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Abstract  
This study investigates the effectiveness of two Finite Impulse 
Response (FIR) filter designs based on the Hanning and Blackman-
Harris windows for preprocessing electroencephalography (EEG) 
signals collected from both neurotypical individuals and those 
diagnosed with Autism Spectrum Disorder (ASD). EEG signals were 
recorded using a 16-channel setup and band-pass filtered between 
0.5 and 40 Hz to isolate relevant neural activity. Subsequently, the 
signals were processed independently using each FIR filter type. 
Performance evaluation was conducted using four quantitative 
metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Signal-to-Noise Ratio (SNR), and Power Spectral Density (PSD). 
The Hanning window filter showed MAE values ranging from 0.079 
to 0.325, MSE from 0.026 to 0.177, SNR between 7.56 and 15.86 
dB, and PSD values from 5.3 to 9.08 × 10⁻³. These results 
demonstrate good noise attenuation while preserving signal 
morphology. In contrast, the Blackman-Harris window produced 
higher MAE (0.061–0.318) and MSE (0.019–0.172) but achieved 
significantly greater SNR improvements (7.77–17.4 dB) and tighter 
control over PSD (4.904 – 8.442 × 10⁻³), indicating superior noise 

suppression and reduced spectral leakage. A paired t-test confirmed 
that differences in all four performance metrics were statistically 
significant (p < 0.05) across both neurotypical and ASD subject 
groups. Despite the Hanning filter's computational simplicity, the 
Blackman-Harris filter demonstrated more robust performance, 
making it a more suitable choice for high-fidelity EEG signal analysis 
in clinical diagnostics and neuroscience research.   
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INTRODUCTION  

Electroencephalography (EEG) is a non-
invasive technique used to measure the electrical 
activity of the brain by detecting voltage 
fluctuations at scalp electrodes, providing high 
temporal resolution suitable for monitoring 
dynamic neural processes [1]. Autism Spectrum 
Disorder (ASD) is a neurodevelopmental disorder 
characterized by heterogeneous impairments in 
social interaction, interpersonal communication, 
sensory sensitivity, and stereotypical and 

restricted behavioral patterns [2][3]. ASD 
symptoms generally appear before the age of 
three, and diagnosis still relies on behavioral 
observations and developmental assessments [4, 
5, 6, 7]. 

Despite the advantages of EEG, the 
recorded signals are highly susceptible to 
artifacts such as ocular movements, muscle 
activity, and external electromagnetic 
interference, which can significantly degrade the 
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reliability of the data [8][9] . Therefore, robust 
signal preprocessing techniques are essential to 
isolate meaningful brain signals and suppress 

unwanted noise. 

To ensure the extraction of meaningful 
information, robust signal preprocessing is 
indispensable. Finite Impulse Response (FIR) 
filters, a widely used tool in EEG signal 

denoising, rely on windowing functions to 
determine their spectral characteristics and 
overall performance [10]. Among the many 
available window functions, the Hanning and 
Blackman-Harris windows stand out due to their 
distinctive abilities in managing spectral leakage 

and suppressing sidelobe energy. The Hanning 
window offers excellent frequency resolution and 
reduced spectral leakage, making it suitable for 
real-time applications [11]. In contrast, the 
Blackman-Harris window is known for its 

superior sidelobe attenuation, which helps 
preserve the core signal components in noisy 
conditions [12][13]. 

The Hanning and Blackman–Harris 
windows were chosen because they represent 
two poles of the main artifact suppression trade-

off in EEG: Hanning has a relatively narrow main 
lobe with moderate side lobes, is 
computationally efficient, and tends to preserve 
characteristic wave morphology that favors real-
time analysis. In contrast, Blackman–Harris 

offers very high side lobe suppression that 
effectively suppresses spectral leakage and 
high-frequency interference, making it suitable 
for spectrally precise offline analysis. By 
comparing the two in EEG-ASD, this study 

assesses the impact of window choice on 
morphology conservation, spectral clarity, and 
computational cost relevant for both clinical and 
BCI implementations. 

Although numerous EEG studies have 
compared windowing methods for FIR filtration, 

most previous studies have not systematically 
assessed artifact suppression (ocular, EMG, and 
spectral leakage) in ASD populations using a 
unified evaluation framework that bridges the 
time domain (MAE, MSE) and frequency domain 

(SNR, PSD). Furthermore, reporting of relevant 
computational costs/latencies for real-time 
applications is limited, as is reporting of effect 
sizes and confidence intervals to complement 
statistical significance. This gap limits evidence-
based window selection for artifact suppression 

in EEG-ASD, particularly when spectral 
precision needs to be weighed against 
computational requirements in embedded 
systems and BCI. 

 

This study aims to comparatively assess 
the performance of the Hanning and Blackman-
Harris windows in EEG signal preprocessing for 

ASD-related analysis. The evaluation uses 
metrics including Mean Square Error (MSE), 
Mean Absolute Error (MAE), Power Spectral 
Density (PSD), and Signal-to-Noise Ratio 
(SNR). The findings are expected to contribute 

to the optimization of EEG-based diagnostic 
systems for ASD by identifying the most efficient 
filtering approach [14][15]. 

The novelty of this study stems from its 
integrative and systematic evaluation framework, 
which employs multiple quantitative performance 
indicators including Mean Absolute Error (MAE), 
Mean Square Error (MSE), Power Spectral 
Density (PSD), and Signal-to-Noise Ratio (SNR) 
to assess the effectiveness of FIR window 
functions in EEG signal preprocessing for ASD 
analysis. Additionally, the use of a paired t-test for 
statistical validation reinforces the reliability of the 
comparative results.  

Unlike previous works that often focus on a 
single metric or general EEG applications, this 
research specifically targets ASD related EEG 
data, offering a more focused and statistically 
grounded comparison between Hanning and 
Blackman-Harris filters. This approach provides a 
novel contribution by highlighting the optimal 
window function for enhancing EEG signal quality 
in clinical and diagnostic contexts related to 
neurodevelopmental disorders. 

