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Abstract

This study investigates the effectiveness of two Finite Impulse
Response (FIR) filter designs based on the Hanning and Blackman-
Harris windows for preprocessing electroencephalography (EEG)
signals collected from both neurotypical individuals and those
diagnosed with Autism Spectrum Disorder (ASD). EEG signals were
recorded using a 16-channel setup and band-pass filtered between
0.5 and 40 Hz to isolate relevant neural activity. Subsequently, the
signals were processed independently using each FIR filter type.
Performance evaluation was conducted using four quantitative
metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
Signal-to-Noise Ratio (SNR), and Power Spectral Density (PSD).
The Hanning window filter showed MAE values ranging from 0.079
to 0.325, MSE from 0.026 to 0.177, SNR between 7.56 and 15.86
dB, and PSD values from 5.3 to 9.08 x 1072 These results
demonstrate good noise attenuation while preserving signal
morphology. In contrast, the Blackman-Harris window produced
higher MAE (0.061-0.318) and MSE (0.019-0.172) but achieved
significantly greater SNR improvements (7.77-17.4 dB) and tighter
control over PSD (4.904 — 8.442 x 1073), indicating superior noise
suppression and reduced spectral leakage. A paired t-test confirmed
that differences in all four performance metrics were statistically
significant (p < 0.05) across both neurotypical and ASD subject
groups. Despite the Hanning filter's computational simplicity, the
Blackman-Harris filter demonstrated more robust performance,
making it a more suitable choice for high-fidelity EEG signal analysis
in clinical diagnostics and neuroscience research.
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INTRODUCTION

Electroencephalography (EEG) is a non-
invasive technique used to measure the electrical
activity of the brain by detecting voltage
fluctuations at scalp electrodes, providing high
temporal resolution suitable for monitoring
dynamic neural processes [1]. Autism Spectrum
Disorder (ASD) is a neurodevelopmental disorder
characterized by heterogeneous impairments in
social interaction, interpersonal communication,
sensory sensitivity, and stereotypical and

restricted behavioral patterns [2][3]. ASD
symptoms generally appear before the age of
three, and diagnosis still relies on behavioral
observations and developmental assessments [4,
5, 6, 7].

Despite the advantages of EEG, the
recorded signals are highly susceptible to
artifacts such as ocular movements, muscle
activity, and external electromagnetic
interference, which can significantly degrade the
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reliability of the data [8][9] . Therefore, robust
signal preprocessing techniques are essential to
isolate meaningful brain signals and suppress
unwanted noise.

To ensure the extraction of meaningful
information, robust signal preprocessing is
indispensable. Finite Impulse Response (FIR)
filters, a widely used tool in EEG signal
denoising, rely on windowing functions to
determine their spectral characteristics and
overall performance [10]. Among the many
available window functions, the Hanning and
Blackman-Harris windows stand out due to their
distinctive abilities in managing spectral leakage
and suppressing sidelobe energy. The Hanning
window offers excellent frequency resolution and
reduced spectral leakage, making it suitable for
real-time applications [11]. In contrast, the
Blackman-Harris window is known for its
superior sidelobe attenuation, which helps
preserve the core signal components in noisy
conditions [12][13].

The Hanning and Blackman—Harris
windows were chosen because they represent
two poles of the main artifact suppression trade-
off in EEG: Hanning has a relatively narrow main
lobe  with moderate side Iobes, is
computationally efficient, and tends to preserve
characteristic wave morphology that favors real-
time analysis. In contrast, Blackman—Harris
offers very high side lobe suppression that
effectively suppresses spectral leakage and
high-frequency interference, making it suitable
for spectrally precise offline analysis. By
comparing the two in EEG-ASD, this study
assesses the impact of window choice on
morphology conservation, spectral clarity, and
computational cost relevant for both clinical and
BCI implementations.

Although numerous EEG studies have
compared windowing methods for FIR filtration,
most previous studies have not systematically
assessed artifact suppression (ocular, EMG, and
spectral leakage) in ASD populations using a
unified evaluation framework that bridges the
time domain (MAE, MSE) and frequency domain
(SNR, PSD). Furthermore, reporting of relevant
computational costs/latencies for real-time
applications is limited, as is reporting of effect
sizes and confidence intervals to complement
statistical significance. This gap limits evidence-
based window selection for artifact suppression
in EEG-ASD, particularly when spectral
precision needs to be weighed against
computational requirements in embedded
systems and BCI.

This study aims to comparatively assess
the performance of the Hanning and Blackman-
Harris windows in EEG signal preprocessing for
ASD-related analysis. The evaluation uses
metrics including Mean Square Error (MSE),
Mean Absolute Error (MAE), Power Spectral
Density (PSD), and Signal-to-Noise Ratio
(SNR). The findings are expected to contribute
to the optimization of EEG-based diagnostic
systems for ASD by identifying the most efficient
filtering approach [14][15].

The novelty of this study stems from its
integrative and systematic evaluation framework,
which employs multiple quantitative performance
indicators including Mean Absolute Error (MAE),
Mean Square Error (MSE), Power Spectral
Density (PSD), and Signal-to-Noise Ratio (SNR)
to assess the effectiveness of FIR window
functions in EEG signal preprocessing for ASD
analysis. Additionally, the use of a paired t-test for
statistical validation reinforces the reliability of the
comparative results.

