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Abstract

A brain tumor (BT) is considered to be one of the most fatal diseases
in the world, which also demands a very precise and early detection
to be successfully addressed. The irregularities in the brain can be
detected with the help of a magnetic resonance image, or MRI.
Menigoma, glioma, pituitary tumours, and no-tumor are four
categories of BT to be classified in this work according to an
enhanced transfer learning (TL) approach, generated by the
pretrained Inception V3 model. The preprocessing pipeline is new
and includes data augmentation to reduce oveffitting, a bilateral filter
to remove noise, background cropping, and image scaling. The
proposed method achieves training accuracy of 94.9% and validation
accuracy of 93.8%. With a change in the hyperparameter (k-value),
the validation and training accuracies improve to 95.3% and 96.8%,
respectively. Furthermore, the model has a high level of
generalization, where sensitivity is 92.8 percent, and specificity is
93.5 percent. The combination of transfer learning with the high-level
enhancement and strengthening of pictures is novel. Nevertheless,
among the factors that can affect generalizability, the variety and size
of datasets are important. This model should be confirmed through
further research using larger, more diverse datasets and explored in
the context of clinical interpretability.
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INTRODUCTION

A tumor refers to the unregulated growth
of cancer cells occurring in some portions of the
body. These tumors can exhibit significant
variability with respect to type, characteristics,
and the methods employed for treatment.
Present-day, BTs are categorized into numerous
discrete categories [1]. Malignant BTs epitomize
one of the important severe types of cancer,
characterized by inadequate survival measures
that have largely remained stagnant over the last
sixty years. Recent advancements in cancer
immunotherapies present a favorable path for
the potential treatment of BT that is otherwise
deemed inoperable. However, despite the
encouraging results seen in other forms of
cancer, progress in BT treatment remains
limited. The preprocessing of raw MRI images is

a vital step in ensuring accurate segmentation of
BT [2].

TL methods have proved their efficacy,
particularly in circumstances where there is a
paucity of labeled data for training [3]. BTs
characterize a substantial medical concern,
ranked as the tenth leading cause of mortality in
the US. It is estimated that around 700,000
individuals are affected by BTs, with 80 percent
classified as benign and 20 percent as malignant
[4]. Misclassification of a BT can have severe
repercussions, reducing a patient's likelihood of
survival. Accordingly, there has been a rising
focus on the training of mechanized image
processing technologies targeted at seizing the
shortcomings associated with manual diagnosis
[5].

Numerous researchers have explored a
variety of algorithms for the identification and
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grouping of BTs, placing significant emphasis on
enhancing performance and reducing errors. DL
Techniques, especially Convolutional Neural
Networks (CNN), have earned prominence in the
creation of automated systems that facilitate
accurate classification and segmentation of BTs
within reduced timeframes. DL capitalizes on the
expertise of pre-trained models, particularly
within the realm of medical imagery,
concentrating specifically on the classification of
BTs.

The suggested technique is based on prior
research in ensemble techniques by utilizing a
combination of pre-trained Inception V3 models
along with supplementary layers, creating a fine-
tuned version that achieves a remarkable
accuracy rate of 99%.

A collection of techniques is adapted to
identify BTs in MRI images, with DL methods
showing substantial advancements in this area.
This study seeks to compare the models used for
BT detection, specifically within the framework of
DL approaches [6].

The categorization of BTs is a key step
following tumor detection, playing a decisive role
in the growth of effective treatment strategies.
Timely identification of tumors not only enhances
therapeutic interventions but also serves as a
potentially life-saving action. In a specific
research initiative, a dataset comprising of MRI
images of the human brain was utilized, featuring
both tumor-affected and non-tumor-bearing
images.

This dataset underwent an extensive
preprocessing phase that incorporated various
image manipulation methods, such as filtering,
blurring, and cropping. The preprocessing was
applied on dataset and data augmentation
through a range of random transformations. A
CNN was implemented, leveraging pre-existing
data, to specifically determine the existence of a
tumor. If a tumor was detected, the model
proceeded to classify it into one of three distinct
categories: glioma tumor, meningioma tumor, or
pituitary tumor [7].

The following are our main contributions to
this study:

MRI images have been enhanced through the
use of the "Bilateral filter" to remove noise from
the images.

In order to cut down on processing time, extra
boundaries have been removed from the images
during cropping.

A unique customized pretrained Inception V3
model has been presented in this research work
to categorize four tumor types: pituitary, glioma,
meningioma, and no-tumor.