The contributions of this research are as 
follows: 
1. Hanning and Blackman–Harris directional 

comparison of EEG for ASD and normal 
groups using MAE, MSE, SNR, and PSD 
evaluation framework 

2. Statistical validation using paired t-test showed 
significant differences (𝑝 < 0.05) in MAE, MSE, 

SNR, and PSD in both groups (ASD & normal) 
3. Formulating the practical implications of 

window selection, that Hanning is more 
efficient for real-time processing while 
Blackman–Harris provides better spectral 
clarity with greater computational load. 

 
METHODS 

The selected dataset ensures consistency 
in EEG acquisition and provides a balanced 
comparison between ASD and control subjects. Its 
standardized setup and minimized artifacts make 
it suitable for evaluating FIR based preprocessing 
performance.   
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Material 
This study utilized an EEG dataset originally 

recorded at King Abdulaziz University (KAU) 
Hospital, Jeddah, Saudi Arabia, in accordance 
with ethical data access protocols that ensure 
subject anonymity. The dataset comprises brain 
signal recordings from ten male participants five 
diagnosed with Autism Spectrum Disorder (ASD) 
aged 10 − 16, and five neurotypical controls aged 

9 − 16 none of whom had prior neurological 
conditions. EEG acquisition was performed using 
g.tec systems with Ag/AgCl electrodes and 
BCI2000 software.  

Subjects were in a resting state to reduce 
motion artifacts, and 16 channels were used 
based on the international 10 − 20 system. Pre-
processing involved a band-pass filter of 0.5 −
40 Hz and a 60 Hz notch filter to suppress 
physiological and powerline noise, respectively. 
All EEG signals were digitized at 256 Hz and 
stored in matrix-based .dat file formats compatible 
with standard signal processing tools [16, 17, 18]. 
The EEG recordings were organized into a matrix 
format to optimize compatibility with current digital 
signal processing platforms and to facilitate 
advanced analytical computations, as illustrated in 
Figure 1.  

 
METHODS 

The overall workflow of the research 
process is depicted in Figure 2. Initially, EEG 
signal data is acquired from the recording system, 
followed by a preprocessing phase. This phase 
begins with converting the original data format to 
ensure compatibility with processing tools, then 
continues with the application of a band-pass filter 
to isolate relevant brainwave frequencies in the 
0.5 − 40 Hz range, eliminating undesired 

frequency components. 
The EEG signal is then processed using 

two window-based filtering techniques: the 
Hanning and Blackman-Harris windows, aimed at 
reducing artifacts while preserving key neural 
information. The low-frequency cutoff was defined 
at 0.5 Hz and the high-frequency cutoff at 40 Hz to 
capture essential neural signals. A sampling rate 
of 256 Hz was used.  

 

 
Figure 1. Temporal Representation of EEG  

Signal Across 16 Channels in Microvolt Scale 

 
The Hanning window was selected due to its 
effective compromise between frequency 
resolution and computational efficiency. 
Meanwhile, the Blackman-Harris window, 
employing a multi-term cosine design, was chosen 
for its enhanced suppression of sidelobes and 
improved spectral clarity, which allows for better 
attenuation of high-frequency noise. These 
filtering settings were consistently applied across 
all participants to ensure a fair comparison 
between the two windowing techniques. 

The details of the workflow in Figure 2 are 
as follows. (i) Acquisition: 16-channel EEG (10 −
20), fs = 256 Hz, resting condition as in the 
dataset. (ii) Pre-processing: format conversion → 
band-pass to maintain the neural activity band and 
notch for powerline suppression, according to the 
specifications in the Materials section. (iii) FIR-
window design: linear-phase coefficients 
synthesized separately for Hanning and 
Blackman–Harris with consistent 
parameters/orders across subjects. (iv) Per-
channel application: 1D per-channel convolution 
produces two filtered signal versions (Hanning vs 
Blackman–Harris). (v) Metric extraction: MAE, 
MSE, SNR, PSD per channel are calculated from 
the pre-FIR (𝑦) and post-FIR (ŷ) signal pairs and 
then aggregated to the subject level. (vi) Statistics: 
for each metric, a paired t-test is performed 
between windows at the subject level, reporting p-
values and effect sizes. 

For the calculation of MAE and MSE, the 
reference signal was defined as the original, 
unfiltered EEG signal for each subject. The filtered 
signal, obtained after applying either the Hanning 
or Blackman-Harris filter, was compared against 
this reference signal. Specifically, for each sample 

𝑖, the original EEG signal 𝑦𝑖  served as the 

reference, and the filtered signal 𝑦̂𝑖 was the 

predicted signal. MAE and MSE were then 
computed as the average absolute and squared 
differences between the reference and the filtered 
signal, respectively, across all time samples of 
each channel. 

Figure 2. EEG Signal Processing Scheme 
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Mean Squared Error (MSE) 
Mean Squared Error (MSE) is a widely 

adopted evaluation metric in signal processing 
and regression analysis, particularly for assessing 
the accuracy of signal reconstruction after noise or 
artifact removal. It quantifies the average of the 
squared differences between the actual and 
predicted (or reconstructed) values. A lower MSE 
value indicates better model performance, 
reflecting minimal deviation from the original 
signal. Since MSE squares the errors, it is highly 
sensitive to large deviations and outliers, making 
it effective for detecting even subtle distortions in 
EEG signal restoration. It can be calculated using 
an (1) 

MSE =
1

𝑛
∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)2 (1) 

 

𝑦𝑖  is the actual value and 𝑛 is the number of data 

points [19]. 
 
Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a 
straightforward and widely used evaluation metric 
that calculates the average absolute difference 
between predicted and actual values. Unlike MSE, 
MAE does not amplify the impact of outliers, 
making it more robust in analyzing EEG signals 
with noise or missing channels. In EEG 
processing, MAE effectively quantifies the 
deviation between reconstructed and original 
signals, offering clear insight into interpolation and 
filtering performance [2]. 

MAE =
1

𝑛
∑ ∣

𝑛

𝑖=1

𝑦𝑖 − 𝑦̂𝑖 ∣ (2) 

 

The variable 𝑦𝑖  represents the data at the 𝑖 

the point, while 𝑦̂𝑖 denotes the predicted or filtered 

value at the same index. Both are compared 
across 𝑛 total samples to evaluate the accuracy of 

the prediction or filtering method [20][21].  