Unlike previous works that often focus on a
single metric or general EEG applications, this
research specifically targets ASD related EEG
data, offering a more focused and statistically
grounded comparison between Hanning and
Blackman-Harris filters. This approach provides a
novel contribution by highlighting the optimal
window function for enhancing EEG signal quality
in clinical and diagnostic contexts related to
neurodevelopmental disorders.

The contributions of this research are as
follows:

1. Hanning and Blackman-Harris directional
comparison of EEG for ASD and normal
groups using MAE, MSE, SNR, and PSD
evaluation framework

2. Statistical validation using paired t-test showed
significant differences (p < 0.05) in MAE, MSE,
SNR, and PSD in both groups (ASD & normal)

3. Formulating the practical implications of
window selection, that Hanning is more
efficient for real-time processing while
Blackman—Harris provides better spectral
clarity with greater computational load.

METHODS

The selected dataset ensures consistency
in EEG acquisition and provides a balanced
comparison between ASD and control subjects. Its
standardized setup and minimized artifacts make
it suitable for evaluating FIR based preprocessing
performance.
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Material

This study utilized an EEG dataset originally
recorded at King Abdulaziz University (KAU)
Hospital, Jeddah, Saudi Arabia, in accordance
with ethical data access protocols that ensure
subject anonymity. The dataset comprises brain
signal recordings from ten male participants five
diagnosed with Autism Spectrum Disorder (ASD)
aged 10 — 16, and five neurotypical controls aged
9 —16 none of whom had prior neurological
conditions. EEG acquisition was performed using
g.tec systems with Ag/AgCl electrodes and
BCI2000 software.

Subjects were in a resting state to reduce
motion artifacts, and 16 channels were used
based on the international 10 — 20 system. Pre-
processing involved a band-pass filter of 0.5 —
40Hz and a 60 Hz notch filter to suppress
physiological and powerline noise, respectively.
All EEG signals were digitized at 256 Hz and
stored in matrix-based .dat file formats compatible
with standard signal processing tools [16, 17, 18].
The EEG recordings were organized into a matrix
format to optimize compatibility with current digital
signal processing platforms and to facilitate
advanced analytical computations, as illustrated in
Figure 1.

METHODS

The overall workflow of the research
process is depicted in Figure 2. Initially, EEG
signal data is acquired from the recording system,
followed by a preprocessing phase. This phase
begins with converting the original data format to
ensure compatibility with processing tools, then
continues with the application of a band-pass filter
to isolate relevant brainwave frequencies in the
0.5—-40 Hz range, eliminating undesired
frequency components.

The EEG signal is then processed using
two window-based filtering techniques: the
Hanning and Blackman-Harris windows, aimed at
reducing artifacts while preserving key neural
information. The low-frequency cutoff was defined
at 0.5 Hz and the high-frequency cutoff at 40 Hz to
capture essential neural signals. A sampling rate
of 256 Hz was used.

Time (S)
Figure 1. Temporal Representation of EEG
Signal Across 16 Channels in Microvolt Scale

The Hanning window was selected due to its

effective  compromise  between frequency
resolution and  computational  efficiency.
Meanwhile, the Blackman-Harris  window,

employing a multi-term cosine design, was chosen
for its enhanced suppression of sidelobes and
improved spectral clarity, which allows for better
attenuation of high-frequency noise. These
filtering settings were consistently applied across
all participants to ensure a fair comparison
between the two windowing techniques.

The details of the workflow in Figure 2 are
as follows. (i) Acquisition: 16-channel EEG (10 —
20), fs = 256 Hz, resting condition as in the
dataset. (ii) Pre-processing: format conversion —
band-pass to maintain the neural activity band and
notch for powerline suppression, according to the
specifications in the Materials section. (ii) FIR-

window  design: linear-phase  coefficients
synthesized separately for Hanning and
Blackman—Harris with consistent

parameters/orders across subjects. (iv) Per-
channel application: 1D per-channel convolution
produces two filtered signal versions (Hanning vs
Blackman—Harris). (v) Metric extraction: MAE,
MSE, SNR, PSD per channel are calculated from
the pre-FIR (y) and post-FIR (¥) signal pairs and
then aggregated to the subject level. (vi) Statistics:
for each metric, a paired t-test is performed
between windows at the subject level, reporting p-
values and effect sizes.

For the calculation of MAE and MSE, the
reference signal was defined as the original,
unfiltered EEG signal for each subject. The filtered
signal, obtained after applying either the Hanning
or Blackman-Harris filter, was compared against
this reference signal. Specifically, for each sample
i, the original EEG signal y; served as the

reference, and the filtered signal y; was the
predicted signal. MAE and MSE were then
computed as the average absolute and squared
differences between the reference and the filtered
signal, respectively, across all time samples of
each channel.

EEG Dataset Format dat
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Figure 2. EEG Signal Processing Scheme
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Mean Squared Error (MSE)

Mean Squared Error (MSE) is a widely
adopted evaluation metric in signal processing
and regression analysis, particularly for assessing
the accuracy of signal reconstruction after noise or
artifact removal. It quantifies the average of the
squared differences between the actual and
predicted (or reconstructed) values. A lower MSE
value indicates better model performance,
reflecting minimal deviation from the original
signal. Since MSE squares the errors, it is highly
sensitive to large deviations and outliers, making
it effective for detecting even subtle distortions in
EEG signal restoration. It can be calculated using
an (1)

1% .
MSEZEZ(%‘—}’L’) (1
i=1

y; is the actual value and n is the number of data
points [19].

