length < 7 cm), the 

definitions are: 

• TP (True Positive): fish labeled as class A that 
are sorted into container C1. 

• FP (False Positive): fish not labeled as class A 
but sorted into container C1. 

• FN (False Negative): fish labeled as class A but 
sorted into a different container. 

• TN (True Negative): fish not labeled as class A 
and not sorted into container C1. 

The standard evaluation metrics per class are 
calculated using the equations in Table 2. 
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Table 2. Equation for calculating standard metrics per class 
Metrics Equation Eq. No. 

Recall/Accuracy 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (1a) 

Precision 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1b) 

Specificity 
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (1c) 

F1 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (1d) 

 

𝐶𝐼 − 𝑊𝑖𝑙𝑠𝑜𝑛 =
𝑝̂ +

𝑧2 
2𝑛

± 𝑧√𝑝̂(1 − 𝑝̂)
𝑛

+
𝑧2 
4𝑛2

𝑧2 
𝑛

,     𝑝̂ =
𝑥

𝑛
  (2) 

 

For a 95% confidence interval, z was set to 1.96 
To illustrate overall performance, an 

aggregation approach was used. The micro-
average (overall) was calculated by summing all 

TP, FP, and FN values from all classes, and then 
computing Recall, Precision, and F1 based on this 
accumulation. The evaluation was conducted in a 
single-label, multi-class scenario, in which each 

sample had exactly one correct label and the 
system produced exactly one class prediction. In 
this scenario, micro-Precision, micro-Recall, and 
micro-F1 are identically equal to overall accuracy, 
since (∑ 𝑇𝑃 + ∑ 𝐹𝑃) = (∑ 𝑇𝑃 + ∑ 𝐹𝑁) = 𝑁. Therefore, 

we reported overall accuracy as a summary of the 
micro-metrics. The macro-average was calculated 
by averaging the scores per class, ensuring that 
all classes received equal weight, regardless of 

the number of samples. 
For each proportion-based metric 

(Precision, Recall, Specificity, and Accuracy), a 
95% confidence interval was calculated using the 

Wilson score interval method. These intervals 
provide more accurate lower and upper bounds 
than the normal approximation approach, 
especially for relatively small sample sizes (n = 10 
per class). The CI-Wilson was defined by (2). 

The results of the TP, FP, FN, and TN 
calculations for each class were presented in the 
Confusion Metrics Table. The evaluation metrics 
per class (along with confidence intervals) were 
presented in the Per-Class Metrics Table. A 
summary of the overall system performance was 
shown in the Global Metrics Table. 

 

RESULTS AND DISCUSSION 
The prototype of an automatic sorting 

system for catfish seeds using a photodiode–laser 
diode sensor and Arduino control has been 

successfully created. It can potentially replace the 
manual sorting process. This system aims to 
minimize human intervention to reduce stress on 

fish seeds during handling, while maintaining 
classification accuracy. The performance of the 

prototype was evaluated through a classification 
test of catfish seeds with varying body lengths, 
where its effectiveness was assessed based on its 
accuracy in grouping seeds into containers 

according to their respective size categories: <7 
cm, 7–8 cm, 9–10 cm, and 11–12 cm [14].  

Table 3 presents the confusion metrics 
resulting from the sorting process, showing the 
distribution of catfish fry across predicted classes 

(C1–C4) compared to their actual size categories 
(A–D). This metrics indicates that correct 
classifications occurred predominantly along the 
diagonal cells, while misclassifications were 

concentrated between adjacent classes, 
particularly from class B to A, class C to B, and 
class D to C. 

To further analyze the classification results, 
Table 4 summarizes the TP, FP, FN, and TN 

values for each class using the one-vs-all scheme. 
The results show that class A (<7 cm) achieved 
the highest number of TP (10) without FN, while 
classes B, C, and D experienced FN errors, 

indicating challenges in distinguishing fish near 
the threshold length. The aggregate totals (27 TP, 
13 FP, 13 FN, and 107 TN across all classes) 
provided the basis for calculating the evaluation 
metrics presented in Tables 5 and 6. 