 
Power Spectral Density (PSD) 

Power Spectral Density (PSD) is a 
frequency-domain method used to measure how 
signal power is distributed across frequencies. In 
EEG analysis, PSD helps identify dominant 
brainwave patterns and characterize both 
rhythmic and background neural activity. It is 
often computed using the Fourier Transform, as 
shown in (3). 
 

𝑆𝑥(𝑓) = lim 
𝑇→∞

1

𝑇
∣ ∫ 𝑥(𝑡)

𝑇/2

−𝑇/2

𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡 ∣2 (3) 

Here, 𝑆𝑥(𝑓) denotes the power at 

frequency f from the time-domain signal 𝑥(𝑡). 
Recent studies, such as Liu et al. (2023), show 
that modeling both periodic and aperiodic PSD 
components improves EEG classification, 

especially for seizure detection [22]. 
 
Signal-to-Noise Ratio (SNR) 

Signal-to-Noise Ratio (SNR) is a key metric 
that quantifies the ratio between the power of a 
signal and the power of background noise. In EEG 

signal processing, where the signal is often weak 
and susceptible to various sources of noise, SNR 

serves as a critical indicator of signal quality. It is 
typically expressed in decibels (dB) using the 
following (4). 

 

SNR(dB) = 10log 10 (
𝑃signal

𝑃noise

) (4) 

 

A higher SNR value reflects better signal 
clarity with minimal interference, while a lower 
value suggests that noise dominates the signal. 
Recent work by Miao et al. (2023) introduced 
LMDA-Net, a lightweight multi-dimensional 

attention network designed to enhance SNR in 
EEG-based BCI systems by applying effective 
spatial-temporal filtering techniques [23][24]. 

 
P Value 

The p-value assesses the statistical 
significance of EEG signal differences between 

ASD and control groups after applying FIR filters 
with Hanning and Blackman-Harris windows. It is 
calculated using (5). 

 

𝑃 = 𝑃(𝑇 ≥∣ 𝑡observed ∣) (5) 

 

where 𝑡observed  is the calculated test statistic and 

𝑇 follows a 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 with appropriate 

degrees of freedom. A p-value below 0.05 
suggests a statistically significant difference in 
EEG patterns between ASD and control groups. 
Conversely, a value above 0.05 indicates that the 
observed differences may be attributed to random 
variation. Recent developments in statistical 
inference recommend using second-generation p-
values, which offer greater emphasis on practical 
relevance and reproducibility, rather than relying 
solely on conventional thresholds. This approach 
ensures that statistically significant findings are 
also scientifically meaningful and replicable [25]. 

 



p-ISSN: 1410-2331  e-ISSN: 2460-1217 

 

M. Melinda et al., Comparative analysis of EEG pre-processing in ASD using Hanning … 251 

 

Cohen’s d 
Cohen’s d is a standardized measure of 

effect size that quantifies the magnitude of the 
difference between the means of two independent 
groups on a scale without units. It serves as a 
complement to significance testing by providing 
insight into the size of the difference in 
performance metrics between configurations or 
pipelines, allowing for comparisons across various 
metrics and studies [26].  

𝑑 =
𝑥̄1 − 𝑥̄2

𝑠𝑝
 (6) 

In the formula, 𝑥̄1 and 𝑥̄2 represent the 

sample means of the two groups, while 𝑠𝑝denotes 

the pooled standard deviation, which is calculated 
from the within-group variances with degrees of 
freedom of 𝑛1 + 𝑛2 − 2 (for independent groups). 

The sign of 𝑑indicates the direction: 𝑑 > 0 when 

the first group's mean is greater than the second's, 
and 𝑑 < 0 when it is smaller [27]. Common 

thresholds for effect size are 𝑑 ≈ 0.2(small), 0.5 

(medium), and 0.8 (large). Reports should include 

the point estimate of 𝑑, its direction, and, when 

possible, a confidence interval. For small sample 
sizes, the small-sample correction should be 
applied (i.e., Hedges’ 𝑔) [27]. 

For paired or within-subject designs, the effect 
should be computed using the standard deviation 

of the paired differences (e.g., 𝑑𝑧 = 𝑑̄/𝑠𝑑) to 

account for within-subject dependency, rather 
than using 𝑠𝑝 [28]. 

For each subject and each channel, we 
prepared two sets of signals, the signal before 
windowing and the signal after windowing; the 
mean absolute error was calculated to assess the 
mean deviation in the time domain and averaged 
across channels at the subject level, the mean 
squared error was calculated to assess the mean 
squared deviation and aggregated in the same 
way, the power spectral density was then 
estimated through a uniform procedure across the 
samples with overlapping segmentation and 
consistent windows to obtain a summary of the 
energy in the analyzed frequency band which was 
then averaged across channels at the subject 
level, the signal-to-noise ratio was derived by 
comparing the output signal power to the residual 
power derived from the difference between the 
output and input signals and expressed in decibels 
and then accumulated across channels at the 
subject level, and for each metric, pairwise 
statistical tests were performed at the subject level 
separately for the ASD and normal groups with 
reporting of two-tailed p-values and inclusion of 
effect sizes and confidence intervals to strengthen 
the interpretation of the results. 

RESULTS AND DISCUSSION 
The EEG signal, initially processed using 

FIR filters with Hanning and Blackman-Harris 
window functions, was subsequently evaluated 
based on four performance metrics. These include 
Mean Square Error (MSE) as defined in Equation 
(1), Mean Absolute Error (MAE) in Equation (2), 
Power Spectral Density (PSD) in Equation (3), 
Signal-to-Noise Ratio (SNR) in Equation (4), and 
statistical significance through P-value and 
Cohen's 𝑑 to test the parameters. 