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a
straightforward and widely used evaluation metric
that calculates the average absolute difference
between predicted and actual values. Unlike MSE,
MAE does not amplify the impact of outliers,
making it more robust in analyzing EEG signals
with noise or missing channels. In EEG
processing, MAE effectively quantifies the
deviation between reconstructed and original
signals, offering clear insight into interpolation and
filtering performance [2].

n
1
MAE=EZIyi—)7iI @)
i=1

The variable y; represents the data at the i

the point, while §; denotes the predicted or filtered
value at the same index. Both are compared
across n total samples to evaluate the accuracy of
the prediction or filtering method [20][21].

Power Spectral Density (PSD)

Power Spectral Density (PSD) is a
frequency-domain method used to measure how
signal power is distributed across frequencies. In
EEG analysis, PSD helps identify dominant
brainwave patterns and characterize both
rhythmic and background neural activity. It is
often computed using the Fourier Transform, as
shown in (3).

1 T/2
S,(f) =lim = | J. x(t) e J2Mt dt |? (3)
T T _1/2
Here, Sx(f) denotes the power at
frequency f from the time-domain signal x(t).
Recent studies, such as Liu et al. (2023), show
that modeling both periodic and aperiodic PSD
components improves EEG classification,

especially for seizure detection [22].

Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) is a key metric
that quantifies the ratio between the power of a
signal and the power of background noise. In EEG
signal processing, where the signal is often weak
and susceptible to various sources of noise, SNR
serves as a critical indicator of signal quality. It is
typically expressed in decibels (dB) using the
following (4).

_ Psignal
SNR(dB) = 10log 1 (5" )

noise

A higher SNR value reflects better signal
clarity with minimal interference, while a lower
value suggests that noise dominates the signal.
Recent work by Miao et al. (2023) introduced
LMDA-Net, a lightweight multi-dimensional
attention network designed to enhance SNR in
EEG-based BCl systems by applying effective
spatial-temporal filtering techniques [23][24].

P Value

The p-value assesses the statistical
significance of EEG signal differences between
ASD and control groups after applying FIR filters
with Hanning and Blackman-Harris windows. It is
calculated using (5).

P = P(T Zl tobserved D (5)

where t,,erved 1S the calculated test statistic and
T follows a t—distribution with appropriate
degrees of freedom. A p-value below 0.05
suggests a statistically significant difference in
EEG patterns between ASD and control groups.
Conversely, a value above 0.05 indicates that the
observed differences may be attributed to random
variation. Recent developments in statistical
inference recommend using second-generation p-
values, which offer greater emphasis on practical
relevance and reproducibility, rather than relying
solely on conventional thresholds. This approach
ensures that statistically significant findings are
also scientifically meaningful and replicable [25].
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Cohen’s d

Cohen’s d is a standardized measure of
effect size that quantifies the magnitude of the
difference between the means of two independent
groups on a scale without units. It serves as a
complement to significance testing by providing
insight into the size of the difference in
performance metrics between configurations or
pipelines, allowing for comparisons across various
metrics and studies [26].

X1 — X

Sp

In the formula, X¥; and X, represent the
sample means of the two groups, while s,denotes
the pooled standard deviation, which is calculated
from the within-group variances with degrees of
freedom of n, +n, — 2 (for independent groups).
The sign of dindicates the direction: d > 0 when
the first group's mean is greater than the second's,
and d <0 when it is smaller [27]. Common
thresholds for effect size are d = 0.2(small), 0.5
(medium), and 0.8 (large). Reports should include
the point estimate of d, its direction, and, when
possible, a confidence interval. For small sample
sizes, the small-sample correction should be
applied (i.e., Hedges’ g) [27].
For paired or within-subject designs, the effect
should be computed using the standard deviation
of the paired differences (e.g., d, =d/s4) to
account for within-subject dependency, rather
than using s, [28].

For each subject and each channel, we
prepared two sets of signals, the signal before
windowing and the signal after windowing; the
mean absolute error was calculated to assess the
mean deviation in the time domain and averaged
across channels at the subject level, the mean
squared error was calculated to assess the mean
squared deviation and aggregated in the same
way, the power spectral density was then
estimated through a uniform procedure across the
samples with overlapping segmentation and
consistent windows to obtain a summary of the
energy in the analyzed frequency band which was
then averaged across channels at the subject
level, the signal-to-noise ratio was derived by
comparing the output signal power to the residual
power derived from the difference between the
output and input signals and expressed in decibels
and then accumulated across channels at the
subject level, and for each metric, pairwise
statistical tests were performed at the subject level
separately for the ASD and normal groups with
reporting of two-tailed p-values and inclusion of
effect sizes and confidence intervals to strengthen
the interpretation of the results.

RESULTS AND DISCUSSION

The EEG signal, initially processed using
FIR filters with Hanning and Blackman-Harris
window functions, was subsequently evaluated
based on four performance metrics. These include
Mean Square Error (MSE) as defined in Equation
(1), Mean Absolute Error (MAE) in Equation (2),
Power Spectral Density (PSD) in Equation (3),
Signal-to-Noise Ratio (SNR) in Equation (4), and
statistical significance through P-value and
Cohen's d to test the parameters.