The dataset has been tested on different
pretrained ResNet50, VGG16, and
DenseNet121 models, in addition to the
pretrained customized Inception V3 model.

The suggested method's effectiveness has been
assessed with metrics such as training accuracy,
validation accuracy, sensitivity, and specificity,
and compared to other cutting-edge
architectures.

Several research articles have been
available in the field of BT detection, primarily
leveraging conventional Machine Learning (ML)
and other algorithms to detect irregularities
within the human brain. Much of this exploration
has emphasized the recognition of tumors, with
some endeavors also focusing on classifying the
type of tumor present. While ML algorithms were
predominantly utilized before the advent of DL,
these approaches often relied on handcrafted
feature extraction. This reliance can lead to
inaccuracies in feature extraction, resulting in
missed tumor classifications and detections.
Consequently, DL models, particularly CNNs,
are gaining traction in image categorization jobs
due to their capability to certainly extract and
study significant features from images. Certain
advancements are outlined below.

An analysis driven by the multiclass
classification of BTs into four distinct categories
[8]. To enhance image quality, noise was
eliminated by means of a fuzzy similarity-based
non-local means filter. They also introduced
different CNNs alongside existing models, to
measure the execution of data consisting of
3,264 images sourced from Kaggle. In spans of
results, the proposed multiscale CNN model
accomplished an accuracy of 91.2% and an F1-
score of 91%. The technique was found to
demand extensive computational resources and
time, yielding suboptimal results.

O. Ozkaraca et al. [9] introduced two DL
models coupled with various ML classifiers for
identifying numerous types of BTs. They
developed 2D CNN models. The dataset was
taken from Kaggle and comprised 3,264 images
classified into four types of tumors. The
methodology achieved an accuracy rate for the
2D CNN is 93.44% and auto-encoder model is
90.92%. Additionally, they tested numerous ML
models, finding that the multilayer perceptron
yielded the lowest accuracy at 28%, however the
kNN classifier attained the highest of 86%.
However, the overall findings of the proposed
method were modest, and other evaluation
systems of measurement were not executed.

M. Rasheed et al. [10] proposed a model
for classifying BTs through a TL-based Deep
Convolutional Neural Network (DCNN) model
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that utilizes a pretrained VGGNet model, earlier
proficient on an enormous dataset. To enhance
performance further, they froze the levels of the
CNN and incorporated an output layer with
global average pooling to mitigate overfitting
problems. They got a testing accuracy of
98.93%. Nevertheless, this attempt has
limitations, as it relies on a basic technique and
a limited dataset, and is primarily focused on
binary classification; hence, there is a necessity
for multi-class grouping enhancement.

V. Anand et al. [11] suggested a method
for classifying multiple types of BTs using a
dense CNN architecture, incorporating basic
CNN, VGG16, and DenseNet models. All models
utilized TL, with MRI images from Kaggle, which
includes a total of 7,021 MRI images. The corpus
was split into training and validation subsets in
an 80% to 20% ratio. The proposed systems
accomplished accuracy rates varying from 94%
to 97%, demonstrating effective performance.
However, a significant drawback of this method
is taking more processing time and has a lower
response.

H. M. T. Khushi et al. [12] focused on
recognizing BTs employing adaptive noise
filtering and geometric features. They applied
structural segmentation in combination with a
Support Vector Machine (SVM) classifier to
classify tumors as either basic or malicious. The
tumor region was identified by analyzing
differences in pixel brightness. Their suggested
model achieved an accuracy of 98%, but it was
limited to binary classification. A. Al-Sabaawi et
al. [13] undertook a study aimed at classifying
BTs by using VGG19, a CNN with augmentation,
and a CNN without augmentation. They
achieved an accuracy of 98%. A study on the
diagnosis of brain tumors based on performance
analysis on several CNNs was given by Y. Gao
et al. [14].

1. Low Multi-Class Classification of Varied
Current Models: Deep learning models perform
poorly in the classification of the wide variants of
tumors, such as meningioma, glioma and
pituitary tumors, which require multi-class
classification. There is a great need to have a
valid reference model that can differentiate the
different types of brain tumors.

2. Weak preprocessing and noise control
procedures: Noise, Ilow contrast and
background information irrelevant to the model
are common features in MRI scans and may
deteriorate the performance of the model. Most
of the past studies have failed to note advanced
preprocessing methods like noise removal and
edge trimming, which are necessary in pure
feature extraction.