Table 5 shows the per-class evaluation 
metrics derived from the confusion values in Table 
4. The system successfully classified all 
individuals in the <7 cm size category, with Recall 

= 1.00 [0.72–1.00] and F1 = 0.80, although the 
Precision value was slightly lower (0.67 [0.42–
0.85]) due to the presence of fish from larger 
classes that were incorrectly assigned to this 

category. This finding indicated that the beam-
break logic was reliable when only the first 
photodiode was blocked and the other three 
remained unblocked. 
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Performance decreased in adjacent 
categories. For the 7–8 cm group, Recall dropped 
to 0.50 [0.24–0.76] and F1 to 0.56, with Precision 
0.63 [0.31–0.86]. For the 9–10 cm group, Recall 

was 0.70 [0.40–0.89], Precision was 0.58 [0.32–
0.81], and F1 was 0.64. The 11–12 cm group 
exhibited high Precision (1.00 [0.57–1.00]) and 
Specificity (1.00 [0.89–1.00]), but Recall remained 

low (0.50 [0.24–0.76]), resulting in an F1 of 0.67. 
This concentration of misclassification around the 
boundaries between categories was consistent 
with the limited spatial resolution of the four-beam 
geometry relative to class width, as well as the 

variability in posture/orientation and swimming 
speed as fish passed through the tube. 

In the one-vs-all scheme, Specificity per 
class remained high (0.83–1.00), indicating that 

the system rarely assigned fish from other classes 
to a particular class. However, accuracy per class 
varied between 0.80 and 0.88, reflecting errors 
primarily at class boundaries. 

In aggregate, the prototype achieved an 

overall accuracy of 67.5% [0.52–0.80], which was 
identical to the micro-Precision, micro-Recall, and 
micro-F1 values in this single-label multiclass 
scenario. The macro-averaged scores across all 

classes were Precision = 0.72, Recall = 0.68, 
Specificity = 0.89, and F1 = 0.67, which confirmed 
consistent though not perfect performance across 
all classes. 

To better isolate sensing/sorting 

performance from biological factors, we 
benchmarked the system using PVC pipes sized 
to the target categories. We obtained 100% 
accuracy, confirming that the photodiode-based 

detection and actuation mechanism functions 
reliably under behaviour-free conditions. The 
reduced accuracy in live trials is therefore 
attributed mainly to variability in swimming motion 

and body posture, rather than sensor limitations. 
This work is positioned as a low-cost feasibility 
study: we deliberately adopt an interpretable, on-
device thresholding scheme compatible with 
Arduino-class hardware and small-holder 

constraints. In practice, the device can serve as a 
pre-sorting stage, reducing labor and fish stress, 
with brief manual refinement if necessary. 
Channel design adjustments and decision rule 

refinements are planned for future work to improve 
live-fish accuracy further. 

As a benchmark against previously 
reported studies, we compare the photodiode 

beam-break approach with two families of 
solutions: camera-based machine vision/learning 
(MV/ML) and non-MV/ML systems (load-
cell/strain-gauge or simple optics). Table 7 

(MV/ML) and Table 8 (non-MV/ML) summarize 
representative studies, detection targets, 
detection methods, hardware components, and 
reported performance. MV/ML systems achieve 
higher accuracy under controlled optical 

conditions. However, they require cameras, 
lighting, and computation; by contrast, non-MV/ML 
systems offer low-cost options for mass 
measurement/counting but do not measure length 

directly.  
Compared with MV/ML systems, the 

developed photodiode–laser (beam-break) 
system is positioned as an affordable, low-stress 
baseline for catfish seed, with minimal, low-cost 

hardware, a simple workflow, and end-to-end 
automation (detection → classification → routing). 
This system not only determines size but also 
separates fish directly based on size and can 

certainly be scaled up to count individuals within 
each size classification category. Unlike reported 
systems that only measure size, count, or estimate 
weight, this system integrates a separation 
mechanism as a critical follow-up measure in fish 

farming. The achieved overall accuracy of 67.5% 
[0.52–0.80] (for four length classes) is indeed 
lower than MV/ML, but the trade-offs—cost, ease 
of adoption, and seed safety—make it a relevant 

solution for small- to medium-scale catfish 
aquaculture.  

Moreover, there is room to improve 
accuracy without sacrificing simplicity, namely: (i) 

increasing the number and optimizing the 
geometry of beams to enhance length-threshold 
resolution, (ii) optical calibration/alignment and 
anti-overlap guards in the channel, (iii) when 
needed, light hybridization (e.g., adding a low-cost 

camera module for auxiliary verification) to close 
accuracy gaps under certain conditions. 