Window Hanning Filter Result

The application of a FIR filter with a Hanning
window enables effective attenuation of spectral
sidelobes while ensuring a gradual transition in the
frequency response. This characteristic is
particularly valuable in EEG analysis, as it helps
reduce spectral leakage that could otherwise
obscure critical brainwave components, especially
in the delta (0.5 — 4 Hz), theta (4 — 8 Hz), alpha
(8 — 13 Hz), and beta (13 — 30 Hz) bands, which
are essential for interpreting various cognitive and
neurological functions [29][30].

The findings indicate that the FIR filter
configured with a Hanning window is effective in
attenuating high-frequency noise within EEG
signals, while preserving phase linearity and
retaining essential spectral components. This
ensures that key neurological features remain
intact after filtering. As depicted in Figure 3, the
contrast between raw and filtered EEG signals
highlights the Hanning filter's capability to
enhance signal clarity without introducing
significant distortion [31].

The processed EEG signal using the
Hanning FIR filter reveals a smoother waveform
with  diminished high-frequency oscillations
typically attributed to noise interference.

Original Signal - Channel Fpl
100 &l g P
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(a) Original Signal on Channel Fp1

Hanning Filtered Signal - Channel Fpl

o 5000 10000 15000 20000 25000
Sample

(b) Hanning Filtered Signal on Channel Fp1
Figure 3. EEG Signal on Channel Fp1: (a)
Original, (b) Filtered using Hanning Window
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This filtering approach exhibits a stable amplitude
response across the target frequency band and
demonstrates a sharper transition at cutoff
frequencies indicating greater efficiency in
isolating the core EEG signal from unwanted
components. Quantitative analyses further
reinforce this observation; the Hanning FIR filter
consistently produces lower MAE and MSE
values, enhanced SNR, and a more concentrated
PSD profile. These improvements confirm the
filter's proficiency in suppressing non-neural
disturbances, such as EMG noise and external
electromagnetic artifacts, without compromising
the underlying neural signal integrity.

The Hanning window approach
demonstrates a reduction of high-frequency
oscillations in the time domain without shifting the
informative amplitude structure, in line with its
linear-phase character that minimizes phase
distortion in the passband. Quantitatively, the
decrease in the mean and mean-square errors
indicates the preservation of signal morphology,
while the recorded increase in clarity in the signal-
to-noise ratio and a more focused spectral density
profile confirm that the neural components are
preserved after filtering. Thus, Hanning effectively
suppresses unwanted high-frequency
components while preserving the core spectral
features relevant for EEG analysis.

Window Blackman-Harris Filter Result

The Blackman-Harris window achieves
outstanding sidelobe attenuation (92 dB),
significantly reducing spectral leakage in EEG
preprocessing. Its multi-term cosine design
ensures smooth transition bands and minimal
interference with key neural frequencies, making it
highly effective in isolating brainwave signals from
high-frequency disturbances like EMG or
environmental noise. These advantages are
particularly beneficial in ASD studies, where EEG

clarity is essential for accurate neural
interpretation [32][33].
FIR window filtering shows that the

Blackman-Harris window delivers sharper cutoff
characteristics and superior stopband rejection
compared to other window types. It effectively
suppresses 50Hz  powerline interference,
resulting in improved PSD resolution and higher
SNR, highlighting its suitability for EEG-based
ASD research [34].

The application of the Blackman-Harris
window markedly improves EEG signal quality by
delivering a noticeably cleaner waveform, as
shown in Figure 4.
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(b) Blackman-Harris Filtered Signal
Figure 4. EEG Signal on Channel Fp1: (a)
Original, (b) Filtered using Blackman-Harris

Window.
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This high-order FIR filter offers a smooth
frequency response, ensuring a sharp yet
distortion-minimizing transition from passband to
stopband. Quantitative assessment reveals that
filtering leads to decreased Mean Squared Error
(MSE) and Mean Absolute Error (MAE), alongside
a notable boost in Signal-to-Noise Ratio (SNR).
These improvements underscore that post-
filtering EEG signals are much better suited for
subsequent analysis. Notably, by effectively
removing high-frequency interference such as
EMG and environmental noise, the filter
preserves critical neural information while
enhancing overall signal clarity.

The advantages of Blackman—Harris
stop-band rejection come from the very high
sidelobe suppression and smooth transitions
between bands, so that spectral leakage at
frequencies outside the pass-band can be
suppressed more aggressively without disturbing
the relevant neural components. This
configuration has a direct impact on the spectral
clarity and efficiency of interference suppression,
including powerline interference, which is
reflected in the improvement of the signal-to-noise
ratio and control of the power spectral density in
the measurement results. The Fp1 channel is
presented as a representative example because
it is physiologically most susceptible to ocular
artifacts and high-frequency components, so that
post-filtration changes appear most contrastingly
without compromising the generality of the
interpretation supported by the subject-level
summary metrics.

Performance Accuracy Analysis Result
The effectiveness of EEG filtering was
evaluated using four key metrics: Mean Squared
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Error (MSE), Mean Absolute Error (MAE), Power
Spectral Density (PSD), and Signal-to-Noise
Ratio (SNR). Both MSE and MAE quantify the
deviation between filtered and original signals,
where lower values indicate better signal fidelity.
SNR assesses noise reduction effectiveness,
while PSD reflects how the filter redistributes
signal energy across the frequency spectrum.
Collectively, these measures offer a holistic view
of filtering performance.

Results confirm that both FIR filters with
Hanning and  Blackman-Harris  windows
significantly improve EEG signal quality. The
Hanning filter achieves smoother frequency
transitions with relatively low computational cost.
In contrast, the Blackman-Harris filter delivers
superior sidelobe suppression, making it more
adept at attenuating high-frequency noise while
faithfully preserving relevant neural components.

