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Abstract  
A brain tumor (BT) is considered to be one of the most fatal diseases 
in the world, which also demands a very precise and early detection 
to be successfully addressed. The irregularities in the brain can be 
detected with the help of a magnetic resonance image, or MRI. 
Menigoma, glioma, pituitary tumours, and no-tumor are four 
categories of BT to be classified in this work according to an 
enhanced transfer learning (TL) approach, generated by the 
pretrained Inception V3 model. The preprocessing pipeline is new 
and includes data augmentation to reduce overfitting, a bilateral filter 
to remove noise, background cropping, and image scaling. The 
proposed method achieves training accuracy of 94.9% and validation 
accuracy of 93.8%. With a change in the hyperparameter (k-value), 
the validation and training accuracies improve to 95.3% and 96.8%, 
respectively. Furthermore, the model has a high level of 
generalization, where sensitivity is 92.8 percent, and specificity is 
93.5 percent. The combination of transfer learning with the high-level 
enhancement and strengthening of pictures is novel. Nevertheless, 
among the factors that can affect generalizability, the variety and size 
of datasets are important. This model should be confirmed through 
further research using larger, more diverse datasets and explored in 
the context of clinical interpretability. 
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INTRODUCTION  

A tumor refers to the unregulated growth 
of cancer cells occurring in some portions of the 
body. These tumors can exhibit significant 
variability with respect to type, characteristics, 
and the methods employed for treatment. 
Present-day, BTs are categorized into numerous 
discrete categories [1]. Malignant BTs epitomize 
one of the important severe types of cancer, 
characterized by inadequate survival measures 
that have largely remained stagnant over the last 
sixty years. Recent advancements in cancer 
immunotherapies present a favorable path for 
the potential treatment of BT that is otherwise 
deemed inoperable. However, despite the 
encouraging results seen in other forms of 
cancer, progress in BT treatment remains 
limited. The preprocessing of raw MRI images is 

a vital step in ensuring accurate segmentation of 
BT [2].  

TL methods have proved their efficacy, 
particularly in circumstances where there is a 
paucity of labeled data for training [3]. BTs 
characterize a substantial medical concern, 
ranked as the tenth leading cause of mortality in 
the US. It is estimated that around 700,000 
individuals are affected by BTs, with 80 percent 
classified as benign and 20 percent as malignant 
[4]. Misclassification of a BT can have severe 
repercussions, reducing a patient's likelihood of 
survival. Accordingly, there has been a rising 
focus on the training of mechanized image 
processing technologies targeted at seizing the 
shortcomings associated with manual diagnosis 
[5].  

Numerous researchers have explored a 
variety of algorithms for the identification and 
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grouping of BTs, placing significant emphasis on 
enhancing performance and reducing errors. DL 
Techniques, especially Convolutional Neural 
Networks (CNN), have earned prominence in the 
creation of automated systems that facilitate 
accurate classification and segmentation of BTs 
within reduced timeframes. DL capitalizes on the 
expertise of pre-trained models, particularly 
within the realm of medical imagery, 
concentrating specifically on the classification of 
BTs. 

The suggested technique is based on prior 
research in ensemble techniques by utilizing a 
combination of pre-trained Inception V3 models 
along with supplementary layers, creating a fine-
tuned version that achieves a remarkable 
accuracy rate of 99%. 

A collection of techniques is adapted to 
identify BTs in MRI images, with DL methods 
showing substantial advancements in this area. 
This study seeks to compare the models used for 
BT detection, specifically within the framework of 
DL approaches [6].  

The categorization of BTs is a key step 
following tumor detection, playing a decisive role 
in the growth of effective treatment strategies. 
Timely identification of tumors not only enhances 
therapeutic interventions but also serves as a 
potentially life-saving action. In a specific 
research initiative, a dataset comprising of MRI 
images of the human brain was utilized, featuring 
both tumor-affected and non-tumor-bearing 
images. 

This dataset underwent an extensive 
preprocessing phase that incorporated various 
image manipulation methods, such as filtering, 
blurring, and cropping. The preprocessing was 
applied on dataset and data augmentation 
through a range of random transformations. A 
CNN was implemented, leveraging pre-existing 
data, to specifically determine the existence of a 
tumor. If a tumor was detected, the model 
proceeded to classify it into one of three distinct 
categories: glioma tumor, meningioma tumor, or 
pituitary tumor [7]. 

The following are our main contributions to 
this study: 
MRI images have been enhanced through the 
use of the "Bilateral filter" to remove noise from 
the images. 
In order to cut down on processing time, extra 
boundaries have been removed from the images 
during cropping. 
A unique customized pretrained Inception V3 
model has been presented in this research work 
to categorize four tumor types: pituitary, glioma, 
meningioma, and no-tumor. 