3. Overfitting and a failure to generalize in
deep learning models may be caused by
limited and out-of-balance medical datasets.
Many existing models tend to perform poorly in
generalizing novel data, particularly to other
patient demographics or imaging modalities.

4. Inadequate Utilization of Advanced
Architectures with Transfer Learning:
Transfer learning has not yet been fully utilized,
even though it has potential implications. Little
research exists on how to fine-tune state-of-the-
art structures, such as Inception V3, for medical
picture classification by use of domain-specific
customization.

5. Inadequate Evaluation on End-To-End
parameters and Real-World Testing: Most
models have been tested only from an accuracy
point of view without providing important clinical
parameters such as sensitivity, specificity, and
robustness on test pictures. This limits their
clinical usage.

METHOD

This part presents a comprehensive
approach that encompasses all phases from data
acquisition to the evaluation of results. One of
the most important phases of the
suggested methodology is data  preprocessing,
which includes operations like image cropping,
noise reduction, and data augmentation. After
that, the pretrained models for the BT grouping
into glioma, pituitary, meningioma, and no-tumor
classes are fed the preprocessed dataset. These
models include VGG16, ResNet50, DenseNet121,
and a customized version of Inception V3. Based
on their noteworthy benefits—such as transfer
learning advantages, architectural suitability,
design flexibility, and strong support from both the
ML and DL communities, pretrained deep learning
models are the preferred option. The ability of
these models to extract and learn intricate
patterns and features from images, a crucial skill
for accurate tumor identification, has improved.

The main approach used was to employ the
pretrained Inception V3 model as a feature
extractor. This method was adjusted to specifically
tailor the learned features for the task of BT
classification by deleting the top layer of the
Inception V3 architecture and adding new layers.
With this modification, the  model was able to
capture complex features in an efficient
manner, which is essential for obtaining precise
classifications. An automated method for
recognizing and categorizing various BT types is
presented in this study. To achieve this goal, TL
was employed. Using the Inception V3 design as
a pretrained paradigm, the main network
produced convolutional activation maps that were
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then wused for tumor identification and
classification. The accuracy of the predictions
served as the basis for performance evaluation.

The assumption of implementing pretrained
Inception V3 as a feature extractor on enriched
classification of multi-abnormal brain tumors is
properly based on the concepts of transfer
learning. Inception V3, which was trained on tens
of millions of images, also learns strong low and
middle-level components, such as edges, textures
and shapes, which can be transferred to the
medical imaging problem. Removing layers on top
of it that represented general ImageNet classes
and inserting new fully connected layers fine-
tunes the architecture to detect minute differences
in types of brain tumors. This level of
customization enables the network to match its
generic properties to the complexities of pertinent
real-world problems, such as multi-class brain
tumor classifications that are typically annotated
with poor data size. Many experiments have
shown that in terms of accuracy and avoiding
overfitting it is better to use this than to train a deep
network from scratch. Therefore, by using
pretrained weights and retraining with specific
classes, proper results will be obtained to achieve
a more accurate detection with better sensitivity
and good generalization in abnormal brain tumor
classification.

Material

The dataset contains a total of 7023 MRI
images, which have been grouped into four
distinct classes and organized into separate
training and validation folders [15]. The
dimensions of the images vary, and the size of the
images within each class is not uniform. To ensure
consistency and enhance results, every image
was resized to 250 x 250 pixels. The main object
of the brain scan has extra space surrounding it,
which makes accurate classification difficult. To
solve this problem, threshold values were set to
create a binary mask. Then, extra boundaries
were removed, and the images were cropped
using the contour values from the dual mask.
Additionally, there is noise in the dataset that may
compromise the accuracy of classification. A
bilateral filter was used to denoise the dataset to
lessen this effect. 5,712 pictures in total
of four dissimilar  types of glioma, pituitary,
meningioma, and no-tumor were included in the
training set. Table 1 shows the brain tumor types
and data distribution into testing and validation
folders. By training the DL method with MRI
images, the intricate features required for accurat
e tumor classification ~were able to be
obtained. 1,311 pictures from the same four
tumor classes made up the testing set.

Table 1. Brain tumor types and data distribution
Type of Brain Training Testing

S.No. Tumor Dataset Dataset
1 Glioma 1321 300
2 Pituitary 1457 300
3 Meningioma 1339 306
4 No Tumor 1595 405

The MRI pictures were kept aside, especially to
assess how well the model performed and how
well it could identify BTs with accuracy.