 
Window Hanning Filter Result 

The application of a FIR filter with a Hanning 
window enables effective attenuation of spectral 
sidelobes while ensuring a gradual transition in the 
frequency response. This characteristic is 
particularly valuable in EEG analysis, as it helps 
reduce spectral leakage that could otherwise 
obscure critical brainwave components, especially 
in the delta (0.5 − 4 Hz), theta (4 − 8 Hz), alpha 
(8 − 13 Hz), and beta (13 − 30 Hz) bands, which 
are essential for interpreting various cognitive and 
neurological functions [29][30]. 
 The findings indicate that the FIR filter 
configured with a Hanning window is effective in 
attenuating high-frequency noise within EEG 
signals, while preserving phase linearity and 
retaining essential spectral components. This 
ensures that key neurological features remain 
intact after filtering. As depicted in Figure 3, the 
contrast between raw and filtered EEG signals 
highlights the Hanning filter’s capability to 
enhance signal clarity without introducing 
significant distortion [31]. 

The processed EEG signal using the 
Hanning FIR filter reveals a smoother waveform 
with diminished high-frequency oscillations 
typically attributed to noise interference. 

 

 
(a) Original Signal on Channel Fp1 

 

 
(b) Hanning Filtered Signal on Channel Fp1 

Figure 3. EEG Signal on Channel Fp1: (a) 
Original, (b) Filtered using Hanning Window 
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This filtering approach exhibits a stable amplitude 
response across the target frequency band and 
demonstrates a sharper transition at cutoff 

frequencies indicating greater efficiency in 
isolating the core EEG signal from unwanted 
components. Quantitative analyses further 
reinforce this observation; the Hanning FIR filter 
consistently produces lower MAE and MSE 

values, enhanced SNR, and a more concentrated 
PSD profile. These improvements confirm the 
filter's proficiency in suppressing non-neural 
disturbances, such as EMG noise and external 
electromagnetic artifacts, without compromising 

the underlying neural signal integrity. 
The Hanning window approach 

demonstrates a reduction of high-frequency 
oscillations in the time domain without shifting the 
informative amplitude structure, in line with its 

linear-phase character that minimizes phase 
distortion in the passband. Quantitatively, the 
decrease in the mean and mean-square errors 
indicates the preservation of signal morphology, 
while the recorded increase in clarity in the signal-
to-noise ratio and a more focused spectral density 

profile confirm that the neural components are 
preserved after filtering. Thus, Hanning effectively 
suppresses unwanted high-frequency 
components while preserving the core spectral 
features relevant for EEG analysis. 

 
Window Blackman-Harris Filter Result 

The Blackman-Harris window achieves 
outstanding sidelobe attenuation (−92 dB), 
significantly reducing spectral leakage in EEG 
preprocessing. Its multi-term cosine design 
ensures smooth transition bands and minimal 
interference with key neural frequencies, making it 
highly effective in isolating brainwave signals from 
high-frequency disturbances like EMG or 
environmental noise. These advantages are 
particularly beneficial in ASD studies, where EEG 
clarity is essential for accurate neural 
interpretation [32][33]. 

FIR window filtering shows that the 
Blackman-Harris window delivers sharper cutoff 
characteristics and superior stopband rejection 
compared to other window types. It effectively 
suppresses 50 Hz powerline interference, 
resulting in improved PSD resolution and higher 
SNR, highlighting its suitability for EEG-based 
ASD research [34]. 

The application of the Blackman-Harris 
window markedly improves EEG signal quality by 
delivering a noticeably cleaner waveform, as 
shown in Figure 4. 

 
(a) Original Signal 

 
(b) Blackman-Harris Filtered Signal 

Figure 4. EEG Signal on Channel Fp1: (a) 
Original, (b) Filtered using Blackman-Harris 

Window. 
 

This high-order FIR filter offers a smooth 
frequency response, ensuring a sharp yet 
distortion-minimizing transition from passband to 

stopband. Quantitative assessment reveals that 
filtering leads to decreased Mean Squared Error 

(MSE) and Mean Absolute Error (MAE), alongside 
a notable boost in Signal-to-Noise Ratio (SNR). 
These improvements underscore that post-

filtering EEG signals are much better suited for 
subsequent analysis. Notably, by effectively 
removing high-frequency interference such as 

EMG and environmental noise, the filter 
preserves critical neural information while 

enhancing overall signal clarity. 
  The advantages of Blackman–Harris 

stop-band rejection come from the very high 

sidelobe suppression and smooth transitions 
between bands, so that spectral leakage at 

frequencies outside the pass-band can be 
suppressed more aggressively without disturbing 
the relevant neural components. This 

configuration has a direct impact on the spectral 
clarity and efficiency of interference suppression, 
including powerline interference, which is 

reflected in the improvement of the signal-to-noise 
ratio and control of the power spectral density in 

the measurement results. The Fp1 channel is 
presented as a representative example because 
it is physiologically most susceptible to ocular 

artifacts and high-frequency components, so that 
post-filtration changes appear most contrastingly 

without compromising the generality of the 
interpretation supported by the subject-level 
summary metrics.  

 
Performance Accuracy Analysis Result 

The effectiveness of EEG filtering was 
evaluated using four key metrics: Mean Squared 
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Error (MSE), Mean Absolute Error (MAE), Power 
Spectral Density (PSD), and Signal-to-Noise 

Ratio (SNR). Both MSE and MAE quantify the 
deviation between filtered and original signals, 

where lower values indicate better signal fidelity. 
SNR assesses noise reduction effectiveness, 
while PSD reflects how the filter redistributes 

signal energy across the frequency spectrum. 
Collectively, these measures offer a holistic view 

of filtering performance. 
Results confirm that both FIR filters with 

Hanning and Blackman-Harris windows 

significantly improve EEG signal quality. The 
Hanning filter achieves smoother frequency 

transitions with relatively low computational cost. 
In contrast, the Blackman-Harris filter delivers 
superior sidelobe suppression, making it more 

adept at attenuating high-frequency noise while 
faithfully preserving relevant neural components. 

However, the computational cost for the 

Blackman-Harris filter tends to be higher, 

especially when the filter order 𝑀 is increased to 
achieve better side-lobe suppression and more 

detailed frequency control. This increased 
computational load results in more Multi-
accumulate (MAC) operations per sample, which 

can affect real-time processing performance in 
applications that are highly latency-sensitive. 