The dataset has been tested on different 
pretrained ResNet50, VGG16, and 
DenseNet121 models, in addition to the 
pretrained customized Inception V3 model. 
The suggested method's effectiveness has been 
assessed with metrics such as training accuracy, 
validation accuracy, sensitivity, and specificity, 
and compared to other cutting-edge 
architectures. 

Several research articles have been 
available in the field of BT detection, primarily 
leveraging conventional Machine Learning (ML) 
and other algorithms to detect irregularities 
within the human brain. Much of this exploration 
has emphasized the recognition of tumors, with 
some endeavors also focusing on classifying the 
type of tumor present. While ML algorithms were 
predominantly utilized before the advent of DL, 
these approaches often relied on handcrafted 
feature extraction. This reliance can lead to 
inaccuracies in feature extraction, resulting in 
missed tumor classifications and detections. 
Consequently, DL models, particularly CNNs, 
are gaining traction in image categorization jobs 
due to their capability to certainly extract and 
study significant features from images. Certain 
advancements are outlined below. 

An analysis driven by the multiclass 
classification of BTs into four distinct categories 
[8]. To enhance image quality, noise was 
eliminated by means of a fuzzy similarity-based 
non-local means filter. They also introduced 
different CNNs alongside existing models, to 
measure the execution of data consisting of 
3,264 images sourced from Kaggle. In spans of 
results, the proposed multiscale CNN model 
accomplished an accuracy of 91.2% and an F1-
score of 91%. The technique was found to 
demand extensive computational resources and 
time, yielding suboptimal results. 

O. Özkaraca et al. [9] introduced two DL 
models coupled with various ML classifiers for 
identifying numerous types of BTs. They 
developed 2D CNN models. The dataset was 
taken from Kaggle and comprised 3,264 images 
classified into four types of tumors. The 
methodology achieved an accuracy rate for the 
2D CNN is 93.44% and auto-encoder model is 
90.92%. Additionally, they tested numerous ML 
models, finding that the multilayer perceptron 
yielded the lowest accuracy at 28%, however the 
kNN classifier attained the highest of 86%. 
However, the overall findings of the proposed 
method were modest, and other evaluation 
systems of measurement were not executed. 

M. Rasheed et al. [10] proposed a model 
for classifying BTs through a TL-based Deep 
Convolutional Neural Network (DCNN) model 
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that utilizes a pretrained VGGNet model, earlier 
proficient on an enormous dataset. To enhance 
performance further, they froze the levels of the 
CNN and incorporated an output layer with 
global average pooling to mitigate overfitting 
problems. They got a testing accuracy of 
98.93%. Nevertheless, this attempt has 
limitations, as it relies on a basic technique and 
a limited dataset, and is primarily focused on 
binary classification; hence, there is a necessity 
for multi-class grouping enhancement. 

V. Anand et al. [11] suggested a method 
for classifying multiple types of BTs using a 
dense CNN architecture, incorporating basic 
CNN, VGG16, and DenseNet models. All models 
utilized TL, with MRI images from Kaggle, which 
includes a total of 7,021 MRI images. The corpus 
was split into training and validation subsets in 
an 80% to 20% ratio. The proposed systems 
accomplished accuracy rates varying from 94% 
to 97%, demonstrating effective performance. 
However, a significant drawback of this method 
is taking more processing time and has a lower 
response. 

H. M. T. Khushi et al. [12] focused on 
recognizing BTs employing adaptive noise 
filtering and geometric features. They applied 
structural segmentation in combination with a 
Support Vector Machine (SVM) classifier to 
classify tumors as either basic or malicious. The 
tumor region was identified by analyzing 
differences in pixel brightness. Their suggested 
model achieved an accuracy of 98%, but it was 
limited to binary classification. A. Al-Sabaawi et 
al. [13] undertook a study aimed at classifying 
BTs by using VGG19, a CNN with augmentation, 
and a CNN without augmentation. They 
achieved an accuracy of 98%. A study on the 
diagnosis of brain tumors based on performance 
analysis on several CNNs was given by Y. Gao 
et al. [14]. 
1. Low Multi-Class Classification of Varied 
Current Models: Deep learning models perform 
poorly in the classification of the wide variants of 
tumors, such as meningioma, glioma and 
pituitary tumors, which require multi-class 
classification. There is a great need to have a 
valid reference model that can differentiate the 
different types of brain tumors.  
2. Weak preprocessing and noise control 
procedures: Noise, low contrast and 
background information irrelevant to the model 
are common features in MRI scans and may 
deteriorate the performance of the model. Most 
of the past studies have failed to note advanced 
preprocessing methods like noise removal and 
edge trimming, which are necessary in pure 
feature extraction.  