Data augmentation is used to generate
additional images prior  to preprocessed
data being sentto DL techniques. Using this
technique has the main benefit of improving the
accuracy and prediction of the model. It also aids
in preventing the issue of data
overfitting. The height shift range of 0.05,
which indicates the upper limit of the total width
and height as a fraction of 1.0, was applied to the
rotated image data at a 70-degree angle.
Moreover, additional data samples were moved in
both vertical and horizontal directions using a 0.1
zoom range. Dropout layers were also employed
to prevent overfitting of the data.

1. Rationalize choice of key
hyperparameters, such as learning rate, batch
size, optimizer (e.g., Adam or SGDO), dropout
rate, and optimizer (e.g., Adam or SGDO). A grid
search or randomized search strategy is used to
achieve optimal values. To illustrate, the learning
rate that suits fine-tuning of the pre-trained layers
(e.g., 0.0001) is justifiable to avoid catastrophic
forgetting.

2. Explanation of the Absence of Early
Stopping. There is no explanation for the reason
why early stopping, a typical regularization
method to avoid overfitting, was not used in this
study. This is the decision that was made to trace
the entire learning curve over constant epochs
and ensure stability with k-folds.

3. Class Distribution and Data Balancing
Techniques: datasets relating to brain tumors are
often imbalanced, with glioma and meningioma
classes possessing a high number of instances in
comparison with other classes, pituitary or no-
tumor. Such a mismatch has the potential of
influencing model performance. Consequently,
data augmentation, oversampling of the minority
classes, and stratified k-fold cross-validation is
used in this work to guarantee a balanced
representation during training.

4. Potential Dataset Bias: There can be
biases in the data included in the study since it is
acquired by different imaging protocols and
different scanners or through geographic
sampling. These biases will hurt the
generalizability of the model. To overcome this,

220

N. Arumalla & V. Gampala, Enhanced classification of multi-abnormal brain tumor ...



p-ISSN: 1410-2331 e-ISSN: 2460-1217

normalizing steps are added in the preprocessing
stage, and fairness is measured according to
classes (precision, recall, and F1-score) to ensure
equal craft is achieved in the categories.

5. Evaluation Protocol: The model
performance with respect to accuracy, sensitivity,
specificity, precision, and F1-score is employed in
evaluating the model when training over validation
and test sets. Stratified sampling ensures that
training and testing folds are similar, and this
enhances the reliability of reported measures.

Methods

The customized pretrained Inception V3
model was used in this study by adding a few
layers and using the Inception V3 model's output.
Getting good results from the multi-classification
of BTs was the main goal. Because of this,
different deep learning models were experimented
with, and data samples were preprocessed before
being put into a deep learning model. Tests were
also conducted on ResNet50, DenseNet121, and
VGG16. Training and validation accuracy of
Inception V3 performed the best out of state-of-
the-art models. In order to improve outcomes and
guarantee higher accuracy, the Inception V3
model was modified. Figure 1 illustrates the
specifics of how the Inception V3 model was
applied to our preprocessed data. The following is
a comprehensive description of the several DL
models that were utilized.

We have experimented with several
pretrained DL models, one of which is the VGG16
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] Convolution Layer
I  Max Pooling Layer
I Concat

model [16]. Three fully connected layers and
thirteen convolutional layers make up this
architecture's sixteen layers. Three color channels
and a 224 x 224 input are processed by the model.
The ResNet-50 model [17], which was first
released in 2015, is a member of the residual
network group and is distinguished by its residual
units, which aid in training deeper networks and
reducing the vanishing gradient issue in deep
networks. There are four different stages in this
architecture, and the sum of layers or chunks
varies with each stage. The 121 layers of Pate’s
[18] deep learning model DenseNet121 are
arranged into dense chunks by a predetermined
sum of layers, conversion layers that down sample
the feature engineering and shrink its mass, and
extra layers like output and global average
pooling.

The model's updated weights are first
loaded for training purposes. Additionally, we
confirm that the weights of the base model are not
used for training once more. In order to let the
basic model retain its existing information and
emphasis on innovative customs layers for
training data, we establish the base model layers.
An additional global average pooling layer [19]
was included in order to determine the average
value of each feature engineering across its
spatial dimension and minimize the feature
engineering's dimension to a stable size. This
made it easier to extract the basic model's most
important features.

2
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B Average Pooling Layer

[ Softmax Layer
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Figure 1. Inception V3 Architecture
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Equation 1 shows how this layer functions.