 

 

Table 3. Confusion Metrics (Actual vs. Predicted) 
Actual \ Prediction C1/A C2/B C3/C C4/D 

A (<7 cm) 10 0 0 0 
B (7–8 cm) 5 5 0 0 

C (9–10 cm) 0 3 7 0 
D (11–12 cm) 0 0 5 5 
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Table 4. Confusion (TP, FP, FN, TN) per Class 
Class TP FP FN TN Total Samples 

A (<7 cm) 10 5 0 25 40 
B (7–8 cm) 5 3 5 27 40 

C (9–10 cm) 7 5 3 25 40 
D (11–12 cm) 5 0 5 30 40 

Total (one-vs-all, 
aggregate) 

27 13 13 107 160 

Notes: Each class was calculated using the one-vs-all scheme. The row “Total (one-vs-all, aggregate)” represents the sum of 
TP, FP, FN, and TN across classes (not a single confusion metrics. 

 
Table 5. Per-Class Metrics (Value [CI Wilson 95%]) 

Class Recall / Accuracy Precision Specificity F1 Per-class Accuracy (1-vs-all) 

A (<7 cm) 
1.000 

[0.722–1.000] 
0.667 

[0.417–0.848] 
0.833 

[0.664–0.927] 
0.800 

0.875 
[0.739–0.945] 

B (7–8 cm) 
0.500 

[0.237–0.763] 
0.625 

[0.306–0.863] 
0.900 

[0.744–0.965] 
0.556 

0.800 
[0.652–0.895] 

C (9–10 cm) 
0.700 

[0.397–0.892] 
0.583 

[0.320–0.807] 
0.833 

[0.664–0.927] 
0.636 

0.800 
[0.652–0.895] 

D (11–12 cm) 
0.500 

[0.237–0.763] 
1.000 

[0.566–1.000] 
1.000 

[0.886–1.000] 
0.667 

0.875 
[0.739–0.945] 

Note: Formula descriptions (for each class, one-vs-all scheme): 
Precision = TP / (TP + FP); Recall = TP / (TP + FN); Specificity = TN / (TN + FP); Per-class Accuracy = (TP + TN) / Total. 

Table 6. Aggregate metrics (values [95% Wilson CI]) 
Aggregate Precision Recall Specificity F1 Overall Accuracy 

Micro / Overall 
0.675  

[0.520–0.799] 
0.675  

[0.520–0.799] 
0.892  

[0.823–0.936] 
0.675 0.675 [0.520–0.799] 

Macro (class 
average) 

0.719 [NA] 0.675 [NA] 0.892 [NA] 0.665 — 

Note: The macro-average represents the mean across classes; therefore, the Wilson CI cannot be applied. 
 

Table 7. Literature-based comparison of camera-based machine vision/learning (MV/ML) approaches 
for fish size estimation and grading, methods, hardware, and performance. 

Reference Species/Setting Method (Algorithm) 
Components 

(Hardware) and Cost 
Summary of 

results/findings and Metrics 

Albuquerque 

et al., 2019 
[20] 

Fingerling (Pintado), 

counting 

Classical CV: blob 
detection + Mixture of 

Gaussians + Kalman 

filter 

Hardware: 
Video camera, PC 

 
Cost estimate: 

275 USD 

Automatic seeds-counting 
system; validated on real 

videos. 
 

Metrics:  accuracy 97,4 % 

Jayasundara 

et al., 2023 
[21] 

Multi-species (Indian 
Sardinella and the 

Yellowfin Tuna); 

quality grading 

Deep Learning: 

FishNET-S/T 
architecture (CNN) 

Camera, computer 

 
Cost Estimate 

300 USD 

Automated grading; high 

performance on test datasets. 

 
Metrics:  accuracy 68,3 % 

Tonachella et 
al., 2022 [22] 

Seabream; sea 
cages (smart buoy) 

CV + AI; stereo 
photogrammetry 

Stereo camera on 

buoy, edge computing 

 
Cost Estimate 
4000 USD 

Non-invasive length/weight 
estimation in open sea. 

 
Metrics:  accuracy 70 % 

Sung et al., 

2020 [23] 
Flatfish; sorting 

conveyor 

Classical image 
processing for 

length→actuator control 

Low-cost webcam, 
conveyor, actuators 

 
Cost Estimate 

400 USD 

Low-cost camera-based real-

time grader. 