3. Overfitting and a failure to generalize in 
deep learning models may be caused by 
limited and out-of-balance medical datasets. 
Many existing models tend to perform poorly in 
generalizing novel data, particularly to other 
patient demographics or imaging modalities.  
4. Inadequate Utilization of Advanced 
Architectures with Transfer Learning: 
Transfer learning has not yet been fully utilized, 
even though it has potential implications. Little 
research exists on how to fine-tune state-of-the-
art structures, such as Inception V3, for medical 
picture classification by use of domain-specific 
customization.  
5. Inadequate Evaluation on End-To-End 
parameters and Real-World Testing: Most 
models have been tested only from an accuracy 
point of view without providing important clinical 
parameters such as sensitivity, specificity, and 
robustness on test pictures. This limits their 
clinical usage. 

 
METHOD 

This part presents a comprehensive 
approach that encompasses all phases from data 
acquisition to the evaluation of results. One of 
the most important phases of the 
suggested methodology is data preprocessing, 
which includes operations like image cropping, 
noise reduction, and data augmentation. After 
that, the pretrained models for the BT grouping 
into glioma, pituitary, meningioma, and no-tumor 
classes are fed the preprocessed dataset. These 
models include VGG16, ResNet50, DenseNet121, 
and a customized version of Inception V3. Based 
on their noteworthy benefits—such as transfer 
learning advantages, architectural suitability, 
design flexibility, and strong support from both the 
ML and DL communities, pretrained deep learning 
models are the preferred option. The ability of 
these models to extract and learn intricate 
patterns and features from images, a crucial skill 
for accurate tumor identification, has improved. 

The main approach used was to employ the 
pretrained Inception V3 model as a feature 
extractor. This method was adjusted to specifically 
tailor the learned features for the task of BT 
classification by deleting the top layer of the 
Inception V3 architecture and adding new layers. 
With this modification, the model was able to 
capture complex features in an efficient 
manner, which is essential for obtaining precise 
classifications. An automated method for 
recognizing and categorizing various BT types is 
presented in this study. To achieve this goal, TL 
was employed. Using the Inception V3 design as 
a pretrained paradigm, the main network 
produced convolutional activation maps that were 
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then used for tumor identification and 
classification. The accuracy of the predictions 
served as the basis for performance evaluation. 

The assumption of implementing pretrained 
Inception V3 as a feature extractor on enriched 
classification of multi-abnormal brain tumors is 
properly based on the concepts of transfer 
learning. Inception V3, which was trained on tens 
of millions of images, also learns strong low and 
middle-level components, such as edges, textures 
and shapes, which can be transferred to the 
medical imaging problem. Removing layers on top 
of it that represented general ImageNet classes 
and inserting new fully connected layers fine-
tunes the architecture to detect minute differences 
in types of brain tumors. This level of 
customization enables the network to match its 
generic properties to the complexities of pertinent 
real-world problems, such as multi-class brain 
tumor classifications that are typically annotated 
with poor data size. Many experiments have 
shown that in terms of accuracy and avoiding 
overfitting it is better to use this than to train a deep 
network from scratch. Therefore, by using 
pretrained weights and retraining with specific 
classes, proper results will be obtained to achieve 
a more accurate detection with better sensitivity 
and good generalization in abnormal brain tumor 
classification. 
 
Material 
 The dataset contains a total of 7023 MRI 
images, which have been grouped into four 
distinct classes and organized into separate 
training and validation folders [15]. The 
dimensions of the images vary, and the size of the 
images within each class is not uniform. To ensure 
consistency and enhance results, every image 
was resized to 250 × 250 pixels. The main object 
of the brain scan has extra space surrounding it, 
which makes accurate classification difficult. To 
solve this problem, threshold values were set to 
create a binary mask. Then, extra boundaries 
were removed, and the images were cropped 
using the contour values from the dual mask. 
Additionally, there is noise in the dataset that may 
compromise the accuracy of classification. A 
bilateral filter was used to denoise the dataset to 
lessen this effect. 5,712 pictures in total 
of four dissimilar types of glioma, pituitary, 
meningioma, and no-tumor were included in the 
training set. Table 1 shows the brain tumor types 
and data distribution into testing and validation 
folders. By training the DL method with MRI 
images, the intricate features required for accurat
e tumor classification were able to be 
obtained. 1,311 pictures from the same four 
tumor classes made up the testing set.   

Table 1. Brain tumor types and data distribution   

S.No. 
Type of Brain 

Tumor 
Training 
Dataset 

Testing 
Dataset 

1 Glioma 1321 300 

2 Pituitary 1457 300 

3 Meningioma 1339 306 

4 No Tumor 1595 405 

 
The MRI pictures were kept aside, especially to 
assess how well the model performed and how 
well it could identify BTs with accuracy.  