However, if the filter length 𝑀 is equalized 
between the two filters, the computational cost for 

Blackman-Harris is almost equivalent to that of 
Hanning. 
 

Window Blackman-Harris FIR Filter ASD 
Subject 

The application of the Hanning window FIR 
filter demonstrates favourable results across 

multiple performance indicators, MAE, MSE, 
PSD, and SNR. As illustrated in Figure 5, the MAE 

values range from 0.01 to 0.035 and MSE values 

between 0.0002 and 0.0013 reflect low error 
margins, indicating effective noise suppression 
while maintaining the morphological integrity of 

the original EEG signals. While the Blackman-
Harris window excels in noise reduction and 

spectral accuracy, the Hanning window is 
particularly well-suited for scenarios where real-
time performance is crucial. Its lower 

computational demand makes it a more efficient 
choice for applications that require fast 
processing, such as brain-computer interfaces 

(BCI) and clinical monitoring systems. In these 
cases, where minimizing latency is essential, 

Hanning offers an optimal balance between 
performance and efficiency.  

 

 

Thus, despite Blackman-Harris offering 
superior frequency precision, Hanning proves to 

be the better option for real-time EEG processing, 
especially in environments with limited 

computational resources.  
These findings confirm the Hanning filter’s 

consistency in minimizing interference without 

compromising essential neural components. 
 

 
(a) Comparison Mean Absolute Error (MAE) 

 

 
(b) Comparison Mean Square Error (MSE) 

 

(c) Comparison Signal-to-Noise Ratio (SNR) 
 

 
(d) Comparison Power Spectral Density (PSD) 

Figure 5. Comparison values for Window 
Hanning FIR Filter ASD subjects: (a) MAE, (b) 

MSE, (c) SNR, and (d) PSD 
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The observed SNR values, which fall 
between 8.9 and 11.2 dB, demonstrate a 
significant enhancement in EEG signal clarity 
following the application of the Hanning filter. 
Furthermore, the consistent Power Spectral 
Density (PSD) readings in the range of 3.0 to 

5.8 (× 10⁻³) that highlight the filter’s ability to 
preserve the signal’s power across key 
frequencies while effectively suppressing spectral 
noise. This supports the filter’s capacity to retain 
critical EEG components essential for accurate 
interpretation. 
 

Window Blackman-Harris FIR Filter ASD 
Subject 

The Blackman-Harris window exhibits 
superior capabilities in EEG signal filtering, 
notably in reducing spectral leakage and 
improving frequency precision. Its strong sidelobe 
suppression makes it highly advantageous for 
applications that demand accurate signal 
interpretation and effective noise elimination.  

Figure 6 illustrates that the Blackman-Harris 
window delivers outstanding performance across 
four evaluation metrics MAE, MSE, SNR, and PSD. 
The method achieves significant noise attenuation, 
as evidenced by high SNR values ranging from 
62.85 to 91.41 𝑑𝐵, indicating robust signal 

enhancement. Additionally, the very low Power 
Spectral Density (PSD) values, between 0.002 and 

0.71 × 10⁻³, reflect minimal spectral leakage, 
highlighting its effectiveness for detailed frequency-
domain analysis. Moreover, the filter maintains 
waveform integrity, with Mean Absolute Error 
(MAE) values of 0.021 − 0.057 and Mean Squared 
Error (MSE) values of 0.0015 − 0.0062, 

demonstrating that the original signal structure is 
largely preserved. These findings affirm the 
Blackman-Harris window's reliability in preserving 
EEG signal quality throughout the spectral filtering 
process.  

 
Comparison of Hanning and Blackman-
Harris FIR Filter on ASD Subject 

Figure 7 illustrates a comparative evaluation 
of FIR filter performance using Hanning and 
Blackman-Harris windows on EEG signals 
recorded from ASD subjects, assessed using four 
critical parameters: MAE, MSE, SNR, and PSD. 
The analysis reveals that the Blackman-Harris 
window achieves superior performance in terms of 
accuracy and stability.  

This is evidenced by its lower error rates, 
with MAE values ranging from 0.084 to 0.333 and 
MSE values between 0.025 and 0.172, 

outperforming the Hanning window in 
approximating the true signal. Furthermore, 

improvements in signal clarity are demonstrated by 
SNR values spanning 7.770 to 37.250 𝑑𝐵, 

indicating effective background noise suppression. 
The corresponding PSD values, ranging from 
4.178 × 10⁻³ to 7.344 × 10⁻³, that confirms the 
filter’s ability to preserve spectral components with 
minimal leakage, reinforcing its suitability for EEG 
signal processing in ASD analysis.  

 

(a) Comparison Mean Absolute Error (MAE) 
 

 

(b) Comparison Mean Square Error (MSE) 

 

(c) Comparison Signal-to-Noise Ratio (SNR) 

 

(d) Comparison Power Spectral Density (PSD) 

Figure 6. Comparison values for Window 
Blackman-Harris FIR Filter ASD subjects: (a) MAE, 

(b) MSE, (c) SNR, and (d) PSD 
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As shown in Figure 7, the Blackman-Harris 
window demonstrates improved accuracy and 
greater consistency in preserving essential EEG 
signal characteristics in ASD subjects.  

 

 

(a) Comparison Mean Absolute Error (MAE) 

 

 
(b) Comparison Mean Square Error (MSE) 

 

  
(c) Comparison Signal to Noise Ratio (SNR) 

 

 
(d) Comparison Power Spectral Density (PSD) 
Figure 7. Comparison of Hanning and Blackman-
Harris Windowed FIR Filters on ASD Subjects: (a) 

MAE, (b) MSE, (c) SNR, and (d) PSD 
 

These findings suggest that the Blackman-
Harris window is a more effective and preferable 
choice for EEG signal preprocessing compared to 
the Hanning window.  

 
Window Hanning FIR Filter Normal Subject 

Figure 8 shows that the application of an 
FIR filter with a Hanning window to EEG 
recordings from five non-ASD (healthy) subjects 
provides an optimal trade-off between noise 
reduction and preservation of signal integrity.  