However, the computational cost for the
Blackman-Harris filter tends to be higher,
especially when the filter order M is increased to
achieve better side-lobe suppression and more
detailed frequency control. This increased
computational load results in more Multi-
accumulate (MAC) operations per sample, which
can affect real-time processing performance in
applications that are highly latency-sensitive.
However, if the filter length M is equalized
between the two filters, the computational cost for
Blackman-Harris is almost equivalent to that of
Hanning.

Window Blackman-Harris FIR Filter ASD
Subject

The application of the Hanning window FIR
filter demonstrates favourable results across
multiple performance indicators, MAE, MSE,
PSD, and SNR. As illustrated in Figure 5, the MAE
values range from 0.01 to 0.035 and MSE values
between 0.0002 and 0.0013 reflect low error
margins, indicating effective noise suppression
while maintaining the morphological integrity of
the original EEG signals. While the Blackman-
Harris window excels in noise reduction and
spectral accuracy, the Hanning window is
particularly well-suited for scenarios where real-
time performance is crucial. Its lower
computational demand makes it a more efficient
choice for applications that require fast
processing, such as brain-computer interfaces
(BCI) and clinical monitoring systems. In these
cases, where minimizing latency is essential,
Hanning offers an optimal balance between
performance and efficiency.

Thus, despite Blackman-Harris offering
superior frequency precision, Hanning proves to
be the better option for real-time EEG processing,
especially in  environments with limited
computational resources.

These findings confirm the Hanning filter's
consistency in minimizing interference without
compromising essential neural components.

Hanning Filter - MAE

0.325

0.307
030
0.25
020
w
<
= o01s
0.115
. 0.079 0.084
i - -
0.00

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Subjects

(a) Comparison Mean Absolute Error (MAE)

Hanning Filter - MSE

0.175 0.177
0.173

- = - =
0000

sn.cn Subject 2 Subject 4 Subject 5

Subjecls

(b) Comparison Mean Square Error (MSE)

Hanning Filter - SNR(dB)

Subject 2 Subject 4

Subjects

(c) Comparison Signal-to-Noise Ratio (SNR)

Hanning Filter - PSD (x10_

_ 6000
=
é 00
2 40
2000
o

Subject 1 Subject 2 Subject Subject 4 Subject 5
Sub]ecls

(d) Comparison Power Spectral Density (PSD)
Figure 5. Comparison values for Window
Hanning FIR Filter ASD subjects: (a) MAE, (b)
MSE, (c) SNR, and (d) PSD

M. Melinda et al.,

Comparative analysis of EEG pre-processing in ASD using Hanning ...

253



SINERGI Vol. 30, No. 1, February 2026: 247-262

The observed SNR values, which fall
between 8.9 and 11.2 dB, demonstrate a
significant enhancement in EEG signal clarity
following the application of the Hanning filter.
Furthermore, the consistent Power Spectral
Density (PSD) readings in the range of 3.0 to
5.8 (x 107®) that highlight the filter's ability to
preserve the signal's power across key
frequencies while effectively suppressing spectral
noise. This supports the filter’'s capacity to retain
critical EEG components essential for accurate
interpretation.

Window Blackman-Harris FIR Filter ASD
Subject

The Blackman-Harris window exhibits
superior capabilities in EEG signal filtering,
notably in reducing spectral leakage and
improving frequency precision. Its strong sidelobe
suppression makes it highly advantageous for
applications that demand accurate signal
interpretation and effective noise elimination.

Figure 6 illustrates that the Blackman-Harris
window delivers outstanding performance across
four evaluation metrics MAE, MSE, SNR, and PSD.
The method achieves significant noise attenuation,
as evidenced by high SNR values ranging from
62.85 to 91.41dB, indicating robust signal
enhancement. Additionally, the very low Power
Spectral Density (PSD) values, between 0.002 and
0.71 x 1073, reflect minimal spectral leakage,
highlighting its effectiveness for detailed frequency-
domain analysis. Moreover, the filter maintains
waveform integrity, with Mean Absolute Error
(MAE) values of 0.021 — 0.057 and Mean Squared
Error (MSE) wvalues of 0.0015—0.0062,
demonstrating that the original signal structure is
largely preserved. These findings affirm the
Blackman-Harris window's reliability in preserving
EEG signal quality throughout the spectral filtering
process.

Comparison of Hanning and Blackman-
Harris FIR Filter on ASD Subject

Figure 7 illustrates a comparative evaluation
of FIR filter performance using Hanning and
Blackman-Harris windows on EEG signals
recorded from ASD subjects, assessed using four
critical parameters: MAE, MSE, SNR, and PSD.
The analysis reveals that the Blackman-Harris
window achieves superior performance in terms of
accuracy and stability.

This is evidenced by its lower error rates,
with MAE values ranging from 0.084 to 0.333 and

MSE values between 0.025 and 0.172,
outperforming  the Hanning  window in
approximating the true signal. Furthermore,

improvements in signal clarity are demonstrated by
SNR values spanning 7.770 to 37.250dB,
indicating effective background noise suppression.
The corresponding PSD values, ranging from
4178 x 1072 to 7.344 x 1073, that confirms the
filter's ability to preserve spectral components with
minimal leakage, reinforcing its suitability for EEG
signal processing in ASD analysis.
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As shown in Figure 7, the Blackman-Harris
window demonstrates improved accuracy and
greater consistency in preserving essential EEG
signal characteristics in ASD subjects.
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These findings suggest that the Blackman-
Harris window is a more effective and preferable
choice for EEG signal preprocessing compared to
the Hanning window.