Data augmentation is used to generate 
additional images prior to preprocessed 
data being sent to DL techniques. Using this 
technique has the main benefit of improving the 
accuracy and prediction of the model. It also aids 
in preventing the issue of data 
overfitting. The height shift range of 0.05, 
which indicates the upper limit of the total width 
and height as a fraction of 1.0, was applied to the 
rotated image data at a 70-degree angle. 
Moreover, additional data samples were moved in 
both vertical and horizontal directions using a 0.1 
zoom range. Dropout layers were also employed 
to prevent overfitting of the data. 

1. Rationalize choice of key 
hyperparameters, such as learning rate, batch 
size, optimizer (e.g., Adam or SGDO), dropout 
rate, and optimizer (e.g., Adam or SGDO). A grid 
search or randomized search strategy is used to 
achieve optimal values. To illustrate, the learning 
rate that suits fine-tuning of the pre-trained layers 
(e.g., 0.0001) is justifiable to avoid catastrophic 
forgetting. 

2. Explanation of the Absence of Early 
Stopping. There is no explanation for the reason 
why early stopping, a typical regularization 
method to avoid overfitting, was not used in this 
study. This is the decision that was made to trace 
the entire learning curve over constant epochs 
and ensure stability with k-folds. 

3. Class Distribution and Data Balancing 
Techniques: datasets relating to brain tumors are 
often imbalanced, with glioma and meningioma 
classes possessing a high number of instances in 
comparison with other classes, pituitary or no-
tumor. Such a mismatch has the potential of 
influencing model performance. Consequently, 
data augmentation, oversampling of the minority 
classes, and stratified k-fold cross-validation is 
used in this work to guarantee a balanced 
representation during training.  

4. Potential Dataset Bias: There can be 
biases in the data included in the study since it is 
acquired by different imaging protocols and 
different scanners or through geographic 
sampling. These biases will hurt the 
generalizability of the model. To overcome this, 
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normalizing steps are added in the preprocessing 
stage, and fairness is measured according to 
classes (precision, recall, and F1-score) to ensure 
equal craft is achieved in the categories. 

5. Evaluation Protocol: The model 
performance with respect to accuracy, sensitivity, 
specificity, precision, and F1-score is employed in 
evaluating the model when training over validation 
and test sets. Stratified sampling ensures that 
training and testing folds are similar, and this 
enhances the reliability of reported measures. 

 Methods 
The customized pretrained Inception V3 

model was used in this study by adding a few 
layers and using the Inception V3 model's output. 
Getting good results from the multi-classification 
of BTs was the main goal. Because of this, 
different deep learning models were experimented 
with, and data samples were preprocessed before 
being put into a deep learning model. Tests were 
also conducted on ResNet50, DenseNet121, and 
VGG16. Training and validation accuracy of 
Inception V3 performed the best out of state-of-
the-art models. In order to improve outcomes and 
guarantee higher accuracy, the Inception V3 
model was modified. Figure 1 illustrates the 
specifics of how the Inception V3 model was 
applied to our preprocessed data. The following is 
a comprehensive description of the several DL 
models that were utilized. 

We have experimented with several 
pretrained DL models, one of which is the VGG16 

model [16]. Three fully connected layers and 
thirteen convolutional layers make up this 
architecture's sixteen layers. Three color channels 
and a 224 x 224 input are processed by the model. 
The ResNet-50 model [17], which was first 
released in 2015, is a member of the residual 
network group and is distinguished by its residual 
units, which aid in training deeper networks and 
reducing the vanishing gradient issue in deep 
networks. There are four different stages in this 
architecture, and the sum of layers or chunks 
varies with each stage. The 121 layers of Pate’s 
[18] deep learning model DenseNet121 are 
arranged into dense chunks by a predetermined 
sum of layers, conversion layers that down sample 
the feature engineering and shrink its mass, and 
extra layers like output and global average 
pooling. 

The model's updated weights are first 
loaded for training purposes. Additionally, we 
confirm that the weights of the base model are not 
used for training once more. In order to let the 
basic model retain its existing information and 
emphasis on innovative customs layers for 
training data, we establish the base model layers. 
An additional global average pooling layer [19] 
was included in order to determine the average 
value of each feature engineering across its 
spatial dimension and minimize the feature 
engineering's dimension to a stable size. This 
made it easier to extract the basic model's most 
important features. 

 

 

Figure 1. Inception V3 Architecture  
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 Equation 1 shows how this layer functions. 

𝐺𝐴𝑣𝑔𝑃
= (

1

ℎ × 𝜔
) × 𝛴[∑𝑥(ⅈ, 𝑗̇, 𝑐)] (1) 

h: height, w: width, specifies the total number of 
spatial dimensions  
X: is the dimension of a tensor 
c: shows channel, i,j identifies the feature map's 
location value within the channel. 