 

(a) Comparison Mean Absolute Error (MAE) 
 

 
(b) Comparison Mean Square Error (MSE) 

 

 
(c) Comparison Signal-to-Noise Ratio (SNR) 

 

 
(d) Comparison Power Spectral Density (PSD) 

Figure 8. Comparison values for Window 
Hanning FIR Filter normal subjects: (a) MAE, 

(b) MSE, (c) SNR, and (d) PSD. 
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Filter performance was assessed using four 
primary metrics: MAE, MSE, PSD, and SNR. 
Subject 2 achieved the lowest MAE value at 0.179, 

reflecting the highest accuracy in waveform 
representation, whereas subject 5 recorded the 
highest MAE of 0.229. 

In terms of MSE, subject 3 yielded the 
smallest error value of 0.057, while subject 1 

exhibited the largest at 0.104, indicating variation 
in approximation quality. Regarding frequency 
preservation, subject 2 obtained the most 

favorable PSD result at 5.300 × 10⁻³, signifying 
minimal spectral leakage, whereas subject 4 

reached the highest PSD at 8.037 × 10⁻³, 
suggesting greater distortion. Signal clarity was 
best in subject 3, with the highest SNR at 
12.690 𝑑𝐵, and lowest in subject 1, with 10.460 𝑑𝐵, 
indicating differing levels of residual noise across 
subjects. 
 
Window Blackman-Harris FIR Filter Normal 
Subject  

As shown in Figure 9, the FIR filter using a 

Blackman–Harris window was evaluated on EEG 
recordings from five healthy subjects, yielding 
consistent and reliable performance. Subject 2 
achieved the lowest mean absolute error (MAE) of 

0.170, whereas Subject 5 exhibited the highest 

MAE at 0.220. In terms of mean squared error 
(MSE), Subject 3 recorded the smallest value of 
0.050, while the largest MSE, 0.102, was observed 
in another subject. 

Subject two again stood out when 
examining spectral leakage with the lowest power 

spectral density (PSD) of 4.9179 × 10⁻³. In 
contrast, subject four had the highest PSD at 

7.4492 × 10⁻³, indicating notable differences in 
how effectively suppressed leakage among 
subjects. Signal clarity, measured by the signal-to-

noise ratio (SNR), peaked with subjects 2 and 3, 
who achieved SNR values of 13.450 𝑑𝐵 and 

13.3120 𝑑𝐵, respectively, reflecting the highest 
quality of EEG signals after filtering. 

Taken together, subjects 2 and 3 
consistently delivered the most optimal results 

across all metrics: MAE, MSE, PSD, and SNR, 
highlighting the effectiveness of the FIR filter with 
the Blackman-Harris window in preserving signal 
integrity and reducing noise. 
 

Comparison of Hanning and Blackman-
Harris FIR Filter on Normal Subject 

Figure 10 presents a comparative analysis 
of FIR filter performance using Hanning and 
Blackman-Harris windows on EEG data from non-
ASD (normal) subjects, based on four key 
evaluation metrics: MAE, MSE, SNR, and PSD.  

 

(a) Comparison Mean Absolute Error (MAE) 

 

(b) Comparison Mean Squared Error (MSE) 

 

(c) Comparison Signal to Noise Ratio (SNR) 

 

(d) Comparison Power Spectral Density 
(PSD) 

Figure 9. Comparison values for Window 
Blackman-Harris FIR Filter normal subjects: (a) 

MAE, (b) MSE, (c) SNR, and (d) PSD. 

 

In terms of error reduction, the Blackman-Harris 
window demonstrates superior performance, 
yielding lower MAE values ranging from 0.172 to 
0.220 and MSE values between 0.050 and 0.102. 

In evaluating signal clarity, the filter 
enhances SNR, reaching a maximum of 
13.000 𝑑𝐵 and a minimum of 9.960 𝑑𝐵 although 
the improvement over the Hanning window 
remains moderate. From a spectral perspective, 
the Blackman-Harris window achieves PSD 

values within the range of 500.000 ×  10⁻³ to 

745.400 ×  10⁻³, reflecting stronger preservation 
of spectral energy in several subjects. Collectively, 
these results affirm that the Blackman-Harris 
window is more effective in minimizing signal 
distortion and retaining spectral content. 
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(a) Comparison Mean Absolute Error (MAE) 

 

(b) Comparison Mean Square Error (MSE) 
 

 
(c) Comparison Signal to Noise Ratio (SNR) 

 
(d) Comparison Power Spectral Density (PSD) 

Figure 10. Comparison of Hanning and 
Blackman-Harris Filters in Normal Subjects: (a) 

MAE, (b) MSE, (c) SNR, and (d) PSD. 
 

Thereby offering a more robust and accurate 
preprocessing method compared to the Hanning 
window for EEG data from typically developing 
individuals. 

The following table provides a summary of 
the performance of the Hanning and Blackman-
Harris filters for both the ASD and control groups 
across key evaluation metrics. These metrics, 
MAE, MSE, PSD, and SNR, offer insights into the 
accuracy and noise reduction capabilities of the 
filters in relation to the original EEG signals.  

As can be seen from Table 1, the Hanning 
filter has lower MAE and MSE for both ASD and 
normal groups, indicating that it is superior in 

removing signal errors and deviation from the 
original EEG. However, the Blackman-Harris filter 
performs better in terms of SNR and PSD, 
indicating that it has superior noise reduction and 
superior spectral accuracy, especially for the ASD 
group. This renders Blackman-Harris particularly 
appropriate to uses wherein more spectral 
precision is required, with Hanning being more 
performative in real-time uses where 
computational effectiveness is the higher priority. 

Contemporary research in EEG analysis for 
neurological disorders often prioritizes advanced 
feature extraction or classification techniques 
while neglecting rigorous quantification of 
preprocessing efficacy. For instance, [35] 
developed sophisticated EEG decomposition 
methods without establishing baseline signal 
quality metrics such as spectral noise ratios or 
reconstruction fidelity.  