Window Hanning FIR Filter Normal Subject
Figure 8 shows that the application of an
FIR filter with a Hanning window to EEG
recordings from five non-ASD (healthy) subjects
provides an optimal trade-off between noise
reduction and preservation of signal integrity.
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Filter performance was assessed using four
primary metrics: MAE, MSE, PSD, and SNR.
Subject 2 achieved the lowest MAE value at 0.179,
reflecting the highest accuracy in waveform
representation, whereas subject 5 recorded the
highest MAE of 0.229.

In terms of MSE, subject 3 yielded the
smallest error value of 0.057, while subject 1
exhibited the largest at 0.104, indicating variation
in approximation quality. Regarding frequency
preservation, subject 2 obtained the most
favorable PSD result at 5.300 x 1073, signifying
minimal spectral leakage, whereas subject 4
reached the highest PSD at 8.037 x 1073,
suggesting greater distortion. Signal clarity was
best in subject 3, with the highest SNR at
12.690 dB, and lowest in subject 1, with 10.460 dB,
indicating differing levels of residual noise across
subjects.

Window Blackman-Harris FIR Filter Normal
Subject

As shown in Figure 9, the FIR filter using a
Blackman—Harris window was evaluated on EEG
recordings from five healthy subjects, yielding
consistent and reliable performance. Subject 2
achieved the lowest mean absolute error (MAE) of
0.170, whereas Subject 5 exhibited the highest
MAE at 0.220. In terms of mean squared error
(MSE), Subject 3 recorded the smallest value of
0.050, while the largest MSE, 0.102, was observed
in another subject.

Subjecttwo  again  stood  out when
examining spectral leakage with the lowest power
spectral density (PSD) of 4.9179 x 1073, In
contrast, subject four had the highest PSD at
7.4492 x 1073, indicating notable differences in
how effectively suppressed leakage among
subjects. Signal clarity, measured by the signal-to-
noise ratio (SNR), peaked with subjects 2 and 3,
who achieved SNR values of 13.450dB and
13.3120 dB, respectively, reflecting the highest
quality of EEG signals after filtering.

Taken together, subjects 2 and 3
consistently delivered the most optimal results
across all metrics: MAE, MSE, PSD, and SNR,
highlighting the effectiveness of the FIR filter with
the Blackman-Harris window in preserving signal
integrity and reducing noise.

Comparison of Hanning and Blackman-
Harris FIR Filter on Normal Subject

Figure 10 presents a comparative analysis
of FIR filter performance using Hanning and
Blackman-Harris windows on EEG data from non-
ASD (normal) subjects, based on four key
evaluation metrics: MAE, MSE, SNR, and PSD.
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Figure 9. Comparison values for Window
Blackman-Harris FIR Filter normal subjects: (a)
MAE, (b) MSE, (c) SNR, and (d) PSD.

In terms of error reduction, the Blackman-Harris
window demonstrates superior performance,
yielding lower MAE values ranging from 0.172 to
0.220 and MSE values between 0.050 and 0.102.
In evaluating signal clarity, the filter
enhances SNR, reaching a maximum of
13.000dB and a minimum of 9.960 dB although
the improvement over the Hanning window
remains moderate. From a spectral perspective,
the Blackman-Harris window achieves PSD
values within the range of 500.000 x 1073 to
745.400 x 1073, reflecting stronger preservation
of spectral energy in several subjects. Collectively,
these results affirm that the Blackman-Harris
window is more effective in minimizing signal
distortion and retaining spectral content.
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Thereby offering a more robust and accurate
preprocessing method compared to the Hanning
window for EEG data from typically developing
individuals.

The following table provides a summary of
the performance of the Hanning and Blackman-
Harris filters for both the ASD and control groups
across key evaluation metrics. These metrics,
MAE, MSE, PSD, and SNR, offer insights into the
accuracy and noise reduction capabilities of the
filters in relation to the original EEG signals.

As can be seen from Table 1, the Hanning
filter has lower MAE and MSE for both ASD and
normal groups, indicating that it is superior in

removing signal errors and deviation from the
original EEG. However, the Blackman-Harris filter
performs better in terms of SNR and PSD,
indicating that it has superior noise reduction and
superior spectral accuracy, especially for the ASD
group. This renders Blackman-Harris particularly
appropriate to uses wherein more spectral
precision is required, with Hanning being more
performative in  real-time uses  where
computational effectiveness is the higher priority.

Contemporary research in EEG analysis for
neurological disorders often prioritizes advanced
feature extraction or classification techniques
while neglecting rigorous quantification of
preprocessing efficacy. For instance, [39]
developed sophisticated EEG decomposition
methods without establishing baseline signal
quality metrics such as spectral noise ratios or
reconstruction fidelity.

Similarly, studies by [36] and [37] focused
on computational optimization while omitting
systematic evaluation of filter performance in
noise suppression. Our work demonstrates that
selective filter implementation, particularly the
Blackman-Harris window significantly enhances
signal integrity prior to feature extraction.
Empirical results show a 13.76 dB signal-to-noise
ratio and 0.169 mean absolute error for ASD data,
establishing new benchmarks in preprocessing
precision. These quantitatively verified
improvements in signal conditioning provide a
more reliable foundation for subsequent analytical
stages in neurodiagnostic applications.