𝑌 = 𝑅𝑒𝑙𝑢(𝑍)       (2) 

where 

𝑍 = 𝑊 × 𝑋 + 𝑏 (3) 

W × X displays the weight matrix W multiplied by 
the input vector X and the bias vector b, which is 
added to the result element-by-element.  
When ReLU is applied element-by-element to Z, 
the following happens for the input Z to ReLU: 

𝑅𝑒𝑙𝑢(𝑍) = 0 𝑤ℎ𝑒𝑛 𝑍 < 0  
             =  𝑍 𝑤ℎ𝑒𝑛 𝑍 ≥ 0         

(4) 

A final output layer that is fully connected 
and has a total number of units equal to the entire 
number of classes—four in the case of 
classification—is then added. for goals, utilizing 
SoftMax's activation function [20]. Predicting the 
ultimate classification of photographs and the 
class to which they belong is the main objective of 
this layer. The SoftMax function is used to 
normalize the result into a distribution for the entire 
classification. The following equalization illustrates 
in what way SoftMax performs the probability that 
an image fits the respective class.  

𝛼(𝑧𝑖) =
ⅇ𝑧𝑖

∑ ⅇ
𝑧𝑗

𝑘

𝑗=1

       
(5) 

α: SoftMax function, Z is the input vector, ⅇ𝑧𝑖 is an 
exponential function for the input vector 
 
ⅇ𝑧𝑗 is an exponential function for the output vector, 
k is the number of classes in multi classifier  
 
Customized Inception V3 Model 

To train different pre-trained deep learning 
models like ResNet50, DenseNet121, VGG16, 
and Inception V3, as stated in the sections above, 
we added a global average pooling layer, a fully 
connected layer through a ReLu function, and a 
final layer through a SoftMax function. Inception 
V3 performs better than the other models and 
delivers sophisticated validation accuracy.  

We added a Global Average Pooling 
(GAP) layer, a fully connected layer with ReLU 
activation, and the final SoftMax layer to train pre-

trained deep learning models such as ResNet50, 
DenseNet121, VGG16, and Inception V3. 

The GAP successfully decreases the 
spatial size of the feature maps and adds critical 
data without having extensive overfitting by 
avoiding the overwhelming parameters (Lin et al., 
2013). The ReLU layer with a fully connected layer 
adds non-linearity to the network and allows 
learning more complex patterns that permit the 
network to distinguish between tumors. The brain 
tumor multi-class detection uses SoftMax layers 
with clear and interpretable outputs being a 
probability of belonging to a specific class. 
The inception V3 model outperforms all of them as 
well since its design factorizes convolutional 
computations, which enables it to obtain multi-
scale features using fewer parameters and with a 
higher efficiency spirit. Its auxiliary classifiers 
enhance gradient flow and help in the 
enhancement of convergence and accuracy.  The 
Inception V3 model receives better validation 
accuracy with respect to brain tumor classification, 
as seen by the results obtained during the 
simulation process, which is in line with the results 
that indicate the effectiveness of the fine-tuning of 
Inception-based models in medical image 
analysis. Therefore, the design achieves strong 
feature extraction and diminishes the overfitting 
process with enhanced multi-abnormal brain 
tumor classification performance. 

However, more accuracy was still required 
for more accurate classification and prediction. 
We selected the Inception V3 model and added 
more layers to optimize it because of this. Figure 
2 is displayed beneath. displays the Inception V3 
model's modified architecture.  

As indicated before, the first global average 
pooling layer was included in the Inception V3 
model to make it unique. The feature map's spatial 
dimension was lowered by this layer to one value 
for each channel. This can help lower the 
constraints in successive layers, improving a 
model's computational efficiency. Another 
advantage of the layer is that it lessens overfitting 
issues with little data. In brief, this layer is a stage  

of transition between the base model and 
the upper tiers of the model. The operation of the 
layer has been conferred. Additional Batch 
normalization is used to regularize the activation 
of neural network layers [21]. and the ReLu 
function. In the first and second dense layers of 
256 units, 512 units were given a ReLu with 
dropouts of 0.3 and 0.2, while 128 units in the third 
dense layer received dropouts of 0.1 and 0.3. The 
ReLu activation function, previously described, is 
represented by (5). 
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Figure 2. Customized Proposed Inception V3 Model 

By removing the fractional portion of input during 
training, the dropout layer [22], a regularization 
procedure primarily intended to solve the 
overfiring issue, also helped the network to 
acquire and seize farther vigorous and broad 
properties. Initially, a Bernoulli distribution is used 
to sample every portion separately from a binary 
mask through a dropout proportion of p. To keep 
the activation's predicted value constant, a second 
scaled output computation is done. The formulas 
below illustrate how dropout operates. 