1
Gugy = (o) ¥ 2ExGi0l ()

h: height, w: width, specifies the total number of
spatial dimensions

X: is the dimension of a tensor

c: shows channel, i,j identifies the feature map's
location value within the channel.

Y = Relu(Z) (2)

where

Z=W xX+b 3)

W x X displays the weight matrix W multiplied by
the input vector X and the bias vector b, which is
added to the result element-by-element.

When RelLU is applied element-by-element to Z,
the following happens for the input Z to ReLU:

Relu(Z) =0whenZ <0 )
= ZwhenZ =0

A final output layer that is fully connected
and has a total number of units equal to the entire
number of classes—four in the case of
classification—is then added. for goals, utilizing
SoftMax's activation function [20]. Predicting the
ultimate classification of photographs and the
class to which they belong is the main objective of
this layer. The SoftMax function is used to
normalize the result into a distribution for the entire
classification. The following equalization illustrates
in what way SoftMax performs the probability that
an image fits the respective class.

eZi

a(z) = = (5)

2
j=1

a: SoftMax function, Z is the input vector, eZ is an
exponential function for the input vector

e”/ is an exponential function for the output vector,
k is the number of classes in multi classifier

Customized Inception V3 Model
To train different pre-trained deep learning
models like ResNet50, DenseNet121, VGG16,
and Inception V3, as stated in the sections above,
we added a global average pooling layer, a fully
connected layer through a RelLu function, and a
final layer through a SoftMax function. Inception
V3 performs better than the other models and
delivers sophisticated validation accuracy.
We added a Global Average Pooling
(GAP) layer, a fully connected layer with ReLU
activation, and the final SoftMax layer to train pre-

trained deep learning models such as ResNet50,
DenseNet121, VGG16, and Inception V3.

The GAP successfully decreases the

spatial size of the feature maps and adds critical
data without having extensive overfitting by
avoiding the overwhelming parameters (Lin et al.,
2013). The ReLU layer with a fully connected layer
adds non-linearity to the network and allows
learning more complex patterns that permit the
network to distinguish between tumors. The brain
tumor multi-class detection uses SoftMax layers
with clear and interpretable outputs being a
probability of belonging to a specific class.
The inception V3 model outperforms all of them as
well since its design factorizes convolutional
computations, which enables it to obtain multi-
scale features using fewer parameters and with a
higher efficiency spirit. Its auxiliary classifiers
enhance gradient flow and help in the
enhancement of convergence and accuracy. The
Inception V3 model receives better validation
accuracy with respect to brain tumor classification,
as seen by the results obtained during the
simulation process, which is in line with the results
that indicate the effectiveness of the fine-tuning of
Inception-based models in medical image
analysis. Therefore, the design achieves strong
feature extraction and diminishes the overfitting
process with enhanced multi-abnormal brain
tumor classification performance.

However, more accuracy was still required
for more accurate classification and prediction.
We selected the Inception V3 model and added
more layers to optimize it because of this. Figure
2 is displayed beneath. displays the Inception V3
model's modified architecture.

As indicated before, the first global average
pooling layer was included in the Inception V3
model to make it unique. The feature map's spatial
dimension was lowered by this layer to one value
for each channel. This can help lower the
constraints in successive layers, improving a
model's computational efficiency. Another
advantage of the layer is that it lessens overfitting
issues with little data. In brief, this layer is a stage

of transition between the base model and
the upper tiers of the model. The operation of the
layer has been conferred. Additional Batch
normalization is used to regularize the activation
of neural network layers [21]. and the Relu
function. In the first and second dense layers of
256 units, 512 units were given a RelLu with
dropouts of 0.3 and 0.2, while 128 units in the third
dense layer received dropouts of 0.1 and 0.3. The
RelLu activation function, previously described, is
represented by (5).
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Figure 2. Customized Proposed Inception V3 Model

By removing the fractional portion of input during
training, the dropout layer [22], a regularization
procedure primarily intended to solve the
overfiring issue, also helped the network to
acquire and seize farther vigorous and broad
properties. Initially, a Bernoulli distribution is used
to sample every portion separately from a binary
mask through a dropout proportion of p. To keep
the activation's predicted value constant, a second
scaled output computation is done. The formulas
below illustrate how dropout operates.