The Hanning window demonstrated lower
MSE and MAE values, indicating better waveform
preservation with minimal distortion. Its moderate
frequency resolution and low computational cost
make it suitable for real-time applications like
clinical monitoring or BCI systems. In contrast, the
Blackman-Harris window achieved significantly
higher SNR and lower PSD, reflecting superior
noise suppression and spectral clarity. However,
its higher MAE suggests that some fine signal
details may be lost due to stronger sidelobe
attenuation.

Table 1. Comparison of Hanning and Blackman-
Harris Filter Performance in ASD and Normal

M. Melinda et al.,
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Subjects
. . Blackman- Blackman-
Metric Hanning Hanning Harris Harris
(ASD) (Normal) (ASD) (Normal)
MAE 0.222 0.206 0.169 0177
MSE 0.087 0.078 0.062 0.074
PSD(x 10%) 6.946 6.663 7.056 7115
SNR 12.464 11.754 13.762 12.232
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This highlights a trade-off: Hanning offers
better time-domain accuracy with efficiency, while
Blackman-Harris  provides  stronger  noise
reduction at the cost of signal detail and
computational load. The choice depends on
application needs Hanning is ideal for real-time
use, whereas Blackman Harris suits offline
analysis requiring high spectral precision.

While both the Hanning and the Blackman-
Harris filters demonstrate excellent performance
in terms of noise suppression and spectral purity,
their actual use in real-world systems is a delicate
balance between real-time processing
requirements and computational loads. While less
computationally expensive, the Hanning filter is
very well suited to real-time implementations,
particularly in restricted processing systems such
as embedded systems used for clinical monitoring
or BCIl setups. On the other hand, while the
Blackman-Harris filter is more spectrally accurate,
its higher computational cost may be limited to use
in applications where computational resources are
not extensive, especially for systems that must
process more than one EEG data channel at once.
Therefore, the choice of the filter should be made
depending on the specific needs of the
application: in offline high-fidelity analysis or in
clinical diagnostics when accuracy is paramount,
Blackman-Harris may prove to be the optimal
choice; but for low-latency, real-time applications,
Hanning offers a more realistic alternative.

The Hanning filter best suits low-power,
real-time systems, i.e., portable BCI systems and
clinical monitoring. Its efficiency makes it best
suited for systems where power and
computational resources are constrained, i.e.,
wearable EEG systems or ambulatory monitoring.
The Blackman-Harris filter, on the other hand, is
best used in offline, research-grade, or diagnostic
systems where precision is of greater concern
than computational cost. Its increased spectral
precision and side-lobe rejection make it suitable
for neuroimaging research, off-ine EEG data
processing, and clinical diagnosis in controlled
environments where real-time processing is not
required.

From an implementation perspective, both
approaches are based on linear-phase FIR, but
Blackman—Harris generally requires a higher
order/number of taps than Hanning to achieve the
same sidelobe suppression and spectral clarity.
This inevitably results in increased computational
overhead per sample, increased coefficient
memory requirements, and increased group delay
and processing latency. In  multi-channel
streaming EEG applications (for example, 16
channels, 250 Hz) or on power-constrained edge
devices, these attributes can reduce the

computational space available for later steps such
as feature extraction and classification.
Conversely, the lighter Hanning technique is
better suited to real-time applications as it
maintains end-to-end latency and power, although
its spectral accuracy and transmission
suppression of frequencies are less aggressive
than Blackman—Harris. Consistent with the
quantitative results of this study, window selection
should be tailored to the application context. For
real-time pipelines requiring fast and stable
response, medium-order Hanning is more
practical; for offline analysis or diagnostic workups
where  spectral fidelity and  SNR/PSD
improvement are important, Blackman—Harris
offers greater advantages. In the future, these
trade-offs can be mitigated through adaptive order
tuning, efficient block processing, and SIMD/GPU-
based activation to meet latency limits without
sacrificing signal integrity.

P Value Analysis

All significance tests were conducted at the
subject level by averaging the cross-channel
metrics for each individual and then comparing
Hanning vs. Blackman-Harris pairs in the ASD
and normal groups separately. This approach
maintains the independence of the units of
analysis and avoids intra-subject correlation
between channels. The results show a consistent
pattern across both groups, with Blackman-Harris
superiority in the frequency domain (SNR and
PSD), while differences in the time domain (MAE
and MSE) are relatively small; this interpretation
is confirmed by the effect sizes reported in the
next section.

ASD Subjects

A paired t-test was performed on EEG data
from five ASD subjects to assess the comparative
effectiveness of the Hanning and Blackman-
Harris filters across four performance indicators:
MAE, MSE, SNR (dB), and PSD (x 10%). The test
produced p-values of 0.0172, 0.0116, 0.0437, and
0.0002, respectively, each below the 0.05
threshold demonstrating statistically significant
differences in filter performance. These results
confirm that the Blackman-Harris filter
consistently outperforms the Hanning filter by
achieving lower error rates (MAE and MSE),
higher signal clarity (SNR), and a more favorable
distribution of spectral power (PSD), thereby
offering a more reliable approach for enhancing
EEG signal quality in ASD-related studies.
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Normal Subjects

The paired t-test analysis applied to the
four performance indicators MAE, MSE, SNR,
and PSD revealed statistically significant
differences (p<0.05) between the Hanning and
Blackman-Harris filtering methods. Notably, the
Blackman-Harris filter produced p-values of
0.0013 for MAE, 0.0030 for MSE, 0.0064 for SNR,
and 0.002 for PSD, highlighting its enhanced
ability in spectral optimization. These findings
reinforce that the performance gains are
attributable to the inherent design characteristics
of the Blackman-Harris window rather than being
driven by random fluctuations.