Similarly, studies by [36] and [37] focused 
on computational optimization while omitting 
systematic evaluation of filter performance in 
noise suppression. Our work demonstrates that 
selective filter implementation, particularly the 
Blackman-Harris window significantly enhances 
signal integrity prior to feature extraction. 
Empirical results show a 13.76 𝑑𝐵 signal-to-noise 
ratio and 0.169 mean absolute error for ASD data, 

establishing new benchmarks in preprocessing 
precision. These quantitatively verified 
improvements in signal conditioning provide a 
more reliable foundation for subsequent analytical 
stages in neurodiagnostic applications. 

The Hanning window demonstrated lower 
MSE and MAE values, indicating better waveform 
preservation with minimal distortion. Its moderate 
frequency resolution and low computational cost 
make it suitable for real-time applications like 
clinical monitoring or BCI systems. In contrast, the 
Blackman-Harris window achieved significantly 
higher SNR and lower PSD, reflecting superior 
noise suppression and spectral clarity. However, 
its higher MAE suggests that some fine signal 
details may be lost due to stronger sidelobe 
attenuation. 

 
Table 1. Comparison of Hanning and Blackman-

Harris Filter Performance in ASD and Normal 
Subjects 

Metric 
Hanning 

(ASD) 

Hanning 

(Normal) 

Blackman-
Harris 

(ASD) 

Blackman-
Harris 

(Normal) 

MAE 0.222 0.206 0.169 0.177 
MSE 0.087 0.078 0.062 0.074 

PSD(× 10³) 6.946 6.663 7.056 7.115 

SNR 12.464 11.754 13.762 12.232 

 
 



SINERGI Vol. 30, No. 1, February 2026: 247-262 

 

258 M. Melinda et al., Comparative analysis of EEG pre-processing in ASD using Hanning … 

 

This highlights a trade-off: Hanning offers 
better time-domain accuracy with efficiency, while 
Blackman-Harris provides stronger noise 
reduction at the cost of signal detail and 
computational load. The choice depends on 
application needs Hanning is ideal for real-time 
use, whereas Blackman Harris suits offline 
analysis requiring high spectral precision. 

While both the Hanning and the Blackman-
Harris filters demonstrate excellent performance 
in terms of noise suppression and spectral purity, 
their actual use in real-world systems is a delicate 
balance between real-time processing 
requirements and computational loads. While less 
computationally expensive, the Hanning filter is 
very well suited to real-time implementations, 
particularly in restricted processing systems such 
as embedded systems used for clinical monitoring 
or BCI setups. On the other hand, while the 
Blackman-Harris filter is more spectrally accurate, 
its higher computational cost may be limited to use 
in applications where computational resources are 
not extensive, especially for systems that must 
process more than one EEG data channel at once. 
Therefore, the choice of the filter should be made 
depending on the specific needs of the 
application: in offline high-fidelity analysis or in 
clinical diagnostics when accuracy is paramount, 
Blackman-Harris may prove to be the optimal 
choice; but for low-latency, real-time applications, 
Hanning offers a more realistic alternative. 

The Hanning filter best suits low-power, 
real-time systems, i.e., portable BCI systems and 
clinical monitoring. Its efficiency makes it best 
suited for systems where power and 
computational resources are constrained, i.e., 
wearable EEG systems or ambulatory monitoring. 
The Blackman-Harris filter, on the other hand, is 
best used in offline, research-grade, or diagnostic 
systems where precision is of greater concern 
than computational cost. Its increased spectral 
precision and side-lobe rejection make it suitable 
for neuroimaging research, off-line EEG data 
processing, and clinical diagnosis in controlled 
environments where real-time processing is not 
required. 

From an implementation perspective, both 
approaches are based on linear-phase FIR, but 
Blackman–Harris generally requires a higher 
order/number of taps than Hanning to achieve the 
same sidelobe suppression and spectral clarity. 
This inevitably results in increased computational 
overhead per sample, increased coefficient 
memory requirements, and increased group delay 
and processing latency. In multi-channel 
streaming EEG applications (for example, 16 
channels, 250 Hz) or on power-constrained edge 
devices, these attributes can reduce the 

computational space available for later steps such 
as feature extraction and classification. 
Conversely, the lighter Hanning technique is 
better suited to real-time applications as it 
maintains end-to-end latency and power, although 
its spectral accuracy and transmission 
suppression of frequencies are less aggressive 
than Blackman–Harris. Consistent with the 
quantitative results of this study, window selection 
should be tailored to the application context. For 
real-time pipelines requiring fast and stable 
response, medium-order Hanning is more 
practical; for offline analysis or diagnostic workups 
where spectral fidelity and SNR/PSD 
improvement are important, Blackman–Harris 
offers greater advantages. In the future, these 
trade-offs can be mitigated through adaptive order 
tuning, efficient block processing, and SIMD/GPU-
based activation to meet latency limits without 
sacrificing signal integrity. 
 
P Value Analysis 

All significance tests were conducted at the 
subject level by averaging the cross-channel 
metrics for each individual and then comparing 

Hanning vs. Blackman-Harris pairs in the ASD 
and normal groups separately. This approach 

maintains the independence of the units of 
analysis and avoids intra-subject correlation 
between channels. The results show a consistent 

pattern across both groups, with Blackman-Harris 
superiority in the frequency domain (SNR and 
PSD), while differences in the time domain (MAE 

and MSE) are relatively small; this interpretation 
is confirmed by the effect sizes reported in the 

next section. 
 

ASD Subjects 

A paired t-test was performed on EEG data 
from five ASD subjects to assess the comparative 

effectiveness of the Hanning and Blackman-
Harris filters across four performance indicators: 

MAE, MSE, SNR (dB), and PSD (× 10³). The test 

produced p-values of 0.0172, 0.0116, 0.0437, and 
0.0002, respectively, each below the 0.05 
threshold demonstrating statistically significant 

differences in filter performance. These results 
confirm that the Blackman-Harris filter 

consistently outperforms the Hanning filter by 
achieving lower error rates (MAE and MSE), 
higher signal clarity (SNR), and a more favorable 

distribution of spectral power (PSD), thereby 
offering a more reliable approach for enhancing 
EEG signal quality in ASD-related studies. 
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Normal Subjects 
The paired t-test analysis applied to the 

four performance indicators MAE, MSE, SNR, 
and PSD revealed statistically significant 

differences (p<0.05) between the Hanning and 
Blackman-Harris filtering methods. Notably, the 
Blackman-Harris filter produced p-values of 

0.0013 for MAE, 0.0030 for MSE, 0.0064 for SNR, 
and 0.002 for PSD, highlighting its enhanced 
ability in spectral optimization. These findings 
reinforce that the performance gains are 

attributable to the inherent design characteristics 
of the Blackman-Harris window rather than being 

driven by random fluctuations. 