Moreover, batch normalization is used over
to regularize the neural network and dense layer
activation through 256 units. Deeper features are
extracted using the Relu activation function and
sent to an additional batch normalizing layer. In
order to further predict the likelihood of classifying
brain tumors as gliomas, meningiomas, pituitary,
or no tumor, the last output layer applies the
SoftMax function, which is stated in (5), after
receiving the additional normalized activation
output. For better results, these hyperparameters
were further adjusted. To ensure that our dataset
experiences progressive model convergence and
fine-tuning, a learning rate of 0.00001 was
selected. Experimentation was used to determine
this value, which proved designate useful aimed at
our job. In addition, a batch size of 16 was chosen
to balance training effectiveness and memory
usage on our hardware configuration. Our main
goal in choosing this batch size was to use the
GPU (graphical processing unit) resources
efficiently without using up too much memory
while still producing an accurate and useful result.
We tried and adjusted the Adam optimizer with the
following settings to get the optimal convergence
speed and model performance: epsilon = 1e-08,
beta_1=0.91, and beta_2 =0.9994. We were able
to enhance the outcomes by choosing and
determining the Adam optimizer's behavior using
these settings.

Thus, all the hyperparameters are set
correctly; however, the early stopping criteria are
not applied during model training. For the purpose

of validating the model and assessing its efficacy,
we selected 100 epochs to train all of the models
for. In connection with performance measures, we
also like to measure how the methods respond,
acquire from, and justify the data. The model that
yielded the best results was chosen and modified.

Using the previously described
hyperparameters and spare layers, we first trained
the system in our proposed model by freezing the
base system layers. Since the system couldn’t
employ deep structures on the dataset because it
had previously been trained on larger data, we
were unable to produce satisfactory results.
Additionally, by unfreezing the layer, we were able
to train the model using customized layers, which
allowed it to learn both custom layer features and
pre-trained features. We added or applied a global
average pooling layer along with dropout, dense
layers, and Batch Normalization. For the following
reasons, these layers support the customized
Inception V3 model: By decreasing the spatial
dimensions of the feature map, the global average
pooling layer speeds up training and uses less
memory. Additionally, Batch Normalization lowers
the possibility of vanishing or blowing gradients
and improves the training process stability.
Subsequent dropout layers increase the model's
robustness and reduce overfitting by randomly
deactivating a portion of the neurons during
training.  Additionally, dense layers were
introduced, which are in charge of encapsulating
intricate patterns, structures, and nonlinear
relationships in data. Models are able to modify
their representations to fit particular tasks by
adding more dense layers. Utilizing the previously
mentioned optimized approach, we achieved
superior outcomes.

RESULTS AND DISCUSSION

This section presents the findings of our
customized Inception V3 model and several deep
learning models on a publicly accessible brain
tumor dataset. A variety of deep learning models
were assessed for validation accuracy, and based
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on the findings, additional work was done to
customize the models that were selected based
on validation accuracy. Additionally, the
suggested customized pretrained Inception V3
model may be assessed according to the following
metrics: Sensitivity, Specificity, and Accuracy.

(i) Accuracy: It is used to specify the
accurate performance of a newly introduced
technique. The expression of accuracy is given as,

N,

M=——" (6)
N,A,B,O

where, true positive is denoted as N, true

negative is indicated as R false positive is
represented as B | and false negative is signified

as 0.

(i) Sensitivity: Sensitivity is used to
compute the ratio of true positives identified
precisely by Customized Inception V3 to the total
amount of true positives. Moreover, sensitivity is
formulated as,

_ N
_N+x (7)

where, sensitivity is specified as H

(iii) Specificity: Specificity assesses the
ratio of the quantity of true negatives recognized
accurately by the Customized Inception V3 to the
quantity of true negatives. Here, the expression of
specificity is demonstrated as,

o_ " (8)

B,k

Y7,

Here, specificity is mentioned as D,

Figure 3 shows the investigation of
Customized Inception V3 by considering training
and testing data. Figure 3(a) illustrates the
estimation of classification methods using training
accuracy. For 70% training data, the Customized
Inception V3 gained a training accuracy of 94.9%,
while the accuracy obtained by existing
techniques, such as ResNet50 [23], is 84.7%,
DenseNet121 [24] is 85.4%, and VGG16 [25] is
87.9%. Here, a higher performance of 10.2%,
9.5%, and 7% achieved by Customized Inception
V3. The investigation using the validation
accuracy of various methods is exhibited in Figure
3(b). For 30% testing data, the Customized
Inception V3 gained a validation accuracy of
93.8%, while the accuracy obtained by existing
techniques, such as ResNets0 is 78.2%,
DenseNet121 is 81.5%, and VGG16 is 82.5%.
Here, a higher performance of 15.6%, 12.3%, and
11.3% achieved by Customized Inception V3. The