While the statistical significance (p < 0.05)
of the differences between the Hanning and
Blackman-Harris filters across all metrics are
clear, the practical implications of these findings
must be considered in the context of clinical and
real-time applications. The significant
improvements in Signal-to-Noise Ratio (SNR) and
Power Spectral Density (PSD), especially with the
Blackman-Harris window, suggest a notable
enhancement in EEG signal quality that could aid
in more accurate diagnostics and better
interpretation of neural activity in ASD patients.

Cohen’s d
ASD Subjects

In the ASD group, the effect sizes indicate
that the differences in the temporal domain are
practically negligible: MAE d = 0.0266 and MSE

d = 0.0159 indicate equivalent waveform
preservation between Blackman—Harris and
Hanning. In contrast, the differences in the

spectral domain are striking, with PSD d = 9.674
indicating that Blackman—Harris is significantly
more  effective at suppressing spectral
power/leakage than Hanning. Using the
convention d = Hanning — Blackman—Harris, the
negative SNR value (d = —0.302) means that
Blackman—Harris provides a small but consistent
SNR improvement. Overall, in ASD subjects,
Blackman—Harris reduces the spectral
component without sacrificing errors in the
temporal domain.

Normal Subjects

In the normal group, the same pattern
emerged with stronger intensity in the spectral
domain: MAE d = 0.0399 and MSE d = 0.0278
remained close to zero (equivalent time
performance), while PSD reached d = 11.197,
indicating a very strong superiority of Blackman—
Harris in power/leakage suppression over
Hanning. The negative SNR value (d = —0.329)
further confirms the slight SNR improvement of

Blackman—Harris. Thus, in normal subjects,
Blackman—Harris's superiority in the frequency
domain becomes more pronounced, while the
time metrics remain equivalent; this finding should
be interpreted with caution, given the limited
sample size.

One major limitation of the present study is
the sample size, which is five ASD participants
and five neurotypical controls. A small sample size
may affect the external validity of the results to a
larger, more heterogeneous population. Statistical
power to the analysis decreases with fewer
participants, and within-person differences in EEG
properties between individuals may not be
controlled for. For better quality in future research,
additional subjects from diverse backgrounds are
highly recommended. Having a larger sample size
would provide a stronger statistical analysis and
reflect a more accurate picture of the difference
between the ASD group and neurotypical controls,
thus making the results more practical and
meaningful for clinical and academic purposes.

CONCLUSION

This research confirms that the application
of two FIR filtering techniques, Hanning and
Blackman-Harris window significantly improves
the quality of EEG signals in both neurotypical
individuals and subjects diagnosed with Autism
Spectrum Disorder (ASD), as evaluated using four
primary parameters: MAE, MSE, SNR, and PSD.
The Hanning filter achieved MAE values between
0.010 and 0.035, MSE ranging from 0.0002 to
0.0013, SNR between 8.9 and 11.2 dB, and PSD
values of 3.0 — 5.8 x 1073, indicating effective
noise reduction while preserving the integrity of
the original waveform. In contrast, the Blackman-
Harris window recorded higher MAE values
(0.061 — 0.080) and comparable MSE scores
(0.019 — 0.031), yet demonstrated substantially
greater improvements in SNR, ranging from 7.77
to 37.25dB, alongside more controlled PSD
values between 4.178 and 7.344 x 1073. These
findings suggest superior suppression of high-
frequency artifacts and better frequency
resolution. A paired t-test yielded statistically
significant p-values (p < 0.05), reinforcing the
conclusion that the Blackman-Harris filter
outperforms the Hanning filter in high-precision
EEG preprocessing, albeit with slightly greater
computational complexity.

To strengthen the practicality of EEG
findings, we emphasize that window/filter
selection needs to consider the tradeoff between
spectral precision and computational cost,
particularly in real-time/embedded BCI
implementations that are sensitive to latency and
resource consumption [38]. Future study plans
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should be optimized through a priori trial power
planning considering the interaction of the number
of participants, number of trials, and effect size to
ensure adequate parameter estimation and
difference testing [39], and reporting effect sizes
with confidence intervals to improve the precision
and replicabilty of EEG analyses across
populations [40]. Similarly, expanding to larger
and more diverse datasets is proposed to improve
the generalizability and stability of estimates, while
also enabling a more nuanced evaluation of
filtering performance across recording conditions.

One major limitation of the present study is
the small sample size, comprising just five
individuals with ASD and five neurotypical
controls. The small sample size can reduce the
external validity of the findings and introduce
biases since the EEG features observed in this
small population might not entirely represent the
broader ASD population. In addition, the small
sample size could also limit the statistical power of
the analysis, and it will be harder to generalize the
results to a larger, more heterogeneous
population. Future studies should involve larger
and more diverse sample sizes to increase the
generalizability and stability of the findings.
Furthermore, upcoming research needs to
consider other sources of bias, e.g., inter-subject
differences in EEG features, so that the results
can more generally be translated into clinical
practice and research.
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