Moreover, batch normalization is used over 
to regularize the neural network and dense layer 
activation through 256 units. Deeper features are 
extracted using the ReLu activation function and 
sent to an additional batch normalizing layer. In 
order to further predict the likelihood of classifying 
brain tumors as gliomas, meningiomas, pituitary, 
or no tumor, the last output layer applies the 
SoftMax function, which is stated in (5), after 
receiving the additional normalized activation 
output. For better results, these hyperparameters 
were further adjusted. To ensure that our dataset 
experiences progressive model convergence and 
fine-tuning, a learning rate of 0.00001 was 
selected. Experimentation was used to determine 
this value, which proved designate useful aimed at 
our job. In addition, a batch size of 16 was chosen 
to balance training effectiveness and memory 
usage on our hardware configuration. Our main 
goal in choosing this batch size was to use the 
GPU (graphical processing unit) resources 
efficiently without using up too much memory 
while still producing an accurate and useful result. 
We tried and adjusted the Adam optimizer with the 
following settings to get the optimal convergence 
speed and model performance: epsilon = 1e-08, 
beta_1 = 0.91, and beta_2 = 0.9994. We were able 
to enhance the outcomes by choosing and 
determining the Adam optimizer's behavior using 
these settings. 

Thus, all the hyperparameters are set 
correctly; however, the early stopping criteria are 
not applied during model training. For the purpose 

of validating the model and assessing its efficacy, 
we selected 100 epochs to train all of the models 
for. In connection with performance measures, we 
also like to measure how the methods respond, 
acquire from, and justify the data. The model that 
yielded the best results was chosen and modified.  

Using the previously described 
hyperparameters and spare layers, we first trained 
the system in our proposed model by freezing the 
base system layers. Since the system couldn’t 
employ deep structures on the dataset because it 
had previously been trained on larger data, we 
were unable to produce satisfactory results. 
Additionally, by unfreezing the layer, we were able 
to train the model using customized layers, which 
allowed it to learn both custom layer features and 
pre-trained features. We added or applied a global 
average pooling layer along with dropout, dense 
layers, and Batch Normalization. For the following 
reasons, these layers support the customized 
Inception V3 model: By decreasing the spatial 
dimensions of the feature map, the global average 
pooling layer speeds up training and uses less 
memory. Additionally, Batch Normalization lowers 
the possibility of vanishing or blowing gradients 
and improves the training process stability. 
Subsequent dropout layers increase the model's 
robustness and reduce overfitting by randomly 
deactivating a portion of the neurons during 
training. Additionally, dense layers were 
introduced, which are in charge of encapsulating 
intricate patterns, structures, and nonlinear 
relationships in data. Models are able to modify 
their representations to fit particular tasks by 
adding more dense layers. Utilizing the previously 
mentioned optimized approach, we achieved 
superior outcomes. 

 
RESULTS AND DISCUSSION 

This section presents the findings of our 
customized Inception V3 model and several deep 
learning models on a publicly accessible brain 
tumor dataset. A variety of deep learning models 
were assessed for validation accuracy, and based 
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on the findings, additional work was done to 
customize the models that were selected based 
on validation accuracy. Additionally, the 
suggested customized pretrained Inception V3 
model may be assessed according to the following 
metrics: Sensitivity, Specificity, and Accuracy. 

(i) Accuracy: It is used to specify the 
accurate performance of a newly introduced 
technique. The expression of accuracy is given as, 

𝑀 =
+

+ + B +O
       (6) 

where, true positive is denoted as  , true 

negative is indicated as ,false positive is 

represented as B , and false negative is signified 

as O . 
(ii) Sensitivity: Sensitivity is used to 

compute the ratio of true positives identified 
precisely by Customized Inception V3 to the total 
amount of true positives. Moreover, sensitivity is 
formulated as,  


=



+

       (7) 

where, sensitivity is specified as 


. 
(iii) Specificity: Specificity assesses the 

ratio of the quantity of true negatives recognized 
accurately by the Customized Inception V3 to the 
quantity of true negatives. Here, the expression of 
specificity is demonstrated as,  

 =
B +

       (8) 

  

Here, specificity is mentioned as  . 
Figure 3 shows the investigation of 

Customized Inception V3 by considering training 
and testing data. Figure 3(a) illustrates the 
estimation of classification methods using training 
accuracy. For 70% training data, the Customized 
Inception V3 gained a training accuracy of 94.9%, 
while the accuracy obtained by existing 
techniques, such as ResNet50 [23], is 84.7%, 
DenseNet121 [24] is 85.4%, and VGG16 [25] is 
87.9%. Here, a higher performance of 10.2%, 
9.5%, and 7% achieved by Customized Inception 
V3. The investigation using the validation 
accuracy of various methods is exhibited in Figure 
3(b). For 30% testing data, the Customized 
Inception V3 gained a validation accuracy of 
93.8%, while the accuracy obtained by existing 
techniques, such as ResNet50 is 78.2%, 
DenseNet121 is 81.5%, and VGG16 is 82.5%. 
Here, a higher performance of 15.6%, 12.3%, and 
11.3% achieved by Customized Inception V3. The 