While the statistical significance (𝑝 <  0.05) 
of the differences between the Hanning and 
Blackman-Harris filters across all metrics are 

clear, the practical implications of these findings 
must be considered in the context of clinical and 
real-time applications. The significant 

improvements in Signal-to-Noise Ratio (SNR) and 
Power Spectral Density (PSD), especially with the 

Blackman-Harris window, suggest a notable 
enhancement in EEG signal quality that could aid 
in more accurate diagnostics and better 

interpretation of neural activity in ASD patients. 
 

Cohen’s d 
ASD Subjects 

In the ASD group, the effect sizes indicate 
that the differences in the temporal domain are 

practically negligible: MAE 𝑑 =  0.0266 and MSE 

𝑑 =  0.0159 indicate equivalent waveform 
preservation between Blackman–Harris and 
Hanning. In contrast, the differences in the 

spectral domain are striking, with PSD 𝑑 =  9.674 
indicating that Blackman–Harris is significantly 
more effective at suppressing spectral 
power/leakage than Hanning. Using the 

convention 𝑑 = Hanning − Blackman–Harris, the 

negative SNR value (𝑑 =  −0.302) means that 
Blackman–Harris provides a small but consistent 
SNR improvement. Overall, in ASD subjects, 
Blackman–Harris reduces the spectral 

component without sacrificing errors in the 
temporal domain. 
 

Normal Subjects 
In the normal group, the same pattern 

emerged with stronger intensity in the spectral 
domain: MAE 𝑑 =  0.0399 and MSE 𝑑 =  0.0278 

remained close to zero (equivalent time 
performance), while PSD reached 𝑑 =  11.197, 
indicating a very strong superiority of Blackman–
Harris in power/leakage suppression over 
Hanning. The negative SNR value (𝑑 =  −0.329) 

further confirms the slight SNR improvement of 

Blackman–Harris. Thus, in normal subjects, 
Blackman–Harris's superiority in the frequency 
domain becomes more pronounced, while the 
time metrics remain equivalent; this finding should 
be interpreted with caution, given the limited 
sample size. 

One major limitation of the present study is 
the sample size, which is five ASD participants 
and five neurotypical controls. A small sample size 
may affect the external validity of the results to a 
larger, more heterogeneous population. Statistical 
power to the analysis decreases with fewer 
participants, and within-person differences in EEG 
properties between individuals may not be 
controlled for. For better quality in future research, 
additional subjects from diverse backgrounds are 
highly recommended. Having a larger sample size 
would provide a stronger statistical analysis and 
reflect a more accurate picture of the difference 
between the ASD group and neurotypical controls, 
thus making the results more practical and 
meaningful for clinical and academic purposes. 
 
CONCLUSION 

This research confirms that the application 
of two FIR filtering techniques, Hanning and 
Blackman-Harris window significantly improves 
the quality of EEG signals in both neurotypical 
individuals and subjects diagnosed with Autism 
Spectrum Disorder (ASD), as evaluated using four 
primary parameters: MAE, MSE, SNR, and PSD. 
The Hanning filter achieved MAE values between 
0.010 and 0.035, MSE ranging from 0.0002 to 
0.0013, SNR between 8.9 and 11.2 𝑑𝐵, and PSD 

values of 3.0 −  5.8 × 10⁻³, indicating effective 
noise reduction while preserving the integrity of 
the original waveform. In contrast, the Blackman-
Harris window recorded higher MAE values 
(0.061 − 0.080) and comparable MSE scores 
(0.019 − 0.031), yet demonstrated substantially 

greater improvements in SNR, ranging from 7.77 
to 37.25 𝑑𝐵, alongside more controlled PSD 

values between 4.178 and 7.344 × 10⁻³. These 
findings suggest superior suppression of high-
frequency artifacts and better frequency 
resolution. A paired t-test yielded statistically 
significant p-values (𝑝 < 0.05), reinforcing the 

conclusion that the Blackman-Harris filter 
outperforms the Hanning filter in high-precision 
EEG preprocessing, albeit with slightly greater 
computational complexity.  

To strengthen the practicality of EEG 
findings, we emphasize that window/filter 
selection needs to consider the tradeoff between 
spectral precision and computational cost, 
particularly in real-time/embedded BCI 
implementations that are sensitive to latency and 
resource consumption [38]. Future study plans 



SINERGI Vol. 30, No. 1, February 2026: 247-262 

 

260 M. Melinda et al., Comparative analysis of EEG pre-processing in ASD using Hanning … 

 

should be optimized through a priori trial power 
planning considering the interaction of the number 
of participants, number of trials, and effect size to 
ensure adequate parameter estimation and 
difference testing [39], and reporting effect sizes 
with confidence intervals to improve the precision 
and replicability of EEG analyses across 
populations [40]. Similarly, expanding to larger 
and more diverse datasets is proposed to improve 
the generalizability and stability of estimates, while 
also enabling a more nuanced evaluation of 
filtering performance across recording conditions.  

One major limitation of the present study is 
the small sample size, comprising just five 
individuals with ASD and five neurotypical 
controls. The small sample size can reduce the 
external validity of the findings and introduce 
biases since the EEG features observed in this 
small population might not entirely represent the 
broader ASD population. In addition, the small 
sample size could also limit the statistical power of 
the analysis, and it will be harder to generalize the 
results to a larger, more heterogeneous 
population. Future studies should involve larger 
and more diverse sample sizes to increase the 
generalizability and stability of the findings. 
Furthermore, upcoming research needs to 
consider other sources of bias, e.g., inter-subject 
differences in EEG features, so that the results 
can more generally be translated into clinical 
practice and research. 
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