investigation using the sensitivity of various
methods is exhibited in Figure 3(c). Customized
Inception V3 gained a sensitivity of 92.8% for 70%
training data, and the existing methods, like
ResNet50, DenseNet121, and VGG16, attained a
sensitivity of 84.5%, 85.8%, and 86.9%. It shows
that the performance enhancement of Customized
Inception V3 is 8.3%, 7%, and 5.9%. In Figure
3(d), the specificity-based evaluation of the
Customized Inception V3 is portrayed. The
existing models, like ResNet50, DenseNet121,
and VGG16 gained the specificity value of 78.2%,
79.3%, and 79.9%, for 70% of training data, while
the Customized Inception V3 attained the
specificity value of 91.5%. This demonstrates that
Customized Inception V3 produces a high
performance of 13.3%, 12.2%, and 11.6%.

Evaluation by varying k-value

Figure 4 exemplifies the evaluation of the
Customized Inception V3 employed for BT
regarding the K-value. The comparative
assessment of Customized Inception V3 in terms
of training accuracy is depicted in Figure 4(a).
Here, the accuracy values gained by Customized
Inception V3 is 96.8% for the k-value 8, and the
accuracy values acquired by ResNet50 is 77.5%,
DenseNet121 is 79.9%, and VGG16 is 84.5%.
The percentage improvement gained by the
Customized Inception V3 is 19.3%, 16.9%, and
12.3%. The investigation using the validation
accuracy of various methods is exhibited in Figure
4(b).

For 30% testing data with k-value 8, the
Customized Inception V3 gained a validation
accuracy of 95.3%, while the accuracy obtained
by existing techniques, such as ResNet50 is
74.3%, DenseNet121 is 76.4%, and VGG16 is
82.3%. Here, a higher performance of 21%,
18.9%, and 13% achieved by Customized
Inception V3. Figure 4(c) exemplifies the
investigation using sensitivity with k-value. The
sensitivity acquired by the Customized Inception
V3 is 92.8%, 76.5% by ResNet50, 78.3% by
DenseNet121, and 83.5.2% by VGG16 for K-value
5. The Customized Inception V3 achieved
enhanced performance by 16.3%, 14.5%, and
9.3% than the mentioned existing approaches.
Figure 4(d) displays the comparative exploration
of the Customized Inception V3 based on
specificity. For k-value 6, the existing methods,
namely ResNet50, DenseNet121, and VGG16,
acquired the specificity of 77.9%, 79.2%, and
84.3%, while Customized Inception V3 gained the
specificity of 93.5%. The percentage improvement
attained by the Customized Inception V3 based on
sensitivity is 15.6%, 14.3%, and 9.2%.
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Figure 3. Comparative assessment based on training and testing data a) Training accuracy b)
Validation accuracy c) Sensitivity d) Specificity

The problem of data balancing was
implemented in the present study in the form of
focused augmentation strategies, including
rotation, zooming, and flipping, which is mostly
used to overcome the problem of imbalance in the
classes of tumors (no-tumor, pituitary, etc.) and
better the interpretation of the models through
augmentation. Proportions of classes were similar
between the training and validation random
groups that were made by stratified k-fold cross-
validation. Also, possible bias in the dataset,
which was due to the differences in imaging
protocols and small institutional diversity, was
eliminated with the use of standard preprocessing
procedures, such as intensity normalization and
bilateral filtering. Nevertheless, unperceivable
differences can still influence the functioning of the

model, which is why external validation that would
test its work on different, multi-center data sets is
necessary.

To confirm the excellence of proposed
model, Customized Inception V3, compared to
other models, statistical analysis was done using
stratified 5-fold cross-validation. This model
obtained an average validation accuracy of
95.3%, which compares to considerably higher
rates than baseline models, e.g., ResNet50 [23]
and VGG16 [25]. The improvement in their
performance was statistically significant when
confirmed by a paired t-test result (p < 0.01).
Moreover, there was an approval of the Cohen
Kappa coefficient, 0.91, which means strong
concurrence between the predicted labels and the
true labels.
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Figure 4. Comparative assessment based on k-value a) Training Accuracy b) Validation Accuracy c)
Sensitivity d) Specificity

The validity of these statistical parameters justifies
the presence of algorithmic strength and reliability
in classifying brain tumor of multiple classes which
qualifies this model as effective when compared to
the current available deep leaning methods.