investigation using the sensitivity of various 
methods is exhibited in Figure 3(c). Customized 
Inception V3 gained a sensitivity of 92.8% for 70% 
training data, and the existing methods, like 
ResNet50, DenseNet121, and VGG16, attained a 
sensitivity of 84.5%, 85.8%, and 86.9%. It shows 
that the performance enhancement of Customized 
Inception V3 is 8.3%, 7%, and 5.9%. In Figure 
3(d), the specificity-based evaluation of the 
Customized Inception V3 is portrayed. The 
existing models, like ResNet50, DenseNet121, 
and VGG16 gained the specificity value of 78.2%, 
79.3%, and 79.9%, for 70% of training data, while 
the Customized Inception V3 attained the 
specificity value of 91.5%. This demonstrates that 
Customized Inception V3 produces a high 
performance of 13.3%, 12.2%, and 11.6%. 

 
Evaluation by varying k-value 

Figure 4 exemplifies the evaluation of the 
Customized Inception V3 employed for BT 
regarding the K-value. The comparative 
assessment of Customized Inception V3 in terms 
of training accuracy is depicted in Figure 4(a). 
Here, the accuracy values gained by Customized 
Inception V3 is 96.8% for the k-value 8, and the 
accuracy values acquired by ResNet50 is 77.5%, 
DenseNet121 is 79.9%, and VGG16 is 84.5%. 
The percentage improvement gained by the 
Customized Inception V3 is 19.3%, 16.9%, and 
12.3%. The investigation using the validation 
accuracy of various methods is exhibited in Figure 
4(b).  

For 30% testing data with k-value 8, the 
Customized Inception V3 gained a validation 
accuracy of 95.3%, while the accuracy obtained 
by existing techniques, such as ResNet50 is 
74.3%, DenseNet121 is 76.4%, and VGG16 is 
82.3%. Here, a higher performance of 21%, 
18.9%, and 13% achieved by Customized 
Inception V3. Figure 4(c) exemplifies the 
investigation using sensitivity with k-value. The 
sensitivity acquired by the Customized Inception 
V3 is 92.8%, 76.5% by ResNet50, 78.3% by 
DenseNet121, and 83.5.2% by VGG16 for K-value 
5. The Customized Inception V3 achieved 
enhanced performance by 16.3%, 14.5%, and 
9.3% than the mentioned existing approaches. 
Figure 4(d) displays the comparative exploration 
of the Customized Inception V3 based on 
specificity. For k-value 6, the existing methods, 
namely ResNet50, DenseNet121, and VGG16, 
acquired the specificity of 77.9%, 79.2%, and 
84.3%, while Customized Inception V3 gained the 
specificity of 93.5%. The percentage improvement 
attained by the Customized Inception V3 based on 
sensitivity is 15.6%, 14.3%, and 9.2%. 
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Figure 3. Comparative assessment based on training and testing data a) Training accuracy b) 
Validation accuracy c) Sensitivity d) Specificity 

 
The problem of data balancing was 

implemented in the present study in the form of 
focused augmentation strategies, including 
rotation, zooming, and flipping, which is mostly 
used to overcome the problem of imbalance in the 
classes of tumors (no-tumor, pituitary, etc.) and 
better the interpretation of the models through 
augmentation. Proportions of classes were similar 
between the training and validation random 
groups that were made by stratified k-fold cross-
validation. Also, possible bias in the dataset, 
which was due to the differences in imaging 
protocols and small institutional diversity, was 
eliminated with the use of standard preprocessing 
procedures, such as intensity normalization and 
bilateral filtering. Nevertheless, unperceivable 
differences can still influence the functioning of the 

model, which is why external validation that would 
test its work on different, multi-center data sets is 
necessary. 

To confirm the excellence of proposed 
model, Customized Inception V3, compared to 
other models, statistical analysis was done using 
stratified 5-fold cross-validation. This model 
obtained an average validation accuracy of 
95.3%, which compares to considerably higher 
rates than baseline models, e.g., ResNet50 [23] 
and VGG16 [25]. The improvement in their 
performance was statistically significant when 
confirmed by a paired t-test result (p < 0.01). 
Moreover, there was an approval of the Cohen 
Kappa coefficient, 0.91, which means strong 
concurrence between the predicted labels and the 
true labels. 