 
Metrics:  NA 

Marrable et 
al., 2023 [24] 

Multi-species; stereo 
BRUVS 

Deep Learning for 

head–tail detection + 
stereo calibration 

Stereo camera, 
workstation 

Semi-automated length 

measurement with near-

human accuracy. 

 
Metrics:  accuracy 73.51% 
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Reference Species/Setting Method (Algorithm) 
Components 

(Hardware) and Cost 
Summary of 

results/findings and Metrics 

López-Tejeida 

et al., 2023 
[25] 

Aquaculture; weight 
estimation 

ML/CV (Haar cascade + 
regression model) 

NIR camera, 

computer 

 
Cost Estimate 
329 USD 

Non-intrusive weight 

 estimation using NIR 

imaging. 

 
Metrics:  accuracy 92 % 

 

Table 8. Literature-based comparison of non-ML systems (load-cell/strain-gauge and simple optical) 
for fish sorting/counting, methods, hardware, and performance 

Reference Species/Setting Method (Algorithm) 
Components 

(Hardware) and cost 
Summary of 

results/findings and metrics 

This Work 

Classification based 

on length (beam-

break), catfish seed 
sorting 

Laser beam-break and 

photodiode 

Photodiode + Arduino 

 

Cost estimate: 
25 USD 

Catfish seeds are sorted 

automatically based on 
length. 

 

Metrics:  accuracy 65 % 

Rossi et al., 
2021 [26] 

Seabream juveniles; 
dynamic weighing 

Dynamic signal 

processing 
(filtering/compensation) 

Load cell (strain 

gauge), HX711/ADC, 
Arduino, Bluetooth 

 
Cost estimate: 

40 USD 

Compare dynamic vs. static 
weight, low-cost platform for 

biomass. 
 

Metrics:  accuracy 80 % 

Basyir et al., 
2024 [27] 

Weight-based sorter 
prototype 

Rule-based by weight; 
conveyor automation 

Load cell + HX711, 

Arduino, sorting 

mechanics 
 

Cost estimate: 
80 USD 

Complete 

design/implementation 
equipped conveyor. 

 

Metrics:  accuracy 99 % 
 

Zhang et al., 

2018 [28] 
Ornamental fish; real-

time counting 
Threshold/transit time 

(non-ML) 

Non-imaging optical 
(IR) + single detector 

 
Cost estimate: 

100 USD 

Real-time counting system 

without a camera; reliable & 
simple. 

Metrics:  accuracy 70 % 
 

Fuentes-Pérez 
et al., 2025 

[29] 

Fishway; traffic 

monitoring 

Event detection + 
silhouette 

reconstruction 

IR beam-break 
curtain (LED + 

photodiode), 

RPi/ESP32 
Cost estimate: 

400 USD 

Design & initial validation of a 

flexible, open-source IR 

counter. 
Metrics:  accuracy 70 % 

 
There are still misclassifications, thought to 

be caused by various factors related to the 
limitations of the classification system and 

biological variations in the behavior of catfish 
seeds [30]. Body position is crucial in determining 
whether the fish seeds properly block the laser 
beam [31]. As is known, seeds do not always swim 

straight and can rotate or tilt when passing through 
the sorting tube. This behaviour will disturb the 
laser beam break pattern so that the photodiode 
status conditions may become inconsistent, 
leading to incorrect body length estimation. 

Another essential aspect that affects the detection 
process is the tilt of the selection tube of about 20° 
to the horizontal. This tilt is intended to help the 
movement of the seeds downward following 

gravity so that they can pass through the detection 
path at a relatively stable speed without additional 
mechanical propulsion. However, this tilt can also 

affect the accuracy if the seeds slide too fast or are 
not perpendicular to the sensor. The position of 
the fish that is tilted or not parallel to the sensor 
plane causes the laser beam to be blocked, which 

does not correlate with the actual length of the 
seeds, resulting in inaccurate classification. To 
mitigate these issues, several strategies can be 
applied in future development. Hardware 
refinements such as optimizing the tilt angle, 

adding pre-alignment channels, or increasing the 
number of sensor pairs. 