Although the Customized Inception V3
model is rather accurate, it has its limitations. The
data set is not too large and covers only one
source, which can limit the researchers using the
model in the context of universal clinical practice.
Differences in MRI scans, protocols, and the
diversity of the population are never accounted
fully, which presents a danger of data biasness. In
addition, the model is not externally and multi-
center validated, which is indispensable in
establishing the applicability of the model to the
real world. Future development areas should be
pharmaceutical work with the larger dataset, the
element of external validation in various
institutions, and explaining Al procedures to
promote clinical trust and transparency.

In further explaining model performance, an
extra visualization was used. The confusion matrix
gave comprehensive information on the class-
wise predictions and showed that the true positive
power was very high in all classes of tumors with
low misclassification between two tumors which
are visually similar to each other such as
meningioma and glioma. Analysis of the *Receiver
Operating Characteristic (ROC) curves* showed
that they exhibited good discriminative ability with
the Area Under the Curve (AUC) values being
greater than 0.96 in all the classes, which proved
that the model is efficient. Such graphic aids
increase the clarity and focus on the stability of the
Customized Inception V3 model in classifying
brain tumors according to multiple classes.
Evaluation of clinical applicability is achieved by
such visualizations.

Comparative discussion
The comparison of numerous methods is
assessed by altering k-value, training, and testing
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data, and the comparative discussion of
Customized Inception V3 is represented in Table
2. At 80% of training data, the Customized
Inception V3 gained the highest value of training
accuracy by 94.9%, validation accuracy of 93.8,
sensitivity of 92.8%, and specificity of 91.5%. The
training accuracy of existing models, namely
ResNet50 [23], DenseNet121 [24], and VGG16
[25] attained the value of 84.7%, 85.4%, and
87.9%. The validation accuracy of existing
models, namely ResNet50, DenseNet121, and
VGG16, attained the value of 78.2%, 81.5%, and
82.5%. Moreover, the sensitivity value of the
ResNet50 is 84.5%, DenseNet121 is 85.8%, and
VGG16 is 86.9%. The values of specificity
executed by other models are 78.2%, 79.3%, and
79.9%. The overall BT categorization process is
enhanced by employing Customized Inception V3,
which is created by adding customized layers.
Thus, by fusing these techniques Customized
Inception V3 model obtained better performance
and classified BT more accurately.

CONCLUSION

This study was carried out with the goal of
employing deep learning models to identify brain
tumors. Several DL models, with a customized

pretrained Inception V3 model, were tested for
this. The primary goal was to save patients' lives
by achieving the results of more precise and
effective tumor detection.

Namely, the overall positive clinical
outcomes, i.e., the likelihood of saving astrocyte
patients, are the correlation that supports the
statement that accurate and more detailed
detection of tumors can eventually be used to save

Nevertheless, we do not completely deny
that our current results were obtained using
benchmark datasets, e.g., on Kaggle, which do
not comprehensively reflect the diversity of real-
world populations of patients, in terms of
demographics, genetic makeup, and imaging
conditions. Thus, additional testing in local
hospital data and in patients with varied cohorts is
necessary to be able to promote clinical benefit.

This customized model of Inception V3 will
be validated on actual MRI scans of patients with
ethical approval and under a clinical partnership.
Moreover, we also appreciate that tumor
presentation may vary according to age, ethnicity,
and comorbidities. Future research will also entail
expanding the training data set to multi-center and
demographically diverse cases with improved
generalizability.

Table 2. Comparative discussion

Variation Metrics ResNet50 DenseNet121 VGG16 Custo_mized
Inception V3
Brain Tumor-MRI-Dataset [16] Training  Accuracy 84.7 85.4 87.9 94.9
(%)
Validation Accuracy 78.2 81.5 82.5 93.8
(%)
Sensitivity (%) 84.5 85.8 86.9 92.8
Specificity (%) 78.2 79.3 79.9 91.5
Training Accuracy 77.5 79.9 84.5 96.8
K-value (Brain  Tumor-MRI- (%)
Dataset [16]) Validation Accuracy 74.3 76.4 82.3 95.3
(%)
Sensitivity (%) 76.5 78.3 83.5 92.8
Specificity (%) 77.9 79.2 84.3 93.5
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