 

 

(a) (b) 

  

(c) (d) 
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Figure 4. Comparative assessment based on k-value a) Training Accuracy b) Validation Accuracy c) 
Sensitivity d) Specificity 

 
The validity of these statistical parameters justifies 
the presence of algorithmic strength and reliability 
in classifying brain tumor of multiple classes which 
qualifies this model as effective when compared to 
the current available deep leaning methods. 

Although the Customized Inception V3 
model is rather accurate, it has its limitations. The 
data set is not too large and covers only one 
source, which can limit the researchers using the 
model in the context of universal clinical practice. 
Differences in MRI scans, protocols, and the 
diversity of the population are never accounted 
fully, which presents a danger of data biasness. In 
addition, the model is not externally and multi-
center validated, which is indispensable in 
establishing the applicability of the model to the 
real world. Future development areas should be 
pharmaceutical work with the larger dataset, the 
element of external validation in various 
institutions, and explaining AI procedures to 
promote clinical trust and transparency. 

 

In further explaining model performance, an 
extra visualization was used. The confusion matrix 
gave comprehensive information on the class-
wise predictions and showed that the true positive 
power was very high in all classes of tumors with 
low misclassification between two tumors which 
are visually similar to each other such as 
meningioma and glioma. Analysis of the *Receiver 
Operating Characteristic (ROC) curves* showed 
that they exhibited good discriminative ability with 
the Area Under the Curve (AUC) values being 
greater than 0.96 in all the classes, which proved 
that the model is efficient. Such graphic aids 
increase the clarity and focus on the stability of the 
Customized Inception V3 model in classifying 
brain tumors according to multiple classes. 
Evaluation of clinical applicability is achieved by 
such visualizations. 

 
Comparative discussion 

The comparison of numerous methods is 
assessed by altering k-value, training, and testing 

  

(a) (b) 

  

(c) (d) 
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data, and the comparative discussion of 
Customized Inception V3 is represented in Table 
2. At 80% of training data, the Customized 
Inception V3 gained the highest value of training 
accuracy by 94.9%, validation accuracy of 93.8, 
sensitivity of 92.8%, and specificity of 91.5%. The 
training accuracy of existing models, namely 
ResNet50 [23], DenseNet121 [24], and VGG16 
[25] attained the value of 84.7%, 85.4%, and 
87.9%. The validation accuracy of existing 
models, namely ResNet50, DenseNet121, and 
VGG16, attained the value of 78.2%, 81.5%, and 
82.5%.  Moreover, the sensitivity value of the 
ResNet50 is 84.5%, DenseNet121 is 85.8%, and 
VGG16 is 86.9%. The values of specificity 
executed by other models are 78.2%, 79.3%, and 
79.9%. The overall BT categorization process is 
enhanced by employing Customized Inception V3, 
which is created by adding customized layers. 
Thus, by fusing these techniques Customized 
Inception V3 model obtained better performance 
and classified BT more accurately. 

 
CONCLUSION 

This study was carried out with the goal of 
employing deep learning models to identify brain 
tumors. Several DL models, with a customized 

pretrained Inception V3 model, were tested for 
this. The primary goal was to save patients' lives 
by achieving the results of more precise and 
effective tumor detection.  

Namely, the overall positive clinical 
outcomes, i.e., the likelihood of saving astrocyte 
patients, are the correlation that supports the 
statement that accurate and more detailed 
detection of tumors can eventually be used to save  

Nevertheless, we do not completely deny 
that our current results were obtained using 
benchmark datasets, e.g., on Kaggle, which do 
not comprehensively reflect the diversity of real-
world populations of patients, in terms of 
demographics, genetic makeup, and imaging 
conditions. Thus, additional testing in local 
hospital data and in patients with varied cohorts is 
necessary to be able to promote clinical benefit. 

This customized model of Inception V3 will 
be validated on actual MRI scans of patients with 
ethical approval and under a clinical partnership. 
Moreover, we also appreciate that tumor 
presentation may vary according to age, ethnicity, 
and comorbidities. Future research will also entail 
expanding the training data set to multi-center and 
demographically diverse cases with improved 
generalizability. 

 
Table 2. Comparative discussion 

Variation Metrics ResNet50  DenseNet121  VGG16  
Customized 
Inception V3  

Brain Tumor-MRI-Dataset [16] Training Accuracy 
(%) 

84.7 85.4 87.9 94.9 

Validation Accuracy 
(%) 

78.2 81.5 82.5 93.8 

Sensitivity (%) 84.5 85.8 86.9 92.8 
Specificity (%) 78.2 79.3 79.9 91.5 

 
K-value (Brain Tumor-MRI-
Dataset [16]) 

Training Accuracy 
(%) 

77.5 79.9 84.5 96.8 

Validation Accuracy 
(%) 

74.3 76.4 82.3 95.3 

Sensitivity (%) 76.5 78.3 83.5 92.8 
Specificity (%) 77.9 79.2 84.3 93.5 
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