Variations in the swimming or falling speed 
of the seeds also contribute to misclassification. 
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Faster-moving seeds may not trigger the sensors 
in the expected sequence. In such cases, the 
sensors only receive partial or unstable 

interference signals, which makes the detection 
logic prone to errors due to the threshold-based 
decision-making algorithm. This logic is quite 
compelling for basic classification, but it cannot 
handle cases of ambiguity or smooth size 

transitions. The use of Advanced decision-making 
methods such as fuzzy logic, probabilistic 
classifiers, or adaptive rules can provide greater 
tolerance to ambiguous occlusion patterns and 

narrow class boundaries [32, 33, 34]. 
Implementing such algorithms will reduce 
classification errors, especially between adjacent 
categories, and enhance the system's robustness 

under real-world aquaculture conditions. 
From a functional standpoint, simple 

threshold-based logic allowed the Arduino to 
easily make decisions about which servo motors 
to drive to the correct outlets. Each input from the 

photodiode was processed in real time and 
mapped to one of four angular states of the servo 
motor rotation based on the combination of sensor 
states. The use of dedicated digital pins to read 

the status of the photodiode sensor and an 
external 5V power supply separate from the 
Arduino 5V output can maintain the stability of 
system operation and minimize current 
fluctuations, which often occur in microcontroller 

systems when several components are active 
simultaneously [19, 32, 35] This power supply 
configuration contributes to measurement 
consistency [36][37]. 

In addition to the things discussed above, 
the system's accuracy can be affected by external 
factors such as environmental lighting [19] and 
water turbidity in the sorting tube [38]. In real 
conditions in the field (cultivation location), these 

factors can vary more than in the laboratory 
environment, reducing detection accuracy. 
Therefore, the system's next version can consider 
optical protection or sensor calibration to ambient 

light intensity. 
Despite its limitations, this prototype 

provides an automatic and non-contact method for 
classification. This system offers significant 
advantages over manual sorting, which is more 

time-consuming, requires more effort, and may 
damage seeds due to direct handling. Thus, the 
survival and growth of seeds after sorting can be 
improved [39][40]. The physical photo of the 

prototype in Figure 3 shows that this system can 
be built with cheap and readily available materials, 
such as PVC pipes. Thus, this technology can be 
adopted on a small to medium scale. 

 

Figure 3. The photograph of the developed 
catfish seed sorting prototype 

 
Several approaches can be pursued to 

improve classification accuracy in future 
development. One is to increase the number of 
sensor pairs, thereby refining size-detection 

resolution and reducing ambiguity at class 
boundaries. Another is to incorporate shape and 
orientation recognition by integrating optical 
sensors with image-based recognition systems, 

such as camera-based computer vision and 
OpenCV algorithms [41]. With recent advances in 
edge computing and the availability of low-cost 
microcontroller modules equipped with cameras 
or Raspberry Pi camera modules, this integration 

is increasingly feasible [42]. In addition, accuracy 
can be improved by adopting more advanced 
decision algorithms such as fuzzy logic, 
probabilistic classifiers, and adaptive rules. Such 

algorithms are expected to enhance system 
robustness under live-fish conditions. Ultimately, 
this technology provides a foundation for 
developing more precise and adaptive intelligent 
sorting systems for aquaculture. The system is 

also flexible, making it readily adoptable or 
customizable for other fish-seed species. 
 

CONCLUSION 

In conclusion, this study demonstrated a 
low-cost, non-vision-based framework that 
integrated real-time size detection, classification, 
and automated sorting for live catfish seed. To our 
knowledge, this was the first report to apply a 

laser–photodiode interruption scheme directly to 
live fish seed. This provided a methodological 
contribution in the form of a readily 
understandable workflow that was implemented 

on a microcontroller: beam interruption, size 
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classification, and servo-driven sorting. The 
prototype was validated through both ideal object 
and live trials. This approach separated 
sensor/actuator reliability from biological 

variability, offering a reproducible evaluation 
protocol for future intelligent sorting systems. 

In practice, this prototype could serve as a 
pre-sorting tool for small- to medium-scale 

aquaculture. It helped reduce labor requirements 
and handle stress, while improving operational 
efficiency. Future refinements to the channel 
geometry, adaptive decision rules, and hybrid 
sensing approach are expected to transform this 

proof-of-concept into a more precise and scalable 
intelligent sorting system, supporting precision 
aquaculture.  
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